Download citation
Download citation
link to html
A polymorphic transition as a result of grinding was found for 3-[1-(tert-but­oxy­carbonyl)­azetidin-3-yl]-1,2-oxazole-4-carb­oxy­lic acid. The thorough study of polymorphic structures before and after crystal structure transformation has revealed some pre-conditions for a polymorphic transition and regularities of changes in molecular and crystal structure. In metastable polymorph 1a, the conformationally flexible molecule adopts a conformation with the higher energy and forms a less preferable linear supramolecular synthon. Additional energy imparted to a crystal structure during the grinding process proved to be enough to overcome low energy barriers for the nitro­gen inversion and rotation of the oxazole ring around the sp3sp2 single bond. As a result, polymorph 1b with a molecule adopting conformation with lower energy and forming a more preferable centrosymmetric supramolecular synthon was obtained. The study of pairwise interaction energies in the two polymorphs has shown that metastable polymorph 1a is organized by molecular building units and has a columnar-layered structure. A centrosymmetric dimer should be recognized as a complex building unit in more stable polymorph 1b, which has a layered structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520622003900/lo5096sup1.cif
Contains datablocks 1a, 1b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520622003900/lo50961asup2.hkl
Contains datablock la

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520622003900/lo50961bsup3.hkl
Contains datablock 1b

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520622003900/lo5096sup4.pdf
Supplementary material

CCDC references: 2106029; 2106030

Computing details top

For both structures, program(s) used to solve structure: SHELXT 2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Mercury 3.1 (Macrae et al., 2008).

(1a) top
Crystal data top
C12H16N2O5F(000) = 1136
Mr = 268.27Dx = 1.350 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.0117 (9) ÅCell parameters from 2536 reflections
b = 9.6657 (9) Åθ = 3.2–30.1°
c = 17.4382 (9) ŵ = 0.11 mm1
β = 101.948 (7)°T = 100 K
V = 2640.3 (3) Å3Block, colorless
Z = 80.05 × 0.04 × 0.03 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
2322 independent reflections
Radiation source: Enhance (Mo) X-ray Source1625 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.039
ω scansθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
CrysAlis RED, Agilent Technologies, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1818
Tmin = 0.815, Tmax = 1.000k = 1111
8636 measured reflectionsl = 2016
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.043P)2 + 1.7721P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2322 reflectionsΔρmax = 0.19 e Å3
179 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45741 (12)0.44939 (16)0.06163 (10)0.0654 (6)
O20.65464 (10)0.05836 (14)0.30980 (8)0.0435 (4)
O30.66246 (9)0.11553 (13)0.39920 (7)0.0342 (4)
O40.66508 (12)0.61671 (17)0.25829 (11)0.0693 (6)
O50.57402 (11)0.77584 (16)0.19748 (9)0.0474 (4)
H5O0.6060 (19)0.832 (3)0.2375 (17)0.081 (9)*
N10.51646 (13)0.34353 (19)0.09260 (11)0.0509 (6)
N20.63376 (13)0.16536 (17)0.27403 (9)0.0429 (5)
C10.57312 (14)0.4043 (2)0.14704 (12)0.0392 (5)
C20.55512 (15)0.5475 (2)0.15364 (12)0.0432 (6)
C30.48293 (17)0.5669 (2)0.09928 (15)0.0578 (7)
H30.4540530.6528890.0891480.069*
C40.64475 (14)0.3225 (2)0.19380 (12)0.0410 (5)
H40.7012200.3532920.1839370.049*
C50.63568 (15)0.1632 (2)0.19018 (12)0.0412 (5)
H5A0.5820040.1303690.1561750.049*
H5B0.6858080.1147730.1779380.049*
C60.64507 (15)0.3152 (2)0.28293 (12)0.0429 (6)
H6A0.6999110.3430070.3169990.051*
H6B0.5963920.3634020.2981370.051*
C70.65100 (13)0.0643 (2)0.32655 (11)0.0340 (5)
C80.66530 (14)0.0257 (2)0.46809 (12)0.0383 (5)
C90.5891 (2)0.0688 (3)0.45437 (16)0.0874 (11)
H9A0.5367400.0136250.4412670.131*
H9B0.5888600.1226520.5019480.131*
H9C0.5920300.1317820.4109620.131*
C100.7494 (2)0.0512 (3)0.48436 (16)0.0736 (9)
H10A0.7495400.1199670.4431020.110*
H10B0.7568250.0979210.5352060.110*
H10C0.7962110.0144570.4853320.110*
C110.66054 (16)0.1281 (2)0.53251 (12)0.0455 (6)
H11A0.7115270.1868590.5417580.068*
H11B0.6574500.0780370.5807120.068*
H11C0.6095530.1858720.5168510.068*
C120.60401 (15)0.6484 (2)0.20832 (13)0.0426 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0700 (12)0.0450 (10)0.0621 (11)0.0083 (9)0.0306 (9)0.0108 (8)
O20.0584 (11)0.0339 (8)0.0378 (8)0.0036 (7)0.0091 (7)0.0056 (7)
O30.0428 (9)0.0310 (7)0.0274 (7)0.0021 (6)0.0039 (6)0.0008 (6)
O40.0588 (12)0.0436 (10)0.0856 (13)0.0009 (9)0.0314 (10)0.0088 (9)
O50.0569 (11)0.0414 (9)0.0399 (9)0.0002 (8)0.0008 (8)0.0018 (7)
N10.0539 (13)0.0421 (11)0.0461 (11)0.0074 (9)0.0144 (10)0.0119 (9)
N20.0637 (13)0.0339 (10)0.0296 (10)0.0060 (9)0.0065 (9)0.0010 (8)
C10.0389 (13)0.0416 (12)0.0339 (11)0.0124 (10)0.0004 (10)0.0091 (9)
C20.0453 (14)0.0405 (13)0.0385 (12)0.0095 (10)0.0040 (10)0.0082 (10)
C30.0646 (18)0.0373 (13)0.0586 (15)0.0051 (12)0.0167 (13)0.0098 (11)
C40.0361 (13)0.0486 (13)0.0352 (12)0.0058 (10)0.0004 (10)0.0042 (10)
C50.0450 (14)0.0473 (13)0.0303 (11)0.0058 (11)0.0058 (10)0.0003 (10)
C60.0509 (15)0.0341 (12)0.0369 (12)0.0000 (10)0.0062 (10)0.0018 (9)
C70.0331 (12)0.0354 (12)0.0330 (11)0.0013 (9)0.0060 (9)0.0036 (9)
C80.0512 (14)0.0330 (11)0.0315 (11)0.0073 (10)0.0103 (10)0.0013 (9)
C90.116 (3)0.106 (2)0.0464 (15)0.076 (2)0.0316 (16)0.0180 (16)
C100.098 (2)0.0728 (19)0.0525 (16)0.0421 (17)0.0205 (15)0.0233 (14)
C110.0562 (15)0.0462 (13)0.0327 (12)0.0053 (11)0.0057 (10)0.0023 (10)
C120.0438 (14)0.0384 (13)0.0420 (13)0.0050 (10)0.0009 (11)0.0055 (10)
Geometric parameters (Å, º) top
O1—C31.333 (3)C4—C61.555 (3)
O1—N11.422 (2)C4—H41.0000
O2—C71.225 (2)C5—H5A0.9900
O3—C71.337 (2)C5—H5B0.9900
O3—C81.475 (2)C6—H6A0.9900
O4—C121.207 (3)C6—H6B0.9900
O5—C121.322 (3)C8—C91.503 (3)
O5—H5O0.95 (3)C8—C111.511 (3)
N1—C11.309 (3)C8—C101.512 (3)
N2—C71.329 (3)C9—H9A0.9800
N2—C61.464 (3)C9—H9B0.9800
N2—C51.469 (3)C9—H9C0.9800
C1—C21.423 (3)C10—H10A0.9800
C1—C41.489 (3)C10—H10B0.9800
C2—C31.348 (3)C10—H10C0.9800
C2—C121.471 (3)C11—H11A0.9800
C3—H30.9500C11—H11B0.9800
C4—C51.547 (3)C11—H11C0.9800
C3—O1—N1108.31 (16)C4—C6—H6B114.0
C7—O3—C8121.90 (15)H6A—C6—H6B111.2
C12—O5—H5O107.9 (16)O2—C7—N2124.10 (18)
C1—N1—O1105.04 (17)O2—C7—O3125.49 (18)
C7—N2—C6130.64 (17)N2—C7—O3110.40 (17)
C7—N2—C5129.16 (17)O3—C8—C9109.93 (18)
C6—N2—C595.26 (16)O3—C8—C11102.83 (15)
N1—C1—C2111.91 (19)C9—C8—C11110.6 (2)
N1—C1—C4119.9 (2)O3—C8—C10108.56 (18)
C2—C1—C4128.13 (19)C9—C8—C10113.1 (2)
C3—C2—C1103.72 (19)C11—C8—C10111.25 (19)
C3—C2—C12128.9 (2)C8—C9—H9A109.5
C1—C2—C12127.41 (19)C8—C9—H9B109.5
O1—C3—C2111.0 (2)H9A—C9—H9B109.5
O1—C3—H3124.5C8—C9—H9C109.5
C2—C3—H3124.5H9A—C9—H9C109.5
C1—C4—C5116.78 (18)H9B—C9—H9C109.5
C1—C4—C6114.48 (19)C8—C10—H10A109.5
C5—C4—C688.65 (15)C8—C10—H10B109.5
C1—C4—H4111.7H10A—C10—H10B109.5
C5—C4—H4111.7C8—C10—H10C109.5
C6—C4—H4111.7H10A—C10—H10C109.5
N2—C5—C488.08 (15)H10B—C10—H10C109.5
N2—C5—H5A114.0C8—C11—H11A109.5
C4—C5—H5A114.0C8—C11—H11B109.5
N2—C5—H5B114.0H11A—C11—H11B109.5
C4—C5—H5B114.0C8—C11—H11C109.5
H5A—C5—H5B111.2H11A—C11—H11C109.5
N2—C6—C487.95 (15)H11B—C11—H11C109.5
N2—C6—H6A114.0O4—C12—O5123.8 (2)
C4—C6—H6A114.0O4—C12—C2122.9 (2)
N2—C6—H6B114.0O5—C12—C2113.36 (19)
C3—O1—N1—C10.4 (3)C7—N2—C6—C4157.9 (2)
O1—N1—C1—C20.5 (3)C5—N2—C6—C41.77 (18)
O1—N1—C1—C4178.69 (19)C1—C4—C6—N2117.31 (19)
N1—C1—C2—C30.5 (3)C5—C4—C6—N21.67 (17)
C4—C1—C2—C3178.7 (2)C6—N2—C7—O2164.8 (2)
N1—C1—C2—C12179.6 (2)C5—N2—C7—O216.1 (4)
C4—C1—C2—C120.5 (4)C6—N2—C7—O316.0 (3)
N1—O1—C3—C20.1 (3)C5—N2—C7—O3164.7 (2)
C1—C2—C3—O10.2 (3)C8—O3—C7—O211.7 (3)
C12—C2—C3—O1179.3 (2)C8—O3—C7—N2167.52 (18)
N1—C1—C4—C515.3 (3)C7—O3—C8—C950.9 (3)
C2—C1—C4—C5163.8 (2)C7—O3—C8—C11168.69 (18)
N1—C1—C4—C6116.9 (2)C7—O3—C8—C1073.4 (2)
C2—C1—C4—C662.2 (3)C3—C2—C12—O4174.9 (3)
C7—N2—C5—C4158.5 (2)C1—C2—C12—O44.0 (4)
C6—N2—C5—C41.78 (18)C3—C2—C12—O54.6 (4)
C1—C4—C5—N2115.2 (2)C1—C2—C12—O5176.4 (2)
C6—C4—C5—N21.67 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O2i0.95 (3)1.70 (3)2.650 (2)175 (3)
Symmetry code: (i) x, y+1, z.
(1b) top
Crystal data top
C12H16N2O5F(000) = 568
Mr = 268.27Dx = 1.347 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.3254 (10) ÅCell parameters from 1931 reflections
b = 8.7613 (7) Åθ = 3.7–25.9°
c = 11.4085 (8) ŵ = 0.11 mm1
β = 112.480 (8)°T = 293 K
V = 1323.07 (18) Å3Stick, colorless
Z = 40.13 × 0.04 × 0.03 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
2319 independent reflections
Radiation source: Enhance (Mo) X-ray Source1858 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.080
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
CrysAlisPro 1.171.39.46 (Rigaku Oxford Diffraction, 2018) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 1714
Tmin = 0.138, Tmax = 1.000k = 1010
8684 measured reflectionsl = 1312
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0893P)2 + 0.1233P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2319 reflectionsΔρmax = 0.23 e Å3
179 parametersΔρmin = 0.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58603 (13)0.1651 (2)0.49364 (15)0.0548 (5)
O30.15089 (15)0.4655 (2)0.28431 (17)0.0613 (6)
O20.17671 (13)0.5037 (2)0.10179 (17)0.0604 (6)
O40.42575 (12)0.0185 (2)0.08450 (14)0.0494 (5)
O50.59410 (12)0.0321 (2)0.15129 (16)0.0546 (5)
H5O0.583 (3)0.004 (6)0.067 (5)0.132 (16)*
N10.47972 (15)0.1700 (3)0.45717 (18)0.0505 (6)
N20.21608 (15)0.2805 (3)0.20963 (18)0.0497 (6)
C10.44202 (16)0.1259 (3)0.3393 (2)0.0408 (6)
C20.51935 (17)0.0938 (3)0.2937 (2)0.0418 (6)
C30.60665 (19)0.1204 (3)0.3950 (2)0.0481 (6)
H30.6712410.1089160.3951430.058*
C40.33062 (17)0.1138 (3)0.2701 (2)0.0457 (6)
H40.3093890.0073500.2505550.055*
C50.26412 (18)0.1983 (3)0.3291 (2)0.0493 (6)
H5A0.2185500.1319430.3500880.059*
H5B0.3019800.2633520.4002620.059*
C60.28316 (18)0.2174 (3)0.1519 (2)0.0490 (6)
H6A0.3297750.2913380.1413870.059*
H6B0.2481830.1617940.0738570.059*
C70.18101 (17)0.4258 (3)0.1912 (2)0.0475 (6)
C80.1041 (2)0.6151 (3)0.2851 (3)0.0648 (8)
C90.1772 (3)0.7421 (5)0.2865 (5)0.1055 (14)
H9A0.2405250.7265520.3560990.158*
H9B0.1494050.8388710.2960860.158*
H9C0.1876260.7410540.2082630.158*
C100.0072 (2)0.6298 (5)0.1700 (4)0.0887 (11)
H10A0.0217490.6253790.0946200.133*
H10B0.0243310.7256690.1729550.133*
H10C0.0375470.5478850.1691430.133*
C110.0829 (5)0.6075 (6)0.4037 (4)0.138 (2)
H11A0.0389060.5229380.3984740.208*
H11B0.0511090.7005450.4131670.208*
H11C0.1452070.5942100.4754800.208*
C120.50979 (17)0.0449 (3)0.1675 (2)0.0423 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0518 (10)0.0595 (13)0.0495 (9)0.0018 (8)0.0156 (7)0.0084 (8)
O30.0734 (12)0.0526 (13)0.0672 (11)0.0152 (9)0.0372 (9)0.0005 (9)
O20.0519 (11)0.0652 (14)0.0633 (11)0.0056 (9)0.0212 (8)0.0129 (10)
O40.0439 (9)0.0581 (12)0.0490 (9)0.0008 (8)0.0210 (7)0.0085 (8)
O50.0444 (10)0.0752 (14)0.0497 (10)0.0057 (8)0.0241 (7)0.0034 (8)
N10.0514 (12)0.0524 (14)0.0492 (12)0.0042 (10)0.0210 (9)0.0034 (9)
N20.0499 (12)0.0534 (14)0.0505 (11)0.0066 (10)0.0244 (9)0.0006 (9)
C10.0476 (13)0.0336 (13)0.0445 (12)0.0022 (9)0.0213 (10)0.0029 (9)
C20.0455 (12)0.0385 (14)0.0439 (12)0.0029 (10)0.0199 (9)0.0008 (10)
C30.0478 (13)0.0503 (16)0.0504 (13)0.0005 (11)0.0236 (11)0.0035 (11)
C40.0484 (13)0.0422 (14)0.0529 (13)0.0020 (10)0.0265 (10)0.0027 (11)
C50.0478 (13)0.0526 (16)0.0568 (14)0.0032 (11)0.0305 (11)0.0046 (12)
C60.0443 (13)0.0605 (18)0.0451 (13)0.0038 (11)0.0200 (10)0.0041 (11)
C70.0370 (12)0.0558 (17)0.0492 (13)0.0011 (11)0.0159 (10)0.0018 (12)
C80.0613 (17)0.0492 (18)0.0863 (19)0.0073 (13)0.0310 (14)0.0119 (15)
C90.064 (2)0.067 (3)0.169 (4)0.0049 (17)0.026 (2)0.035 (2)
C100.0488 (17)0.077 (3)0.134 (3)0.0099 (15)0.0283 (17)0.006 (2)
C110.218 (6)0.116 (4)0.123 (3)0.073 (4)0.113 (4)0.006 (3)
C120.0438 (13)0.0396 (14)0.0467 (12)0.0038 (10)0.0210 (10)0.0005 (10)
Geometric parameters (Å, º) top
O1—C31.327 (3)C4—C61.550 (3)
O1—N11.418 (3)C4—H40.9800
O3—C71.336 (3)C5—H5A0.9700
O3—C81.473 (3)C5—H5B0.9700
O2—C71.209 (3)C6—H6A0.9700
O4—C121.236 (3)C6—H6B0.9700
O5—C121.295 (3)C8—C111.497 (5)
O5—H5O0.94 (5)C8—C101.508 (5)
N1—C11.302 (3)C8—C91.524 (5)
N2—C71.355 (4)C9—H9A0.9600
N2—C51.461 (3)C9—H9B0.9600
N2—C61.465 (3)C9—H9C0.9600
C1—C21.421 (3)C10—H10A0.9600
C1—C41.489 (3)C10—H10B0.9600
C2—C31.360 (3)C10—H10C0.9600
C2—C121.457 (3)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—C51.549 (3)C11—H11C0.9600
C3—O1—N1108.82 (17)C4—C6—H6B113.9
C7—O3—C8121.5 (2)H6A—C6—H6B111.1
C12—O5—H5O111 (3)O2—C7—O3126.6 (3)
C1—N1—O1105.59 (18)O2—C7—N2123.8 (2)
C7—N2—C5128.5 (2)O3—C7—N2109.5 (2)
C7—N2—C6123.6 (2)O3—C8—C11102.5 (3)
C5—N2—C694.44 (18)O3—C8—C10109.9 (2)
N1—C1—C2111.33 (19)C11—C8—C10110.7 (3)
N1—C1—C4120.4 (2)O3—C8—C9109.7 (2)
C2—C1—C4128.28 (19)C11—C8—C9113.5 (3)
C3—C2—C1104.31 (19)C10—C8—C9110.3 (3)
C3—C2—C12126.8 (2)C8—C9—H9A109.5
C1—C2—C12128.9 (2)C8—C9—H9B109.5
O1—C3—C2109.9 (2)H9A—C9—H9B109.5
O1—C3—H3125.0C8—C9—H9C109.5
C2—C3—H3125.0H9A—C9—H9C109.5
C1—C4—C5116.6 (2)H9B—C9—H9C109.5
C1—C4—C6116.4 (2)C8—C10—H10A109.5
C5—C4—C687.71 (18)C8—C10—H10B109.5
C1—C4—H4111.4H10A—C10—H10B109.5
C5—C4—H4111.4C8—C10—H10C109.5
C6—C4—H4111.4H10A—C10—H10C109.5
N2—C5—C488.77 (17)H10B—C10—H10C109.5
N2—C5—H5A113.9C8—C11—H11A109.5
C4—C5—H5A113.9C8—C11—H11B109.5
N2—C5—H5B113.9H11A—C11—H11B109.5
C4—C5—H5B113.9C8—C11—H11C109.5
H5A—C5—H5B111.1H11A—C11—H11C109.5
N2—C6—C488.57 (16)H11B—C11—H11C109.5
N2—C6—H6A113.9O4—C12—O5124.2 (2)
C4—C6—H6A113.9O4—C12—C2120.5 (2)
N2—C6—H6B113.9O5—C12—C2115.2 (2)
C3—O1—N1—C10.9 (3)C7—N2—C6—C4148.7 (2)
O1—N1—C1—C21.1 (3)C5—N2—C6—C45.55 (19)
O1—N1—C1—C4178.6 (2)C1—C4—C6—N2123.9 (2)
N1—C1—C2—C30.8 (3)C5—C4—C6—N25.22 (18)
C4—C1—C2—C3178.8 (2)C8—O3—C7—O21.9 (4)
N1—C1—C2—C12178.5 (2)C8—O3—C7—N2176.7 (2)
C4—C1—C2—C121.8 (4)C5—N2—C7—O2151.8 (2)
N1—O1—C3—C20.4 (3)C6—N2—C7—O221.6 (4)
C1—C2—C3—O10.2 (3)C5—N2—C7—O329.6 (3)
C12—C2—C3—O1179.2 (2)C6—N2—C7—O3159.8 (2)
N1—C1—C4—C517.2 (4)C7—O3—C8—C11179.6 (3)
C2—C1—C4—C5163.2 (2)C7—O3—C8—C1061.9 (3)
N1—C1—C4—C6118.7 (2)C7—O3—C8—C959.6 (4)
C2—C1—C4—C661.7 (3)C3—C2—C12—O4177.0 (2)
C7—N2—C5—C4145.9 (2)C1—C2—C12—O43.7 (4)
C6—N2—C5—C45.6 (2)C3—C2—C12—O52.9 (4)
C1—C4—C5—N2123.7 (2)C1—C2—C12—O5176.4 (2)
C6—C4—C5—N25.23 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O4i0.94 (5)1.70 (5)2.632 (2)170 (5)
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds