Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802001721/mg6001sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536802001721/mg6001Isup2.hkl |
BaAgBi was obtained as a by-product when Ba [rod, Alfa-Aesar (99.99%)], Ag [powder, -100 mesh, Alfa-Aesar (99.999%)], and Bi [powder, -100 mesh, Alfa-Aesar (99.999%)] were loaded into a tantalum tube (Nobel-Met. Ltd., >99.85%, 0.375 in. OD) in a 1:1:2 molar ratio in an Ar-filled glovebox. The tube was sealed in an arc-melter under argon, placed in a fused-silica jacket, and heated at 973 K for 3 days. The reaction container was cooled slowly to 673 K at 10 K h-1, and then quenched to room temperature. When the tantalum tube was opened in the Ar-filled glovebox, grey irregular-shaped crystals of BaAgBi were found in the product. Single crystals were mounted in 0.3 mm thin-walled capillaries for diffraction experiments.
Space groups P31c, P31c, P63mc, P63/mmc, and P62c were allowed based on the observed systematic absences. Space group P63/mmc was initially selected and confirmed by comparing the refinement results with the other four space groups. The Ba, Ag, and Bi atoms were readily located from the E-map, and refined with anisotropic displacement parameters. The reflection 124 was omitted from the refinement because of possible interference from the beam stop of the X-ray diffractometer. The largest residuals in the final difference map were 2.76 e Å-3 at a distance of 0.74 Å from Bi, and -3.98 e Å-3 at a distance of 0.92 Å from Bi.
Data collection: TEXSAN (Molecular Structure Corporation, 1990); cell refinement: TEXSAN; data reduction: TEXSAN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Fig. 1. The layer structure of BaAgBi along the z axis. Displacement ellipsoids are drawn at the 99% probability level. Key: Ba grey, Ag blue, Bi red. |
AgBaBi | Dx = 7.814 Mg m−3 |
Mr = 454.19 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P63/mmc | Cell parameters from 27 reflections |
Hall symbol: -P 6c 2c | θ = 6.5–14.4° |
a = 4.9423 (7) Å | µ = 60.31 mm−1 |
c = 9.1251 (18) Å | T = 293 K |
V = 193.03 (5) Å3 | Irregular, grey |
Z = 2 | 0.09 × 0.03 × 0.03 mm |
F(000) = 372 |
Rigaku AFC-6R diffractometer | Rint = 0 |
2θ/ω scans | θmax = 30.0°, θmin = 4.5° |
Absorption correction: ψ scan (North et al., 1968) | h = 0→6 |
Tmin = 0.132, Tmax = 0.164 | k = 0→3 |
133 measured reflections | l = 0→12 |
133 independent reflections | 3 standard reflections every 100 reflections |
89 reflections with I > 2σ(I) | intensity decay: 0.9% |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0405P)2 + 2.2564P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.038 | (Δ/σ)max < 0.001 |
wR(F2) = 0.102 | Δρmax = 2.76 e Å−3 |
S = 1.16 | Δρmin = −3.98 e Å−3 |
133 reflections | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
8 parameters | Extinction coefficient: 0.011 (2) |
AgBaBi | Z = 2 |
Mr = 454.19 | Mo Kα radiation |
Hexagonal, P63/mmc | µ = 60.31 mm−1 |
a = 4.9423 (7) Å | T = 293 K |
c = 9.1251 (18) Å | 0.09 × 0.03 × 0.03 mm |
V = 193.03 (5) Å3 |
Rigaku AFC-6R diffractometer | 89 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0 |
Tmin = 0.132, Tmax = 0.164 | 3 standard reflections every 100 reflections |
133 measured reflections | intensity decay: 0.9% |
133 independent reflections |
R[F2 > 2σ(F2)] = 0.038 | 8 parameters |
wR(F2) = 0.102 | 0 restraints |
S = 1.16 | Δρmax = 2.76 e Å−3 |
133 reflections | Δρmin = −3.98 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ba | 0 | 0 | 0 | 0.0094 (7) | |
Ag | 0.3333 | 0.6667 | 0.25 | 0.0157 (9) | |
Bi | 0.3333 | 0.6667 | 0.75 | 0.0091 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba | 0.0113 (10) | 0.0113 (10) | 0.0057 (12) | 0.0057 (5) | 0 | 0 |
Ag | 0.0120 (11) | 0.0120 (11) | 0.0231 (18) | 0.0060 (6) | 0 | 0 |
Bi | 0.0066 (7) | 0.0066 (7) | 0.0140 (10) | 0.0033 (4) | 0 | 0 |
Ba—Bii | 3.6533 (4) | Ag—Baxiii | 3.6533 (4) |
Ba—Ag | 3.6533 (4) | Ag—Baxiv | 3.6533 (4) |
Ba—Biii | 3.6533 (4) | Ag—Baxv | 3.6533 (4) |
Ba—Agiii | 3.6533 (4) | Ag—Baxvi | 3.6533 (4) |
Ba—Biiv | 3.6533 (4) | Ag—Baxvii | 3.6533 (4) |
Ba—Agv | 3.6533 (4) | Bi—Agxii | 2.8534 (4) |
Ba—Bivi | 3.6533 (4) | Bi—Agiv | 2.8534 (4) |
Ba—Agvii | 3.6533 (4) | Bi—Agi | 2.8534 (4) |
Ba—Agviii | 3.6533 (4) | Bi—Baxviii | 3.6533 (4) |
Ba—Biix | 3.6533 (4) | Bi—Baxvi | 3.6533 (4) |
Ba—Agx | 3.6533 (4) | Bi—Baxv | 3.6533 (4) |
Ba—Bixi | 3.6533 (4) | Bi—Baxix | 3.6533 (4) |
Ag—Bixii | 2.8534 (4) | Bi—Baxx | 3.6533 (4) |
Ag—Biiv | 2.8534 (4) | Bi—Baxiii | 3.6533 (4) |
Ag—Bii | 2.8534 (4) | ||
Bii—Ba—Ag | 45.975 (5) | Bixii—Ag—Ba | 141.358 (7) |
Bii—Ba—Biii | 180 | Biiv—Ag—Ba | 67.012 (2) |
Ag—Ba—Biii | 134.025 (5) | Bii—Ag—Ba | 67.012 (2) |
Bii—Ba—Agiii | 134.025 (5) | Bixii—Ag—Baxiii | 67.012 (2) |
Ag—Ba—Agiii | 180 | Biiv—Ag—Baxiii | 141.358 (7) |
Biii—Ba—Agiii | 45.975 (5) | Bii—Ag—Baxiii | 67.012 (2) |
Bii—Ba—Biiv | 85.129 (10) | Ba—Ag—Baxiii | 134.025 (5) |
Ag—Ba—Biiv | 45.975 (5) | Bixii—Ag—Baxiv | 67.012 (2) |
Biii—Ba—Biiv | 94.871 (10) | Biiv—Ag—Baxiv | 67.012 (2) |
Agiii—Ba—Biiv | 134.025 (5) | Bii—Ag—Baxiv | 141.358 (7) |
Bii—Ba—Agv | 45.975 (5) | Ba—Ag—Baxiv | 85.129 (10) |
Ag—Ba—Agv | 85.129 (10) | Baxiii—Ag—Baxiv | 134.025 (5) |
Biii—Ba—Agv | 134.025 (5) | Bixii—Ag—Baxv | 67.012 (2) |
Agiii—Ba—Agv | 94.871 (10) | Biiv—Ag—Baxv | 67.012 (2) |
Biiv—Ba—Agv | 102.717 (14) | Bii—Ag—Baxv | 141.358 (7) |
Bii—Ba—Bivi | 94.871 (10) | Ba—Ag—Baxv | 134.025 (5) |
Ag—Ba—Bivi | 134.025 (5) | Baxiii—Ag—Baxv | 85.129 (10) |
Biii—Ba—Bivi | 85.129 (10) | Baxiv—Ag—Baxv | 77.283 (14) |
Agiii—Ba—Bivi | 45.975 (5) | Bixii—Ag—Baxvi | 141.358 (7) |
Biiv—Ba—Bivi | 180 | Biiv—Ag—Baxvi | 67.012 (2) |
Agv—Ba—Bivi | 77.283 (14) | Bii—Ag—Baxvi | 67.012 (2) |
Bii—Ba—Agvii | 134.025 (5) | Ba—Ag—Baxvi | 77.283 (14) |
Ag—Ba—Agvii | 94.871 (10) | Baxiii—Ag—Baxvi | 85.129 (10) |
Biii—Ba—Agvii | 45.975 (5) | Baxiv—Ag—Baxvi | 134.025 (5) |
Agiii—Ba—Agvii | 85.129 (10) | Baxv—Ag—Baxvi | 85.129 (10) |
Biiv—Ba—Agvii | 77.283 (14) | Bixii—Ag—Baxvii | 67.012 (2) |
Agv—Ba—Agvii | 180 | Biiv—Ag—Baxvii | 141.358 (7) |
Bivi—Ba—Agvii | 102.717 (14) | Bii—Ag—Baxvii | 67.012 (2) |
Bii—Ba—Agviii | 102.717 (14) | Ba—Ag—Baxvii | 85.129 (10) |
Ag—Ba—Agviii | 85.129 (10) | Baxiii—Ag—Baxvii | 77.283 (14) |
Biii—Ba—Agviii | 77.283 (14) | Baxiv—Ag—Baxvii | 85.129 (10) |
Agiii—Ba—Agviii | 94.871 (10) | Baxv—Ag—Baxvii | 134.025 (5) |
Biiv—Ba—Agviii | 45.975 (5) | Baxvi—Ag—Baxvii | 134.025 (5) |
Agv—Ba—Agviii | 85.129 (10) | Agxii—Bi—Agiv | 120 |
Bivi—Ba—Agviii | 134.025 (5) | Agxii—Bi—Agi | 120 |
Agvii—Ba—Agviii | 94.871 (10) | Agiv—Bi—Agi | 120 |
Bii—Ba—Biix | 85.129 (10) | Agxii—Bi—Baxviii | 67.012 (2) |
Ag—Ba—Biix | 102.717 (14) | Agiv—Bi—Baxviii | 141.358 (7) |
Biii—Ba—Biix | 94.871 (10) | Agi—Bi—Baxviii | 67.012 (2) |
Agiii—Ba—Biix | 77.283 (14) | Agxii—Bi—Baxvi | 141.358 (7) |
Biiv—Ba—Biix | 85.129 (10) | Agiv—Bi—Baxvi | 67.012 (2) |
Agv—Ba—Biix | 45.975 (5) | Agi—Bi—Baxvi | 67.012 (2) |
Bivi—Ba—Biix | 94.871 (10) | Baxviii—Bi—Baxvi | 134.025 (5) |
Agvii—Ba—Biix | 134.025 (5) | Agxii—Bi—Baxv | 67.012 (2) |
Agviii—Ba—Biix | 45.975 (5) | Agiv—Bi—Baxv | 67.012 (2) |
Bii—Ba—Agx | 77.283 (14) | Agi—Bi—Baxv | 141.358 (7) |
Ag—Ba—Agx | 94.871 (10) | Baxviii—Bi—Baxv | 134.025 (5) |
Biii—Ba—Agx | 102.717 (14) | Baxvi—Bi—Baxv | 85.129 (10) |
Agiii—Ba—Agx | 85.129 (10) | Agxii—Bi—Baxix | 67.012 (2) |
Biiv—Ba—Agx | 134.025 (5) | Agiv—Bi—Baxix | 67.012 (2) |
Agv—Ba—Agx | 94.871 (10) | Agi—Bi—Baxix | 141.358 (7) |
Bivi—Ba—Agx | 45.975 (5) | Baxviii—Bi—Baxix | 85.129 (10) |
Agvii—Ba—Agx | 85.129 (10) | Baxvi—Bi—Baxix | 134.025 (5) |
Agviii—Ba—Agx | 180 | Baxv—Bi—Baxix | 77.283 (14) |
Biix—Ba—Agx | 134.025 (5) | Agxii—Bi—Baxx | 141.358 (7) |
Bii—Ba—Bixi | 94.871 (10) | Agiv—Bi—Baxx | 67.012 (2) |
Ag—Ba—Bixi | 77.283 (14) | Agi—Bi—Baxx | 67.012 (2) |
Biii—Ba—Bixi | 85.129 (10) | Baxviii—Bi—Baxx | 85.129 (10) |
Agiii—Ba—Bixi | 102.717 (14) | Baxvi—Bi—Baxx | 77.283 (14) |
Biiv—Ba—Bixi | 94.871 (10) | Baxv—Bi—Baxx | 134.025 (5) |
Agv—Ba—Bixi | 134.025 (5) | Baxix—Bi—Baxx | 85.129 (10) |
Bivi—Ba—Bixi | 85.129 (10) | Agxii—Bi—Baxiii | 67.012 (2) |
Agvii—Ba—Bixi | 45.975 (5) | Agiv—Bi—Baxiii | 141.358 (7) |
Agviii—Ba—Bixi | 134.025 (5) | Agi—Bi—Baxiii | 67.012 (2) |
Biix—Ba—Bixi | 180 | Baxviii—Bi—Baxiii | 77.283 (14) |
Agx—Ba—Bixi | 45.975 (5) | Baxvi—Bi—Baxiii | 85.129 (10) |
Bixii—Ag—Biiv | 120 | Baxv—Bi—Baxiii | 85.129 (10) |
Bixii—Ag—Bii | 120 | Baxix—Bi—Baxiii | 134.025 (5) |
Biiv—Ag—Bii | 120 | Baxx—Bi—Baxiii | 134.025 (5) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y−1, z−1; (iii) −x, −y, −z; (iv) −x, −y+1, −z+1; (v) x, y−1, z; (vi) x, y−1, z−1; (vii) −x, −y+1, −z; (viii) x−1, y−1, z; (ix) −x, −y, −z+1; (x) −x+1, −y+1, −z; (xi) x, y, z−1; (xii) −x+1, −y+2, −z+1; (xiii) −x+1, −y+1, z+1/2; (xiv) x, y+1, z; (xv) −x, −y+1, z+1/2; (xvi) −x, −y, z+1/2; (xvii) x+1, y+1, z; (xviii) x+1, y+1, z+1; (xix) x, y+1, z+1; (xx) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | AgBaBi |
Mr | 454.19 |
Crystal system, space group | Hexagonal, P63/mmc |
Temperature (K) | 293 |
a, c (Å) | 4.9423 (7), 9.1251 (18) |
V (Å3) | 193.03 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 60.31 |
Crystal size (mm) | 0.09 × 0.03 × 0.03 |
Data collection | |
Diffractometer | Rigaku AFC-6R diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.132, 0.164 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 133, 133, 89 |
Rint | 0 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.102, 1.16 |
No. of reflections | 133 |
No. of parameters | 8 |
Δρmax, Δρmin (e Å−3) | 2.76, −3.98 |
Computer programs: TEXSAN (Molecular Structure Corporation, 1990), TEXSAN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), WinGX (Farrugia, 1999).
Ba—Bii | 3.6533 (4) | Ag—Biii | 2.8534 (4) |
Ba—Ag | 3.6533 (4) | ||
Biii—Ag—Biiii | 120 | Agii—Bi—Agiii | 120 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x, −y+1, −z+1. |
During studies on the ternary barium–silver–bismuth system, the intermetallic compound BaAgBi was obtained as a side product. Previously, this compound was prepared by stoichiometric reaction of the elements and characterized by X-ray powder diffraction (Merlo et al., 1990).
BaAgBi is isostructural with ZrBeSi (Vogel & Schuster, 1980). The Ag and Bi atoms form planar hexagonal sheets like graphite, with Ag and Bi alternating in the layer. The Ba atoms lie between two layers and are positioned over the centers of the hexagonal rings. The shortest interatomic distance, Ag—Bi, is 2.8534 (4) Å, and each Ba atom is surrounded by six Au and six Sb atoms at distances of 3.6533 (4) Å. The displacement parameters of the Ag and Bi atoms display a strong anisotropy; the U11 values of the Ag and Bi atoms are 0.0120 (11) and 0.0066 (7) Å2 while the U33 values are 0.0231 (18) and 0.0140 (10) Å2, respectively. This anisotropy also appears in several ZrBeSi-type compounds, such as EuZnGe (Pöttgen, 1995), CaCuBi (Merlo et al., 1990), and EuAgAs (Tomuschat & Schuster, 1981), suggesting the possibility of interlayer interactions.