Download citation
Download citation
link to html
Barium silver bismuth is isostructural with ZrBeSi. The Ag and Bi atoms form planar honeycomb layers with an Ag-Bi distance of 2.8534 (4) Å. The displacement parameters of Ag and Bi show a strong anisotropy.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802001721/mg6001sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802001721/mg6001Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](Please check) = 0.000 Å
  • R factor = 0.038
  • wR factor = 0.102
  • Data-to-parameter ratio = 16.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 29.98 From the CIF: _reflns_number_total 133 From the CIF: _diffrn_reflns_limit_ max hkl 6. 3. 12. From the CIF: _diffrn_reflns_limit_ min hkl 0. 0. 0. TEST1: Expected hkl limits for theta max Calculated maximum hkl 6. 6. 12. Calculated minimum hkl -6. -6. -12. ALERT: Expected hkl max differ from CIF values

Comment top

During studies on the ternary barium–silver–bismuth system, the intermetallic compound BaAgBi was obtained as a side product. Previously, this compound was prepared by stoichiometric reaction of the elements and characterized by X-ray powder diffraction (Merlo et al., 1990).

BaAgBi is isostructural with ZrBeSi (Vogel & Schuster, 1980). The Ag and Bi atoms form planar hexagonal sheets like graphite, with Ag and Bi alternating in the layer. The Ba atoms lie between two layers and are positioned over the centers of the hexagonal rings. The shortest interatomic distance, Ag—Bi, is 2.8534 (4) Å, and each Ba atom is surrounded by six Au and six Sb atoms at distances of 3.6533 (4) Å. The displacement parameters of the Ag and Bi atoms display a strong anisotropy; the U11 values of the Ag and Bi atoms are 0.0120 (11) and 0.0066 (7) Å2 while the U33 values are 0.0231 (18) and 0.0140 (10) Å2, respectively. This anisotropy also appears in several ZrBeSi-type compounds, such as EuZnGe (Pöttgen, 1995), CaCuBi (Merlo et al., 1990), and EuAgAs (Tomuschat & Schuster, 1981), suggesting the possibility of interlayer interactions.

Experimental top

BaAgBi was obtained as a by-product when Ba [rod, Alfa-Aesar (99.99%)], Ag [powder, -100 mesh, Alfa-Aesar (99.999%)], and Bi [powder, -100 mesh, Alfa-Aesar (99.999%)] were loaded into a tantalum tube (Nobel-Met. Ltd., >99.85%, 0.375 in. OD) in a 1:1:2 molar ratio in an Ar-filled glovebox. The tube was sealed in an arc-melter under argon, placed in a fused-silica jacket, and heated at 973 K for 3 days. The reaction container was cooled slowly to 673 K at 10 K h-1, and then quenched to room temperature. When the tantalum tube was opened in the Ar-filled glovebox, grey irregular-shaped crystals of BaAgBi were found in the product. Single crystals were mounted in 0.3 mm thin-walled capillaries for diffraction experiments.

Refinement top

Space groups P31c, P31c, P63mc, P63/mmc, and P62c were allowed based on the observed systematic absences. Space group P63/mmc was initially selected and confirmed by comparing the refinement results with the other four space groups. The Ba, Ag, and Bi atoms were readily located from the E-map, and refined with anisotropic displacement parameters. The reflection 124 was omitted from the refinement because of possible interference from the beam stop of the X-ray diffractometer. The largest residuals in the final difference map were 2.76 e Å-3 at a distance of 0.74 Å from Bi, and -3.98 e Å-3 at a distance of 0.92 Å from Bi.

Computing details top

Data collection: TEXSAN (Molecular Structure Corporation, 1990); cell refinement: TEXSAN; data reduction: TEXSAN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The layer structure of BaAgBi along the z axis. Displacement ellipsoids are drawn at the 99% probability level. Key: Ba grey, Ag blue, Bi red.
(I) top
Crystal data top
AgBaBiDx = 7.814 Mg m3
Mr = 454.19Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 27 reflections
Hall symbol: -P 6c 2cθ = 6.5–14.4°
a = 4.9423 (7) ŵ = 60.31 mm1
c = 9.1251 (18) ÅT = 293 K
V = 193.03 (5) Å3Irregular, grey
Z = 20.09 × 0.03 × 0.03 mm
F(000) = 372
Data collection top
Rigaku AFC-6R
diffractometer
Rint = 0
2θ/ω scansθmax = 30.0°, θmin = 4.5°
Absorption correction: ψ scan
(North et al., 1968)
h = 06
Tmin = 0.132, Tmax = 0.164k = 03
133 measured reflectionsl = 012
133 independent reflections3 standard reflections every 100 reflections
89 reflections with I > 2σ(I) intensity decay: 0.9%
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0405P)2 + 2.2564P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.038(Δ/σ)max < 0.001
wR(F2) = 0.102Δρmax = 2.76 e Å3
S = 1.16Δρmin = 3.98 e Å3
133 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
8 parametersExtinction coefficient: 0.011 (2)
Crystal data top
AgBaBiZ = 2
Mr = 454.19Mo Kα radiation
Hexagonal, P63/mmcµ = 60.31 mm1
a = 4.9423 (7) ÅT = 293 K
c = 9.1251 (18) Å0.09 × 0.03 × 0.03 mm
V = 193.03 (5) Å3
Data collection top
Rigaku AFC-6R
diffractometer
89 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0
Tmin = 0.132, Tmax = 0.1643 standard reflections every 100 reflections
133 measured reflections intensity decay: 0.9%
133 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0388 parameters
wR(F2) = 0.1020 restraints
S = 1.16Δρmax = 2.76 e Å3
133 reflectionsΔρmin = 3.98 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba0000.0094 (7)
Ag0.33330.66670.250.0157 (9)
Bi0.33330.66670.750.0091 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba0.0113 (10)0.0113 (10)0.0057 (12)0.0057 (5)00
Ag0.0120 (11)0.0120 (11)0.0231 (18)0.0060 (6)00
Bi0.0066 (7)0.0066 (7)0.0140 (10)0.0033 (4)00
Geometric parameters (Å, º) top
Ba—Bii3.6533 (4)Ag—Baxiii3.6533 (4)
Ba—Ag3.6533 (4)Ag—Baxiv3.6533 (4)
Ba—Biii3.6533 (4)Ag—Baxv3.6533 (4)
Ba—Agiii3.6533 (4)Ag—Baxvi3.6533 (4)
Ba—Biiv3.6533 (4)Ag—Baxvii3.6533 (4)
Ba—Agv3.6533 (4)Bi—Agxii2.8534 (4)
Ba—Bivi3.6533 (4)Bi—Agiv2.8534 (4)
Ba—Agvii3.6533 (4)Bi—Agi2.8534 (4)
Ba—Agviii3.6533 (4)Bi—Baxviii3.6533 (4)
Ba—Biix3.6533 (4)Bi—Baxvi3.6533 (4)
Ba—Agx3.6533 (4)Bi—Baxv3.6533 (4)
Ba—Bixi3.6533 (4)Bi—Baxix3.6533 (4)
Ag—Bixii2.8534 (4)Bi—Baxx3.6533 (4)
Ag—Biiv2.8534 (4)Bi—Baxiii3.6533 (4)
Ag—Bii2.8534 (4)
Bii—Ba—Ag45.975 (5)Bixii—Ag—Ba141.358 (7)
Bii—Ba—Biii180Biiv—Ag—Ba67.012 (2)
Ag—Ba—Biii134.025 (5)Bii—Ag—Ba67.012 (2)
Bii—Ba—Agiii134.025 (5)Bixii—Ag—Baxiii67.012 (2)
Ag—Ba—Agiii180Biiv—Ag—Baxiii141.358 (7)
Biii—Ba—Agiii45.975 (5)Bii—Ag—Baxiii67.012 (2)
Bii—Ba—Biiv85.129 (10)Ba—Ag—Baxiii134.025 (5)
Ag—Ba—Biiv45.975 (5)Bixii—Ag—Baxiv67.012 (2)
Biii—Ba—Biiv94.871 (10)Biiv—Ag—Baxiv67.012 (2)
Agiii—Ba—Biiv134.025 (5)Bii—Ag—Baxiv141.358 (7)
Bii—Ba—Agv45.975 (5)Ba—Ag—Baxiv85.129 (10)
Ag—Ba—Agv85.129 (10)Baxiii—Ag—Baxiv134.025 (5)
Biii—Ba—Agv134.025 (5)Bixii—Ag—Baxv67.012 (2)
Agiii—Ba—Agv94.871 (10)Biiv—Ag—Baxv67.012 (2)
Biiv—Ba—Agv102.717 (14)Bii—Ag—Baxv141.358 (7)
Bii—Ba—Bivi94.871 (10)Ba—Ag—Baxv134.025 (5)
Ag—Ba—Bivi134.025 (5)Baxiii—Ag—Baxv85.129 (10)
Biii—Ba—Bivi85.129 (10)Baxiv—Ag—Baxv77.283 (14)
Agiii—Ba—Bivi45.975 (5)Bixii—Ag—Baxvi141.358 (7)
Biiv—Ba—Bivi180Biiv—Ag—Baxvi67.012 (2)
Agv—Ba—Bivi77.283 (14)Bii—Ag—Baxvi67.012 (2)
Bii—Ba—Agvii134.025 (5)Ba—Ag—Baxvi77.283 (14)
Ag—Ba—Agvii94.871 (10)Baxiii—Ag—Baxvi85.129 (10)
Biii—Ba—Agvii45.975 (5)Baxiv—Ag—Baxvi134.025 (5)
Agiii—Ba—Agvii85.129 (10)Baxv—Ag—Baxvi85.129 (10)
Biiv—Ba—Agvii77.283 (14)Bixii—Ag—Baxvii67.012 (2)
Agv—Ba—Agvii180Biiv—Ag—Baxvii141.358 (7)
Bivi—Ba—Agvii102.717 (14)Bii—Ag—Baxvii67.012 (2)
Bii—Ba—Agviii102.717 (14)Ba—Ag—Baxvii85.129 (10)
Ag—Ba—Agviii85.129 (10)Baxiii—Ag—Baxvii77.283 (14)
Biii—Ba—Agviii77.283 (14)Baxiv—Ag—Baxvii85.129 (10)
Agiii—Ba—Agviii94.871 (10)Baxv—Ag—Baxvii134.025 (5)
Biiv—Ba—Agviii45.975 (5)Baxvi—Ag—Baxvii134.025 (5)
Agv—Ba—Agviii85.129 (10)Agxii—Bi—Agiv120
Bivi—Ba—Agviii134.025 (5)Agxii—Bi—Agi120
Agvii—Ba—Agviii94.871 (10)Agiv—Bi—Agi120
Bii—Ba—Biix85.129 (10)Agxii—Bi—Baxviii67.012 (2)
Ag—Ba—Biix102.717 (14)Agiv—Bi—Baxviii141.358 (7)
Biii—Ba—Biix94.871 (10)Agi—Bi—Baxviii67.012 (2)
Agiii—Ba—Biix77.283 (14)Agxii—Bi—Baxvi141.358 (7)
Biiv—Ba—Biix85.129 (10)Agiv—Bi—Baxvi67.012 (2)
Agv—Ba—Biix45.975 (5)Agi—Bi—Baxvi67.012 (2)
Bivi—Ba—Biix94.871 (10)Baxviii—Bi—Baxvi134.025 (5)
Agvii—Ba—Biix134.025 (5)Agxii—Bi—Baxv67.012 (2)
Agviii—Ba—Biix45.975 (5)Agiv—Bi—Baxv67.012 (2)
Bii—Ba—Agx77.283 (14)Agi—Bi—Baxv141.358 (7)
Ag—Ba—Agx94.871 (10)Baxviii—Bi—Baxv134.025 (5)
Biii—Ba—Agx102.717 (14)Baxvi—Bi—Baxv85.129 (10)
Agiii—Ba—Agx85.129 (10)Agxii—Bi—Baxix67.012 (2)
Biiv—Ba—Agx134.025 (5)Agiv—Bi—Baxix67.012 (2)
Agv—Ba—Agx94.871 (10)Agi—Bi—Baxix141.358 (7)
Bivi—Ba—Agx45.975 (5)Baxviii—Bi—Baxix85.129 (10)
Agvii—Ba—Agx85.129 (10)Baxvi—Bi—Baxix134.025 (5)
Agviii—Ba—Agx180Baxv—Bi—Baxix77.283 (14)
Biix—Ba—Agx134.025 (5)Agxii—Bi—Baxx141.358 (7)
Bii—Ba—Bixi94.871 (10)Agiv—Bi—Baxx67.012 (2)
Ag—Ba—Bixi77.283 (14)Agi—Bi—Baxx67.012 (2)
Biii—Ba—Bixi85.129 (10)Baxviii—Bi—Baxx85.129 (10)
Agiii—Ba—Bixi102.717 (14)Baxvi—Bi—Baxx77.283 (14)
Biiv—Ba—Bixi94.871 (10)Baxv—Bi—Baxx134.025 (5)
Agv—Ba—Bixi134.025 (5)Baxix—Bi—Baxx85.129 (10)
Bivi—Ba—Bixi85.129 (10)Agxii—Bi—Baxiii67.012 (2)
Agvii—Ba—Bixi45.975 (5)Agiv—Bi—Baxiii141.358 (7)
Agviii—Ba—Bixi134.025 (5)Agi—Bi—Baxiii67.012 (2)
Biix—Ba—Bixi180Baxviii—Bi—Baxiii77.283 (14)
Agx—Ba—Bixi45.975 (5)Baxvi—Bi—Baxiii85.129 (10)
Bixii—Ag—Biiv120Baxv—Bi—Baxiii85.129 (10)
Bixii—Ag—Bii120Baxix—Bi—Baxiii134.025 (5)
Biiv—Ag—Bii120Baxx—Bi—Baxiii134.025 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y1, z1; (iii) x, y, z; (iv) x, y+1, z+1; (v) x, y1, z; (vi) x, y1, z1; (vii) x, y+1, z; (viii) x1, y1, z; (ix) x, y, z+1; (x) x+1, y+1, z; (xi) x, y, z1; (xii) x+1, y+2, z+1; (xiii) x+1, y+1, z+1/2; (xiv) x, y+1, z; (xv) x, y+1, z+1/2; (xvi) x, y, z+1/2; (xvii) x+1, y+1, z; (xviii) x+1, y+1, z+1; (xix) x, y+1, z+1; (xx) x, y, z+1.

Experimental details

Crystal data
Chemical formulaAgBaBi
Mr454.19
Crystal system, space groupHexagonal, P63/mmc
Temperature (K)293
a, c (Å)4.9423 (7), 9.1251 (18)
V3)193.03 (5)
Z2
Radiation typeMo Kα
µ (mm1)60.31
Crystal size (mm)0.09 × 0.03 × 0.03
Data collection
DiffractometerRigaku AFC-6R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.132, 0.164
No. of measured, independent and
observed [I > 2σ(I)] reflections
133, 133, 89
Rint0
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.16
No. of reflections133
No. of parameters8
Δρmax, Δρmin (e Å3)2.76, 3.98

Computer programs: TEXSAN (Molecular Structure Corporation, 1990), TEXSAN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ba—Bii3.6533 (4)Ag—Biii2.8534 (4)
Ba—Ag3.6533 (4)
Biii—Ag—Biiii120Agii—Bi—Agiii120
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds