Download citation
Download citation
link to html
Sr_3(Ru_{0.336},Pt_{0.664})CuO_6 crystallizes as a monoclinic structure [space group R12/c; lattice parameters a = 9.595 (15), b = 9.595 (15), c = 11.193 (2) Å and \gamma = 120°]. The crystal structure is pseudotrigonal and the crystal investigated here by single-crystal X-ray diffraction was a multiple twin composed of six individuals. The twin laws are a combination of rhombohedral obverse/reverse twinning plus the threefold axis from the trigonal system. The crystal structure is related to the hexagonal perovskites. Each Pt/Ru atom is coordinated pseudo-octahedrally by O atoms, while the overall coordination polyhedra for Cu atoms can be regarded as a strongly distorted trigonal prism, where the Cu atom is clearly shifted from the center. Each [(Ru_{0.336},Pt_{0.664})O_6] octahedron is connected to two Cu-O polyhedra via a common edge, and thus chains are formed parallel to the crystallographic c axis. Sr^{2+} ions are incorporated between the chains and are coordinated by eight O atoms. All bond distances and angles are in good agreement with literature values. Electron-microscopy studies confirm the results from X-ray diffraction and all observed domain structures can be interpreted exactly with the established twin model. No indication of Pt/Ru ordering was found in either the X-ray or the electron-microscopy investigation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768102023510/na0140sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102023510/na0140Isup2.hkl
Contains datablock I

Computing details top

Data collection: XCALIBUR (Oxford diffraction, 2000); cell refinement: XCALIBUR (Oxford diffraction, 2000); data reduction: X-RED (Stoe & Cie, 1998); program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: Jana2000 (Petricek & Dusek, 2000).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
(I) top
Crystal data top
Cu0.5O3Pt0.332Ru0.168Sr1.5Z = 18
Mr = 293.08F(000) = 1546
Monoclinc, R12/cDx = 6.539 Mg m3
a = 9.5950 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5950 (15) ÅCell parameters from 27773 reflections
c = 11.193 (2) Åθ = 4–36.8°
α = 90°µ = 46.60 mm1
β = 90°T = 293 K
γ = 120°Hexagonal prismatic, colorless
V = 892.4 (3) Å30.08 × 0.04 × 0.02 mm
Data collection top
Stoe Stadi4 + Oxford Instrument CCD
diffractometer
4822 independent reflections
Radiation source: fine-focus sealed tube3201 reflections with I > 3σ(I)
Graphite monochromatorθmax = 36.8°, θmin = 4.3°
Absorption correction: gaussian
?
h = 1516
Tmin = 0.034, Tmax = 0.104k = 1615
27773 measured reflectionsl = 1918
Refinement top
R[F2 > 2σ(F2)] = 0.057Calculated w = 1/[σ2(Fo2)]
wR(F2) = 0.050
4822 reflectionsΔρmax = 18.59 e Å3
55 parametersΔρmin = 5.24 e Å3
0 restraintsExtinction correction: isotropic
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0099 (5)
Secondary atom site location: difference Fourier map
Crystal data top
Cu0.5O3Pt0.332Ru0.168Sr1.5γ = 120°
Mr = 293.08V = 892.4 (3) Å3
Monoclinc, R12/cZ = 18
a = 9.5950 (15) ÅMo Kα radiation
b = 9.5950 (15) ŵ = 46.60 mm1
c = 11.193 (2) ÅT = 293 K
α = 90°0.08 × 0.04 × 0.02 mm
β = 90°
Data collection top
Stoe Stadi4 + Oxford Instrument CCD
diffractometer
27773 measured reflections
Absorption correction: gaussian
?
4822 independent reflections
Tmin = 0.034, Tmax = 0.1043201 reflections with I > 3σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.050Δρmax = 18.59 e Å3
4822 reflectionsΔρmin = 5.24 e Å3
55 parameters
Special details top

Experimental. Gaussian absorption correction; crystal was approximated by 17 faces

Refinement. Refinement as a sixfold twin with the twinning matrices T1=1 0 0 / 0 1 0/ 0 0 1; T2=-1 0 0 / 0 − 1 0; 0 0 1; T3=0 − 1 0 / 1 − 1 0/ 0 0 1; T4=-1 1 0 / −1 0 0 / 0 0 1; T5=0 1 0 / −1 1 0; 0 0 1; T6=1 − 1 0 / 1 0 0 / 0 0 1;

Respective volume fractions are t1=0.093 (6); t2=0.337 (3); t3=0.090 (2); t4=0.150 (2); t5=0.217 (3); t6=0.113 (3).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sr10.63804 (18)0.0083 (2)0.25030 (19)0.0093 (5)
Sr20.3555 (3)0.3555 (3)0.250.0091 (7)
Ru0000.0063 (4)0.336 (5)
Pt0000.0063 (4)0.663 (5)
Cu0.0525 (2)0.0525 (2)0.750.0119 (7)
O10.3193 (14)0.8148 (14)0.2873 (11)0.011 (3)
O20.1706 (13)0.4812 (12)0.2622 (10)0.008 (3)
O30.5035 (14)0.6809 (14)0.2837 (11)0.012 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0088 (7)0.0087 (6)0.0078 (6)0.0025 (6)0.0001 (7)0.0024 (5)
Sr20.0090 (7)0.0090 (7)0.0066 (10)0.0026 (8)0.0014 (4)0.0014 (4)
Ru0.0044 (5)0.0045 (5)0.0054 (2)0.0012 (4)0.0007 (4)0.0007 (4)
Pt0.0044 (5)0.0045 (5)0.0054 (2)0.0012 (4)0.0007 (4)0.0007 (4)
Cu0.0174 (8)0.0174 (8)0.0072 (8)0.0134 (8)0.0020 (5)0.0020 (5)
O10.016 (3)0.012 (3)0.008 (2)0.008 (3)0.004 (4)0.004 (4)
O20.012 (3)0.009 (3)0.008 (2)0.008 (3)0.002 (4)0.001 (4)
O30.009 (3)0.016 (3)0.008 (2)0.004 (4)0.002 (4)0.005 (5)
Geometric parameters (Å, º) top
Sr1—O3i2.4566Pt—O1xiv2.0135
Sr1—O2ii2.4659Pt—O3x2.0444
Sr1—O1iii2.4910Pt—O3xiv2.0444
Sr1—O1iv2.6262Pt—Cuxv2.8432
Sr1—O3v2.6524Pt—Cuxvi2.8432
Sr1—O2iv2.6558Pt—Sr1xvii3.1316
Sr1—O1vi2.7006Pt—Sr1ii3.1316
Sr1—O3vi2.7607Pt—Sr2xvii3.2348
Sr1—Ptvii3.1316Pt—Sr2ii3.2348
Sr1—Ruvii3.1316Cu—O1xviii1.9826
Sr1—Cuviii3.2104Cu—O1xix1.9826
Sr1—Ruix3.2538Cu—O3xviii2.0097
Sr2—O2x2.4605Cu—O3xix2.0097
Sr2—O2xi2.4605Cu—Ptiv2.8432
Sr2—O2iv2.5997Cu—Ruiv2.8432
Sr2—O22.5997Cu—Ptxx2.8432
Sr2—O3iv2.7338Cu—Ruxx2.8432
Sr2—O32.7338Cu—Sr1xxi3.2105
Sr2—O1v2.7909Cu—Sr1xxii3.2105
Sr2—O1xii2.7909Cu—Sr1xxiii3.3001
Sr2—Ptvii3.2348Cu—Sr1xxiv3.3001
Sr2—Ruvii3.2348O1—Cuxxv1.9825
Sr2—Ptxiii3.2348O1—Ptxiii2.0135
Sr2—Ruxiii3.2348O1—Ruxiii2.0135
Ru—O2x1.9926O1—Sr1xxvi2.4910
Ru—O2xiv1.9926O1—Sr1iv2.6262
Ru—O1x2.0135O1—Sr1xxvii2.7006
Ru—O1xiv2.0135O1—Sr2xii2.7909
Ru—O3x2.0444O2—Ptxiii1.9926
Ru—O3xiv2.0444O2—Ruxiii1.9926
Ru—Cuxv2.8432O2—Sr2xi2.4605
Ru—Cuxvi2.8432O2—Sr1ii2.4659
Ru—Sr1xvii3.1316O2—Sr1iv2.6558
Ru—Sr1ii3.1316O3—Cuxxv2.0098
Ru—Sr2xvii3.2348O3—Ptxiii2.0444
Ru—Sr2ii3.2348O3—Ruxiii2.0444
Pt—O2x1.9926O3—Sr1i2.4566
Pt—O2xiv1.9926O3—Sr1xxviii2.6524
Pt—O1x2.0135O3—Sr1xxvii2.7607
O3i—Sr1—O2ii130.4Cuxvi—Ru—Sr2ii102.0
O3i—Sr1—O1iii73.1Sr1xvii—Ru—Sr2ii69.2
O2ii—Sr1—O1iii74.8Sr1ii—Ru—Sr2ii110.8
O3i—Sr1—O1iv96.3Sr2xvii—Ru—Sr2ii180.0
O2ii—Sr1—O1iv114.0O2x—Pt—O2xiv180.0
O1iii—Sr1—O1iv79.9O2x—Pt—O1x88.4
O3i—Sr1—O3v73.0O2xiv—Pt—O1x91.6
O2ii—Sr1—O3v152.3O2x—Pt—O1xiv91.6
O1iii—Sr1—O3v131.9O2xiv—Pt—O1xiv88.4
O1iv—Sr1—O3v71.1O1x—Pt—O1xiv180.0
O3i—Sr1—O2iv138.8O2x—Pt—O3x87.6
O2ii—Sr1—O2iv90.6O2xiv—Pt—O3x92.4
O1iii—Sr1—O2iv131.2O1x—Pt—O3x81.7
O1iv—Sr1—O2iv63.8O1xiv—Pt—O3x98.3
O3v—Sr1—O2iv66.6O2x—Pt—O3xiv92.4
O3i—Sr1—O1vi119.2O2xiv—Pt—O3xiv87.6
O2ii—Sr1—O1vi67.4O1x—Pt—O3xiv98.3
O1iii—Sr1—O1vi137.9O1xiv—Pt—O3xiv81.7
O1iv—Sr1—O1vi132.2O3x—Pt—O3xiv180.0
O3v—Sr1—O1vi88.8O2x—Pt—Cuxv67.7
O2iv—Sr1—O1vi68.4O2xiv—Pt—Cuxv112.3
O3i—Sr1—O3vi76.2O1x—Pt—Cuxv44.2
O2ii—Sr1—O3vi67.5O1xiv—Pt—Cuxv135.8
O1iii—Sr1—O3vi90.9O3x—Pt—Cuxv45.0
O1iv—Sr1—O3vi169.6O3xiv—Pt—Cuxv135.0
O3v—Sr1—O3vi112.7O2x—Pt—Cuxvi112.3
O2iv—Sr1—O3vi126.5O2xiv—Pt—Cuxvi67.7
O1vi—Sr1—O3vi58.2O1x—Pt—Cuxvi135.8
O3i—Sr1—Ptvii102.2O1xiv—Pt—Cuxvi44.2
O2ii—Sr1—Ptvii126.4O3x—Pt—Cuxvi135.0
O1iii—Sr1—Ptvii119.3O3xiv—Pt—Cuxvi45.0
O1iv—Sr1—Ptvii39.7Cuxv—Pt—Cuxvi180.0
O3v—Sr1—Ptvii40.3O2x—Pt—Sr1xvii122.6
O2iv—Sr1—Ptvii39.2O2xiv—Pt—Sr1xvii57.4
O1vi—Sr1—Ptvii98.3O1x—Pt—Sr1xvii123.5
O3vi—Sr1—Ptvii148.4O1xiv—Pt—Sr1xvii56.5
O3i—Sr1—Ruvii102.2O3x—Pt—Sr1xvii57.1
O2ii—Sr1—Ruvii126.4O3xiv—Pt—Sr1xvii122.9
O1iii—Sr1—Ruvii119.3Cuxv—Pt—Sr1xvii101.3
O1iv—Sr1—Ruvii39.7Cuxvi—Pt—Sr1xvii78.7
O3v—Sr1—Ruvii40.3O2x—Pt—Sr1ii57.4
O2iv—Sr1—Ruvii39.2O2xiv—Pt—Sr1ii122.6
O1vi—Sr1—Ruvii98.3O1x—Pt—Sr1ii56.5
O3vi—Sr1—Ruvii148.4O1xiv—Pt—Sr1ii123.5
Ptvii—Sr1—Ruvii0.0O3x—Pt—Sr1ii122.9
O3i—Sr1—Cuviii81.2O3xiv—Pt—Sr1ii57.1
O2ii—Sr1—Cuviii89.9Cuxv—Pt—Sr1ii78.7
O1iii—Sr1—Cuviii127.8Cuxvi—Pt—Sr1ii101.3
O1iv—Sr1—Cuviii148.7Sr1xvii—Pt—Sr1ii180.0
O3v—Sr1—Cuviii78.5O2x—Pt—Sr2xvii126.5
O2iv—Sr1—Cuviii97.7O2xiv—Pt—Sr2xvii53.5
O1vi—Sr1—Cuviii38.0O1x—Pt—Sr2xvii58.9
O3vi—Sr1—Cuviii38.4O1xiv—Pt—Sr2xvii121.1
Ptvii—Sr1—Cuviii110.0O3x—Pt—Sr2xvii122.8
Ruvii—Sr1—Cuviii110.0O3xiv—Pt—Sr2xvii57.2
O3i—Sr1—Ruix114.9Cuxv—Pt—Sr2xvii102.0
O2ii—Sr1—Ruix37.7Cuxvi—Pt—Sr2xvii78.0
O1iii—Sr1—Ruix99.8Sr1xvii—Pt—Sr2xvii110.8
O1iv—Sr1—Ruix147.5Sr1ii—Pt—Sr2xvii69.2
O3v—Sr1—Ruix125.2O2x—Pt—Sr2ii53.5
O2iv—Sr1—Ruix95.1O2xiv—Pt—Sr2ii126.5
O1vi—Sr1—Ruix38.1O1x—Pt—Sr2ii121.1
O3vi—Sr1—Ruix38.7O1xiv—Pt—Sr2ii58.9
Ptvii—Sr1—Ruix132.5O3x—Pt—Sr2ii57.2
Ruvii—Sr1—Ruix132.5O3xiv—Pt—Sr2ii122.8
Cuviii—Sr1—Ruix52.2Cuxv—Pt—Sr2ii78.0
O2x—Sr2—O2xi90.0Cuxvi—Pt—Sr2ii102.0
O2x—Sr2—O2iv79.0Sr1xvii—Pt—Sr2ii69.2
O2xi—Sr2—O2iv92.1Sr1ii—Pt—Sr2ii110.8
O2x—Sr2—O292.1Sr2xvii—Pt—Sr2ii180.0
O2xi—Sr2—O279.0O1xviii—Cu—O1xix171.9
O2iv—Sr2—O2167.4O1xviii—Cu—O3xviii83.4
O2x—Sr2—O3iv116.7O1xix—Cu—O3xviii95.1
O2xi—Sr2—O3iv136.6O1xviii—Cu—O3xix95.1
O2iv—Sr2—O3iv63.2O1xix—Cu—O3xix83.4
O2—Sr2—O3iv129.3O3xviii—Cu—O3xix158.1
O2x—Sr2—O3136.6O1xviii—Cu—Ptiv137.0
O2xi—Sr2—O3116.7O1xix—Cu—Ptiv45.1
O2iv—Sr2—O3129.3O3xviii—Cu—Ptiv139.7
O2—Sr2—O363.2O3xix—Cu—Ptiv46.0
O3iv—Sr2—O367.6O1xviii—Cu—Ruiv137.0
O2x—Sr2—O1v136.4O1xix—Cu—Ruiv45.1
O2xi—Sr2—O1v69.7O3xviii—Cu—Ruiv139.7
O2iv—Sr2—O1v64.3O3xix—Cu—Ruiv46.0
O2—Sr2—O1v119.5Ptiv—Cu—Ruiv0.0
O3iv—Sr2—O1v67.5O1xviii—Cu—Ptxx45.1
O3—Sr2—O1v86.6O1xix—Cu—Ptxx137.0
O2x—Sr2—O1xii69.7O3xviii—Cu—Ptxx46.0
O2xi—Sr2—O1xii136.4O3xix—Cu—Ptxx139.7
O2iv—Sr2—O1xii119.5Ptiv—Cu—Ptxx159.6
O2—Sr2—O1xii64.3Ruiv—Cu—Ptxx159.6
O3iv—Sr2—O1xii86.6O1xviii—Cu—Ruxx45.1
O3—Sr2—O1xii67.5O1xix—Cu—Ruxx137.0
O1v—Sr2—O1xii149.1O3xviii—Cu—Ruxx46.0
O2x—Sr2—Ptvii116.1O3xix—Cu—Ruxx139.7
O2xi—Sr2—Ptvii99.6Ptiv—Cu—Ruxx159.6
O2iv—Sr2—Ptvii38.0Ruiv—Cu—Ruxx159.6
O2—Sr2—Ptvii151.8Ptxx—Cu—Ruxx0.0
O3iv—Sr2—Ptvii38.9O1xviii—Cu—Sr1xxi56.9
O3—Sr2—Ptvii93.8O1xix—Cu—Sr1xxi115.6
O1v—Sr2—Ptvii38.1O3xviii—Cu—Sr1xxi58.6
O1xii—Sr2—Ptvii123.9O3xix—Cu—Sr1xxi102.4
O2x—Sr2—Ruvii116.1Ptiv—Cu—Sr1xxi135.6
O2xi—Sr2—Ruvii99.6Ruiv—Cu—Sr1xxi135.6
O2iv—Sr2—Ruvii38.0Ptxx—Cu—Sr1xxi64.7
O2—Sr2—Ruvii151.8Ruxx—Cu—Sr1xxi64.7
O3iv—Sr2—Ruvii38.9O1xviii—Cu—Sr1xxii115.6
O3—Sr2—Ruvii93.8O1xix—Cu—Sr1xxii56.9
O1v—Sr2—Ruvii38.1O3xviii—Cu—Sr1xxii102.4
O1xii—Sr2—Ruvii123.9O3xix—Cu—Sr1xxii58.6
Ptvii—Sr2—Ruvii0.0Ptiv—Cu—Sr1xxii64.7
O2x—Sr2—Ptxiii99.6Ruiv—Cu—Sr1xxii64.7
O2xi—Sr2—Ptxiii116.1Ptxx—Cu—Sr1xxii135.6
O2iv—Sr2—Ptxiii151.8Ruxx—Cu—Sr1xxii135.6
O2—Sr2—Ptxiii38.0Sr1xxi—Cu—Sr1xxii72.0
O3iv—Sr2—Ptxiii93.8O1xviii—Cu—Sr1xxiii48.8
O3—Sr2—Ptxiii38.9O1xix—Cu—Sr1xxiii127.4
O1v—Sr2—Ptxiii123.9O3xviii—Cu—Sr1xxiii122.2
O1xii—Sr2—Ptxiii38.1O3xix—Cu—Sr1xxiii47.9
Ptvii—Sr2—Ptxiii129.2Ptiv—Cu—Sr1xxiii93.6
Ruvii—Sr2—Ptxiii129.2Ruiv—Cu—Sr1xxiii93.6
O2x—Sr2—Ruxiii99.6Ptxx—Cu—Sr1xxiii93.7
O2xi—Sr2—Ruxiii116.1Ruxx—Cu—Sr1xxiii93.7
O2iv—Sr2—Ruxiii151.8Sr1xxi—Cu—Sr1xxiii67.6
O2—Sr2—Ruxiii38.0Sr1xxii—Cu—Sr1xxiii78.2
O3iv—Sr2—Ruxiii93.8O1xviii—Cu—Sr1xxiv127.4
O3—Sr2—Ruxiii38.9O1xix—Cu—Sr1xxiv48.8
O1v—Sr2—Ruxiii123.9O3xviii—Cu—Sr1xxiv47.9
O1xii—Sr2—Ruxiii38.1O3xix—Cu—Sr1xxiv122.2
Ptvii—Sr2—Ruxiii129.2Ptiv—Cu—Sr1xxiv93.7
Ruvii—Sr2—Ruxiii129.2Ruiv—Cu—Sr1xxiv93.7
Ptxiii—Sr2—Ruxiii0.0Ptxx—Cu—Sr1xxiv93.6
O2x—Ru—O2xiv180.0Ruxx—Cu—Sr1xxiv93.6
O2x—Ru—O1x88.4Sr1xxi—Cu—Sr1xxiv78.2
O2xiv—Ru—O1x91.6Sr1xxii—Cu—Sr1xxiv67.6
O2x—Ru—O1xiv91.6Sr1xxiii—Cu—Sr1xxiv137.6
O2xiv—Ru—O1xiv88.4Cuxxv—O1—Ptxiii90.7
O1x—Ru—O1xiv180.0Cuxxv—O1—Ruxiii90.7
O2x—Ru—O3x87.6Ptxiii—O1—Ruxiii0.0
O2xiv—Ru—O3x92.4Cuxxv—O1—Sr1xxvi94.4
O1x—Ru—O3x81.7Ptxiii—O1—Sr1xxvi172.1
O1xiv—Ru—O3x98.3Ruxiii—O1—Sr1xxvi172.1
O2x—Ru—O3xiv92.4Cuxxv—O1—Sr1iv110.1
O2xiv—Ru—O3xiv87.6Ptxiii—O1—Sr1iv83.8
O1x—Ru—O3xiv98.3Ruxiii—O1—Sr1iv83.8
O1xiv—Ru—O3xiv81.7Sr1xxvi—O1—Sr1iv100.1
O3x—Ru—O3xiv180.0Cuxxv—O1—Sr1xxvii85.1
O2x—Ru—Cuxv67.7Ptxiii—O1—Sr1xxvii86.0
O2xiv—Ru—Cuxv112.3Ruxiii—O1—Sr1xxvii86.0
O1x—Ru—Cuxv44.2Sr1xxvi—O1—Sr1xxvii88.4
O1xiv—Ru—Cuxv135.8Sr1iv—O1—Sr1xxvii161.8
O3x—Ru—Cuxv45.0Cuxxv—O1—Sr2xii164.3
O3xiv—Ru—Cuxv135.0Ptxiii—O1—Sr2xii83.0
O2x—Ru—Cuxvi112.3Ruxiii—O1—Sr2xii83.0
O2xiv—Ru—Cuxvi67.7Sr1xxvi—O1—Sr2xii90.6
O1x—Ru—Cuxvi135.8Sr1iv—O1—Sr2xii83.7
O1xiv—Ru—Cuxvi44.2Sr1xxvii—O1—Sr2xii80.1
O3x—Ru—Cuxvi135.0Ptxiii—O2—Ruxiii0.0
O3xiv—Ru—Cuxvi45.0Ptxiii—O2—Sr2xi164.3
Cuxv—Ru—Cuxvi180.0Ruxiii—O2—Sr2xi164.3
O2x—Ru—Sr1xvii122.6Ptxiii—O2—Sr1ii93.1
O2xiv—Ru—Sr1xvii57.4Ruxiii—O2—Sr1ii93.1
O1x—Ru—Sr1xvii123.5Sr2xi—O2—Sr1ii99.5
O1xiv—Ru—Sr1xvii56.5Ptxiii—O2—Sr288.5
O3x—Ru—Sr1xvii57.1Ruxiii—O2—Sr288.5
O3xiv—Ru—Sr1xvii122.9Sr2xi—O2—Sr2101.0
Cuxv—Ru—Sr1xvii101.3Sr1ii—O2—Sr288.5
Cuxvi—Ru—Sr1xvii78.7Ptxiii—O2—Sr1iv83.4
O2x—Ru—Sr1ii57.4Ruxiii—O2—Sr1iv83.4
O2xiv—Ru—Sr1ii122.6Sr2xi—O2—Sr1iv87.3
O1x—Ru—Sr1ii56.5Sr1ii—O2—Sr1iv90.0
O1xiv—Ru—Sr1ii123.5Sr2—O2—Sr1iv171.7
O3x—Ru—Sr1ii122.9Cuxxv—O3—Ptxiii89.1
O3xiv—Ru—Sr1ii57.1Cuxxv—O3—Ruxiii89.1
Cuxv—Ru—Sr1ii78.7Ptxiii—O3—Ruxiii0.0
Cuxvi—Ru—Sr1ii101.3Cuxxv—O3—Sr1i94.7
Sr1xvii—Ru—Sr1ii180.0Ptxiii—O3—Sr1i171.9
O2x—Ru—Sr2xvii126.5Ruxiii—O3—Sr1i171.9
O2xiv—Ru—Sr2xvii53.5Cuxxv—O3—Sr1xxviii165.2
O1x—Ru—Sr2xvii58.9Ptxiii—O3—Sr1xxviii82.5
O1xiv—Ru—Sr2xvii121.1Ruxiii—O3—Sr1xxviii82.5
O3x—Ru—Sr2xvii122.8Sr1i—O3—Sr1xxviii95.2
O3xiv—Ru—Sr2xvii57.2Cuxxv—O3—Sr2107.0
Cuxv—Ru—Sr2xvii102.0Ptxiii—O3—Sr283.9
Cuxvi—Ru—Sr2xvii78.0Ruxiii—O3—Sr283.9
Sr1xvii—Ru—Sr2xvii110.8Sr1i—O3—Sr288.1
Sr1ii—Ru—Sr2xvii69.2Sr1xxviii—O3—Sr284.3
O2x—Ru—Sr2ii53.5Cuxxv—O3—Sr1xxvii83.0
O2xiv—Ru—Sr2ii126.5Ptxiii—O3—Sr1xxvii83.8
O1x—Ru—Sr2ii121.1Ruxiii—O3—Sr1xxvii83.8
O1xiv—Ru—Sr2ii58.9Sr1i—O3—Sr1xxvii103.8
O3x—Ru—Sr2ii57.2Sr1xxviii—O3—Sr1xxvii84.0
O3xiv—Ru—Sr2ii122.8Sr2—O3—Sr1xxvii164.0
Cuxv—Ru—Sr2ii78.0
Symmetry codes: (i) x+4/3, y+2/3, z+2/3; (ii) x+2/3, y+1/3, z+1/3; (iii) y+5/3, x+1/3, z1/6; (iv) y, x, z+1/2; (v) y+4/3, x+2/3, z+1/6; (vi) x, y1, z; (vii) x+2/3, y+1/3, z+1/3; (viii) x+1/3, y1/3, z1/3; (ix) y+1/3, x1/3, z+1/6; (x) y+2/3, x+1/3, z1/6; (xi) x+1/3, y+2/3, z+2/3; (xii) x+2/3, y+4/3, z+1/3; (xiii) y+1/3, x+2/3, z+1/6; (xiv) y2/3, x1/3, z+1/6; (xv) x, y, z+1; (xvi) x, y, z1; (xvii) x2/3, y1/3, z1/3; (xviii) y2/3, x1/3, z+7/6; (xix) x1/3, y2/3, z+1/3; (xx) x, y, z+1; (xxi) y+1/3, x1/3, z+7/6; (xxii) x1/3, y+1/3, z+1/3; (xxiii) x+1, y, z+1; (xxiv) y, x+1, z+1/2; (xxv) x+1/3, y+2/3, z1/3; (xxvi) y+1/3, x+5/3, z+1/6; (xxvii) x, y+1, z; (xxviii) y+2/3, x+4/3, z1/6.

Experimental details

Crystal data
Chemical formulaCu0.5O3Pt0.332Ru0.168Sr1.5
Mr293.08
Crystal system, space groupMonoclinc, R12/c
Temperature (K)293
a, b, c (Å)9.5950 (15), 9.5950 (15), 11.193 (2)
α, β, γ (°)90, 90, 120
V3)892.4 (3)
Z18
Radiation typeMo Kα
µ (mm1)46.60
Crystal size (mm)0.08 × 0.04 × 0.02
Data collection
DiffractometerStoe Stadi4 + Oxford Instrument CCD
diffractometer
Absorption correctionGaussian
Tmin, Tmax0.034, 0.104
No. of measured, independent and
observed [I > 3σ(I)] reflections
27773, 4822, 3201
Rint?
(sin θ/λ)max1)0.843
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.050, ?
No. of reflections4822
No. of parameters55
Δρmax, Δρmin (e Å3)18.59, 5.24

Computer programs: XCALIBUR (Oxford diffraction, 2000), X-RED (Stoe & Cie, 1998), SIR97 (Altomare et al., 1997), Jana2000 (Petricek & Dusek, 2000).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds