Download citation
Download citation
link to html
The crystal structures of the rare-earth members of the series RMo5O8 (R = Ce to Eu) have been investigated and compared with those of the La and Gd members previously published in order to understand the influences of the size and the charge of the cation on the different Mo-Mo bonds. The RMo5O8 compounds crystallize in the monoclinic space group P21/c. Their crystal structure is characterized by bioctahedral Mo10 clusters forming extended chains. The results of our single-crystal studies show that the modification of charge predominantly affects the Mo-Mo bonds between the Mo10 clusters and, to a lesser extent, the intra-cluster distances, while the cationic size induces only small variations. Theoretical investigations confirm this statement and allow the understanding of the bonding mode in these compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768103011194/na5000sup1.cif
Contains datablocks CeMo5O8, PrMo5O8, NdMo5O8, SmMo5O8, EuMo5O8, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768103011194/na5000CeMo5O8sup2.hkl
Contains datablock ce

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768103011194/na5000PrMo5O8sup3.hkl
Contains datablock prmo5

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768103011194/na5000NdMo5O8sup4.hkl
Contains datablock nd

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768103011194/na5000SmMo5O8sup5.hkl
Contains datablock sm

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768103011194/na5000EuMo5O8sup6.hkl
Contains datablock eu

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND(Bergerhoff, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
(CeMo5O8) top
Crystal data top
CeMo5O8F(000) = 1328
Mr = 747.82Dx = 7.733 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
a = 7.5643 (1) ÅCell parameters from 9841 reflections
b = 9.0693 (1) Åθ = 1–37.8°
c = 9.9150 (2) ŵ = 16.42 mm1
β = 109.2113 (8)°T = 293 K
V = 642.32 (2) Å3Plate, black
Z = 40.14 × 0.10 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
3402 independent reflections
Radiation source: fine-focus sealed tube3314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ scans (κ = 0) + additional ω scansθmax = 37.8°, θmin = 2.9°
Absorption correction: gaussian
'(Coppens, P., Leiserowitz, L. & Rabinovich, D. 1965)'
h = 1211
Tmin = 0.064, Tmax = 0.181k = 1515
12944 measured reflectionsl = 1217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.P)2 + 7.228P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max = 0.001
S = 1.26Δρmax = 2.54 e Å3
3402 reflectionsΔρmin = 2.50 e Å3
128 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0171 (5)
Crystal data top
CeMo5O8V = 642.32 (2) Å3
Mr = 747.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5643 (1) ŵ = 16.42 mm1
b = 9.0693 (1) ÅT = 293 K
c = 9.9150 (2) Å0.14 × 0.10 × 0.08 mm
β = 109.2113 (8)°
Data collection top
Nonius KappaCCD
diffractometer
3402 independent reflections
Absorption correction: gaussian
'(Coppens, P., Leiserowitz, L. & Rabinovich, D. 1965)'
3314 reflections with I > 2σ(I)
Tmin = 0.064, Tmax = 0.181Rint = 0.064
12944 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034128 parameters
wR(F2) = 0.0800 restraints
S = 1.26Δρmax = 2.54 e Å3
3402 reflectionsΔρmin = 2.50 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ce0.26252 (3)0.50415 (3)0.53794 (2)0.00673 (7)
Mo10.60444 (5)0.11531 (4)0.48646 (3)0.00391 (7)
Mo20.38347 (5)0.11788 (4)0.67714 (4)0.00413 (7)
Mo30.17299 (5)0.12687 (4)0.38284 (4)0.00336 (7)
Mo40.80812 (5)0.12971 (4)0.29777 (3)0.00328 (7)
Mo50.00249 (5)0.12281 (4)0.58641 (3)0.00341 (7)
O10.3976 (4)0.0053 (3)0.8493 (3)0.0061 (5)
O20.0012 (4)0.2222 (3)0.9329 (3)0.0057 (5)
O30.0137 (5)0.0023 (3)0.2307 (3)0.0059 (5)
O40.3915 (4)0.2475 (4)0.0123 (3)0.0062 (5)
O50.7951 (4)0.2418 (4)0.1142 (3)0.0055 (5)
O60.1998 (4)0.2396 (4)0.2091 (3)0.0065 (5)
O70.6056 (4)0.2356 (3)0.8292 (3)0.0056 (5)
O80.3831 (4)0.0071 (3)0.3277 (3)0.0062 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ce0.00588 (10)0.00733 (10)0.00682 (10)0.00032 (6)0.00188 (7)0.00051 (6)
Mo10.00351 (13)0.00360 (13)0.00403 (13)0.00009 (9)0.00045 (10)0.00009 (9)
Mo20.00385 (13)0.00450 (13)0.00342 (13)0.00034 (9)0.00037 (10)0.00055 (9)
Mo30.00327 (13)0.00388 (13)0.00301 (13)0.00020 (9)0.00114 (10)0.00017 (9)
Mo40.00318 (13)0.00376 (12)0.00289 (13)0.00009 (9)0.00100 (10)0.00021 (9)
Mo50.00331 (14)0.00362 (13)0.00323 (13)0.00013 (9)0.00099 (10)0.00020 (9)
O10.0045 (12)0.0073 (12)0.0056 (11)0.0022 (9)0.0004 (9)0.0000 (9)
O20.0064 (12)0.0057 (11)0.0043 (10)0.0010 (9)0.0007 (9)0.0004 (9)
O30.0060 (12)0.0054 (11)0.0066 (12)0.0006 (9)0.0025 (10)0.0012 (9)
O40.0061 (11)0.0066 (11)0.0072 (11)0.0008 (9)0.0040 (9)0.0014 (9)
O50.0042 (11)0.0074 (11)0.0052 (11)0.0002 (9)0.0022 (9)0.0023 (9)
O60.0038 (11)0.0091 (12)0.0066 (11)0.0000 (9)0.0015 (9)0.0020 (9)
O70.0061 (11)0.0060 (11)0.0051 (10)0.0013 (9)0.0022 (9)0.0019 (9)
O80.0033 (11)0.0078 (12)0.0070 (11)0.0020 (9)0.0012 (9)0.0013 (9)
Geometric parameters (Å, º) top
Ce—O1i2.410 (3)Mo2—Mo32.8282 (5)
Ce—O1ii2.443 (3)Mo2—Cexi3.3761 (4)
Ce—O4iii2.459 (3)Mo3—O32.059 (3)
Ce—O7ii2.568 (3)Mo3—O4vii2.069 (3)
Ce—O5iv2.648 (3)Mo3—O2viii2.070 (3)
Ce—O3v2.709 (3)Mo3—O62.070 (3)
Ce—O8iii2.713 (3)Mo3—O82.140 (3)
Ce—O2i2.758 (3)Mo3—Mo4xii2.6072 (5)
Ce—O6iii2.862 (3)Mo3—Mo5xiii2.6726 (5)
Ce—O2vi2.930 (3)Mo3—Mo52.7569 (5)
Ce—Mo2ii3.3761 (4)Mo3—Mo1ix2.8111 (5)
Ce—Mo4iv3.4159 (4)Mo3—Cexiv3.6519 (4)
Mo1—O5vii2.040 (3)Mo4—O52.059 (3)
Mo1—O7viii2.066 (3)Mo4—O7viii2.062 (3)
Mo1—O4vii2.117 (3)Mo4—O3x2.070 (3)
Mo1—O82.124 (3)Mo4—O1ix2.080 (3)
Mo1—O8ix2.126 (3)Mo4—O2xv2.099 (3)
Mo1—Mo2ix2.6851 (5)Mo4—Mo3x2.6072 (5)
Mo1—Mo1ix2.6874 (7)Mo4—Mo2ix2.7279 (5)
Mo1—Mo42.7906 (5)Mo4—Mo5x2.7474 (5)
Mo1—Mo5x2.8086 (5)Mo4—Mo5ix2.7594 (5)
Mo1—Mo3ix2.8111 (5)Mo4—Cexvi3.4159 (4)
Mo1—Mo22.9066 (5)Mo5—O6vii2.038 (3)
Mo1—Mo33.0840 (5)Mo5—O5xvii2.051 (3)
Mo2—O6vii1.997 (3)Mo5—O2viii2.074 (3)
Mo2—O12.013 (3)Mo5—O3xiii2.086 (3)
Mo2—O4vii2.057 (3)Mo5—Mo3xiii2.6726 (5)
Mo2—O8ix2.112 (3)Mo5—Mo4xii2.7474 (5)
Mo2—O72.138 (3)Mo5—Mo4ix2.7594 (5)
Mo2—Mo1ix2.6851 (5)Mo5—Mo1xii2.8086 (5)
Mo2—Mo4ix2.7279 (5)Mo5—Mo5xiii2.8183 (6)
Mo2—Mo52.7579 (5)
Mo1ix—O8—Cei144.69 (15)Mo3—O8—Cei104.86 (12)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x, y+1/2, z+3/2; (vii) x, y1/2, z+1/2; (viii) x, y1/2, z1/2; (ix) x+1, y, z+1; (x) x+1, y, z; (xi) x+1, y1/2, z+3/2; (xii) x1, y, z; (xiii) x, y, z+1; (xiv) x, y1, z; (xv) x+1, y1/2, z1/2; (xvi) x+1, y1/2, z+1/2; (xvii) x1, y1/2, z+1/2.
(PrMo5O8) top
Crystal data top
PrMo5O8F(000) = 1332
Mr = 748.61Dx = 7.754 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
a = 7.5662 (1) ÅCell parameters from 11309 reflections
b = 9.0569 (1) Åθ = 1.0–37.8°
c = 9.9175 (1) ŵ = 16.94 mm1
β = 109.3293 (7)°T = 293 K
V = 641.30 (1) Å3Irregular plate, black
Z = 40.24 × 0.11 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
3411 independent reflections
Radiation source: fine-focus sealed tube3329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
ϕ scans (κ = 0) + additional ω scansθmax = 37.8°, θmin = 2.9°
Absorption correction: gaussian
'(Coppens, P., Leiserowitz, L. & Rabinovich, D. 1965)'
h = 1212
Tmin = 0.090, Tmax = 0.524k = 1515
14762 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0145P)2 + 1.922P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max = 0.002
S = 1.19Δρmax = 2.45 e Å3
3411 reflectionsΔρmin = 3.32 e Å3
128 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0874 (12)
Crystal data top
PrMo5O8V = 641.30 (1) Å3
Mr = 748.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5662 (1) ŵ = 16.94 mm1
b = 9.0569 (1) ÅT = 293 K
c = 9.9175 (1) Å0.24 × 0.11 × 0.04 mm
β = 109.3293 (7)°
Data collection top
Nonius KappaCCD
diffractometer
3411 independent reflections
Absorption correction: gaussian
'(Coppens, P., Leiserowitz, L. & Rabinovich, D. 1965)'
3329 reflections with I > 2σ(I)
Tmin = 0.090, Tmax = 0.524Rint = 0.091
14762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029128 parameters
wR(F2) = 0.0700 restraints
S = 1.19Δρmax = 2.45 e Å3
3411 reflectionsΔρmin = 3.32 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr0.26407 (2)0.504028 (15)0.536858 (16)0.00703 (6)
Mo10.60429 (3)0.11548 (2)0.48668 (2)0.00438 (6)
Mo20.38377 (3)0.11796 (2)0.67725 (2)0.00447 (6)
Mo30.17258 (3)0.12700 (2)0.38258 (2)0.00375 (6)
Mo40.80778 (3)0.12994 (2)0.29783 (2)0.00364 (6)
Mo50.00233 (3)0.12309 (2)0.58646 (2)0.00375 (6)
O10.3989 (3)0.00591 (19)0.8497 (2)0.0059 (3)
O20.0014 (3)0.2214 (2)0.9331 (2)0.0057 (3)
O30.0146 (3)0.00289 (19)0.2304 (2)0.0051 (3)
O40.3909 (3)0.2466 (2)0.0128 (2)0.0062 (3)
O50.7947 (3)0.2413 (2)0.1138 (2)0.0063 (3)
O60.2003 (3)0.2393 (2)0.2087 (2)0.0071 (3)
O70.6063 (3)0.2341 (2)0.8299 (2)0.0059 (3)
O80.3831 (3)0.0066 (2)0.3275 (2)0.0055 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr0.00619 (8)0.00675 (8)0.00800 (8)0.00036 (4)0.00215 (5)0.00049 (4)
Mo10.00409 (10)0.00307 (10)0.00532 (10)0.00013 (5)0.00065 (7)0.00010 (5)
Mo20.00444 (10)0.00380 (10)0.00452 (10)0.00041 (6)0.00060 (7)0.00059 (6)
Mo30.00380 (10)0.00336 (9)0.00415 (10)0.00010 (5)0.00141 (7)0.00021 (6)
Mo40.00361 (10)0.00325 (9)0.00412 (10)0.00024 (5)0.00137 (7)0.00031 (6)
Mo50.00379 (10)0.00313 (10)0.00425 (10)0.00006 (5)0.00123 (7)0.00023 (5)
O10.0068 (8)0.0053 (8)0.0046 (8)0.0018 (5)0.0006 (6)0.0001 (5)
O20.0066 (8)0.0042 (7)0.0062 (7)0.0006 (5)0.0021 (6)0.0005 (6)
O30.0052 (8)0.0043 (7)0.0056 (8)0.0001 (5)0.0017 (6)0.0006 (5)
O40.0056 (8)0.0058 (8)0.0079 (8)0.0008 (5)0.0030 (6)0.0017 (6)
O50.0059 (8)0.0058 (7)0.0074 (8)0.0001 (6)0.0023 (6)0.0018 (6)
O60.0055 (8)0.0078 (8)0.0075 (8)0.0002 (6)0.0014 (6)0.0035 (6)
O70.0056 (8)0.0057 (7)0.0064 (7)0.0019 (6)0.0020 (6)0.0016 (6)
O80.0038 (8)0.0065 (8)0.0067 (8)0.0013 (5)0.0023 (6)0.0011 (5)
Geometric parameters (Å, º) top
Pr—O1i2.397 (2)Mo2—Mo32.8300 (3)
Pr—O1ii2.423 (2)Mo2—Prxi3.3702 (3)
Pr—O4iii2.440 (2)Mo3—O32.062 (2)
Pr—O7ii2.550 (2)Mo3—O62.0715 (19)
Pr—O5iv2.632 (2)Mo3—O4vii2.072 (2)
Pr—O3v2.697 (2)Mo3—O2viii2.075 (2)
Pr—O8iii2.721 (2)Mo3—O82.144 (2)
Pr—O2i2.757 (2)Mo3—Mo4xii2.6057 (3)
Pr—O6iii2.868 (2)Mo3—Mo5xiii2.6731 (3)
Pr—O2vi2.933 (2)Mo3—Mo52.7591 (3)
Pr—Mo2ii3.3702 (3)Mo3—Mo1ix2.8116 (3)
Pr—Mo4iv3.4045 (3)Mo3—Prxiv3.6451 (3)
Mo1—O5vii2.036 (2)Mo4—O52.058 (2)
Mo1—O7viii2.071 (2)Mo4—O7viii2.065 (2)
Mo1—O8ix2.124 (2)Mo4—O3x2.073 (2)
Mo1—O4vii2.124 (2)Mo4—O1ix2.082 (2)
Mo1—O82.125 (2)Mo4—O2xv2.101 (2)
Mo1—Mo1ix2.6855 (4)Mo4—Mo3x2.6057 (3)
Mo1—Mo2ix2.6867 (3)Mo4—Mo2ix2.7275 (3)
Mo1—Mo42.7937 (3)Mo4—Mo5x2.7458 (3)
Mo1—Mo5x2.8094 (3)Mo4—Mo5ix2.7599 (3)
Mo1—Mo3ix2.8116 (3)Mo4—Prxvi3.4045 (3)
Mo1—Mo22.9058 (3)Mo5—O6vii2.035 (2)
Mo1—Mo33.0845 (3)Mo5—O5xvii2.054 (2)
Mo2—O6vii1.996 (2)Mo5—O2viii2.074 (2)
Mo2—O12.017 (2)Mo5—O3xiii2.085 (2)
Mo2—O4vii2.056 (2)Mo5—Mo3xiii2.6731 (3)
Mo2—O8ix2.108 (2)Mo5—Mo4xii2.7458 (3)
Mo2—O72.1321 (19)Mo5—Mo4ix2.7599 (3)
Mo2—Mo1ix2.6867 (3)Mo5—Mo1xii2.8094 (3)
Mo2—Mo4ix2.7275 (3)Mo5—Mo5xiii2.8201 (4)
Mo2—Mo52.7579 (3)
O1i—Pr—O1ii72.99 (8)O1i—Pr—O4iii71.11 (6)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x, y+1/2, z+3/2; (vii) x, y1/2, z+1/2; (viii) x, y1/2, z1/2; (ix) x+1, y, z+1; (x) x+1, y, z; (xi) x+1, y1/2, z+3/2; (xii) x1, y, z; (xiii) x, y, z+1; (xiv) x, y1, z; (xv) x+1, y1/2, z1/2; (xvi) x+1, y1/2, z+1/2; (xvii) x1, y1/2, z+1/2.
(NdMo5O8) top
Crystal data top
NdMo5O8F(000) = 1336
Mr = 751.94Dx = 7.822 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
a = 7.5606 (1) ÅCell parameters from 12284 reflections
b = 9.0392 (1) Åθ = 1.0–37.8°
c = 9.9082 (2) ŵ = 17.52 mm1
β = 109.4513 (7)°T = 293 K
V = 638.50 (2) Å3Irregular plate, black
Z = 40.13 × 0.13 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
3404 independent reflections
Radiation source: fine-focus sealed tube3193 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ scans (κ = 0) + additional ω scansθmax = 37.8°, θmin = 2.9°
Absorption correction: multi-scan
r.h. blessing, acta cryst. (1995), a51, 33-38
h = 1212
Tmin = 0.113, Tmax = 0.252k = 1515
17433 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.P)2 + 2.8951P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.055(Δ/σ)max = 0.001
S = 1.16Δρmax = 1.63 e Å3
3404 reflectionsΔρmin = 1.82 e Å3
128 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0185 (3)
Crystal data top
NdMo5O8V = 638.50 (2) Å3
Mr = 751.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5606 (1) ŵ = 17.52 mm1
b = 9.0392 (1) ÅT = 293 K
c = 9.9082 (2) Å0.13 × 0.13 × 0.08 mm
β = 109.4513 (7)°
Data collection top
Nonius KappaCCD
diffractometer
3404 independent reflections
Absorption correction: multi-scan
r.h. blessing, acta cryst. (1995), a51, 33-38
3193 reflections with I > 2σ(I)
Tmin = 0.113, Tmax = 0.252Rint = 0.052
17433 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024128 parameters
wR(F2) = 0.0550 restraints
S = 1.16Δρmax = 1.63 e Å3
3404 reflectionsΔρmin = 1.82 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd0.26519 (2)0.504029 (18)0.535724 (17)0.00884 (5)
Mo10.60423 (3)0.11559 (3)0.48678 (3)0.00600 (5)
Mo20.38404 (3)0.11803 (3)0.67733 (3)0.00602 (5)
Mo30.17229 (4)0.12707 (3)0.38235 (3)0.00532 (5)
Mo40.80740 (3)0.13019 (3)0.29785 (3)0.00517 (5)
Mo50.00215 (3)0.12333 (3)0.58651 (3)0.00528 (5)
O10.3997 (3)0.0063 (2)0.8502 (2)0.0081 (4)
O20.0013 (3)0.2210 (2)0.9331 (2)0.0071 (3)
O30.0162 (3)0.0029 (2)0.2297 (2)0.0071 (3)
O40.3908 (3)0.2461 (3)0.0127 (2)0.0077 (4)
O50.7948 (3)0.2405 (2)0.1137 (2)0.0076 (4)
O60.2006 (3)0.2387 (3)0.2084 (2)0.0082 (4)
O70.6067 (3)0.2336 (2)0.8304 (2)0.0071 (3)
O80.3828 (3)0.0067 (2)0.3273 (2)0.0076 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd0.00757 (8)0.00914 (8)0.00971 (8)0.00033 (5)0.00275 (6)0.00051 (5)
Mo10.00541 (10)0.00524 (10)0.00667 (11)0.00011 (6)0.00112 (8)0.00015 (7)
Mo20.00570 (10)0.00585 (10)0.00584 (10)0.00047 (7)0.00102 (8)0.00058 (7)
Mo30.00516 (10)0.00549 (10)0.00537 (10)0.00009 (7)0.00185 (8)0.00022 (7)
Mo40.00488 (10)0.00532 (10)0.00529 (10)0.00015 (6)0.00167 (8)0.00032 (7)
Mo50.00510 (10)0.00511 (10)0.00553 (11)0.00003 (6)0.00166 (8)0.00024 (7)
O10.0081 (9)0.0091 (9)0.0062 (9)0.0010 (7)0.0012 (7)0.0002 (7)
O20.0077 (8)0.0065 (8)0.0073 (8)0.0004 (6)0.0025 (7)0.0005 (7)
O30.0070 (9)0.0076 (9)0.0063 (9)0.0003 (6)0.0016 (7)0.0001 (7)
O40.0073 (8)0.0076 (9)0.0091 (9)0.0013 (6)0.0039 (7)0.0008 (7)
O50.0069 (8)0.0074 (9)0.0088 (9)0.0008 (6)0.0029 (7)0.0017 (7)
O60.0064 (8)0.0095 (9)0.0081 (9)0.0005 (7)0.0016 (7)0.0033 (7)
O70.0066 (8)0.0072 (8)0.0071 (8)0.0023 (6)0.0020 (7)0.0018 (7)
O80.0064 (8)0.0086 (9)0.0079 (9)0.0004 (6)0.0026 (7)0.0013 (7)
Geometric parameters (Å, º) top
Nd—O1i2.380 (2)Mo2—Mo32.8277 (4)
Nd—O1ii2.406 (2)Mo2—Ndxi3.3634 (3)
Nd—O4iii2.427 (2)Mo3—O32.064 (2)
Nd—O7ii2.540 (2)Mo3—O62.069 (2)
Nd—O5iv2.615 (2)Mo3—O4vii2.071 (2)
Nd—O3v2.676 (2)Mo3—O2viii2.074 (2)
Nd—O8iii2.725 (2)Mo3—O82.143 (2)
Nd—O2i2.753 (2)Mo3—Mo4xii2.6028 (3)
Nd—O6iii2.868 (2)Mo3—Mo5xiii2.6715 (3)
Nd—O2vi2.937 (2)Mo3—Mo52.7586 (3)
Nd—Mo2ii3.3634 (3)Mo3—Mo1ix2.8086 (3)
Nd—Mo4iv3.3895 (3)Mo3—Ndxiv3.6347 (3)
Mo1—O5vii2.036 (2)Mo4—O52.053 (2)
Mo1—O7viii2.068 (2)Mo4—O7viii2.061 (2)
Mo1—O8ix2.123 (2)Mo4—O3x2.069 (2)
Mo1—O82.123 (2)Mo4—O1ix2.080 (2)
Mo1—O4vii2.123 (2)Mo4—O2xv2.099 (2)
Mo1—Mo1ix2.6822 (5)Mo4—Mo3x2.6028 (3)
Mo1—Mo2ix2.6847 (4)Mo4—Mo2ix2.7253 (3)
Mo1—Mo42.7922 (3)Mo4—Mo5x2.7413 (3)
Mo1—Mo5x2.8070 (3)Mo4—Mo5ix2.7584 (3)
Mo1—Mo3ix2.8086 (3)Mo4—Ndxvi3.3895 (3)
Mo1—Mo22.9034 (3)Mo5—O6vii2.032 (2)
Mo1—Mo33.0815 (4)Mo5—O5xvii2.054 (2)
Mo2—O6vii1.995 (2)Mo5—O2viii2.073 (2)
Mo2—O12.019 (2)Mo5—O3xiii2.087 (2)
Mo2—O4vii2.056 (2)Mo5—Mo3xiii2.6715 (3)
Mo2—O8ix2.106 (2)Mo5—Mo4xii2.7413 (3)
Mo2—O72.127 (2)Mo5—Mo4ix2.7584 (3)
Mo2—Mo1ix2.6847 (4)Mo5—Mo1xii2.8070 (3)
Mo2—Mo4ix2.7253 (3)Mo5—Mo5xiii2.8192 (5)
Mo2—Mo52.7545 (3)
O1i—Nd—O1ii73.10 (9)O1ii—Nd—O4iii69.67 (7)
O1i—Nd—O4iii71.44 (7)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x, y+1/2, z+3/2; (vii) x, y1/2, z+1/2; (viii) x, y1/2, z1/2; (ix) x+1, y, z+1; (x) x+1, y, z; (xi) x+1, y1/2, z+3/2; (xii) x1, y, z; (xiii) x, y, z+1; (xiv) x, y1, z; (xv) x+1, y1/2, z1/2; (xvi) x+1, y1/2, z+1/2; (xvii) x1, y1/2, z+1/2.
(SmMo5O8) top
Crystal data top
SmMo5O8F(000) = 1344
Mr = 758.05Dx = 7.900 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
a = 7.5620 (2) ÅCell parameters from 6858 reflections
b = 9.0197 (2) Åθ = 2.9–37.8°
c = 9.9226 (2) ŵ = 18.62 mm1
β = 109.6643 (12)°T = 293 K
V = 637.32 (3) Å3Irregular plate, black
Z = 40.09 × 0.06 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
3395 independent reflections
Radiation source: fine-focus sealed tube2569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ϕ scans (κ = 0) + additional ω scansθmax = 37.8°, θmin = 3.1°
Absorption correction: multi-scan
r.h. blessing, acta cryst. (1995), a51, 33-38
h = 1213
Tmin = 0.378, Tmax = 0.513k = 1515
15935 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0313P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.087(Δ/σ)max = 0.001
S = 1.03Δρmax = 4.49 e Å3
3395 reflectionsΔρmin = 2.89 e Å3
128 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00439 (19)
Crystal data top
SmMo5O8V = 637.32 (3) Å3
Mr = 758.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5620 (2) ŵ = 18.62 mm1
b = 9.0197 (2) ÅT = 293 K
c = 9.9226 (2) Å0.09 × 0.06 × 0.03 mm
β = 109.6643 (12)°
Data collection top
Nonius KappaCCD
diffractometer
3395 independent reflections
Absorption correction: multi-scan
r.h. blessing, acta cryst. (1995), a51, 33-38
2569 reflections with I > 2σ(I)
Tmin = 0.378, Tmax = 0.513Rint = 0.075
15935 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039128 parameters
wR(F2) = 0.0870 restraints
S = 1.03Δρmax = 4.49 e Å3
3395 reflectionsΔρmin = 2.89 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sm0.26744 (4)0.50342 (3)0.53268 (3)0.00998 (8)
Mo10.60408 (6)0.11595 (4)0.48701 (4)0.00656 (9)
Mo20.38458 (6)0.11813 (4)0.67749 (4)0.00645 (9)
Mo30.17205 (6)0.12713 (4)0.38201 (4)0.00592 (9)
Mo40.80693 (6)0.13060 (4)0.29808 (4)0.00578 (9)
Mo50.00176 (6)0.12369 (4)0.58656 (4)0.00578 (8)
O10.4009 (5)0.0061 (3)0.8499 (3)0.0080 (6)
O20.0011 (5)0.2200 (4)0.9337 (3)0.0077 (6)
O30.0179 (5)0.0032 (3)0.2297 (3)0.0067 (6)
O40.3902 (5)0.2445 (4)0.0128 (3)0.0097 (7)
O50.7952 (5)0.2394 (4)0.1140 (3)0.0085 (6)
O60.2008 (5)0.2382 (4)0.2085 (3)0.0105 (7)
O70.6078 (5)0.2316 (4)0.8319 (3)0.0074 (6)
O80.3824 (5)0.0060 (3)0.3265 (4)0.0080 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sm0.00893 (13)0.01056 (13)0.01018 (13)0.00034 (8)0.00288 (9)0.00063 (8)
Mo10.00622 (19)0.00606 (18)0.00656 (18)0.00017 (13)0.00102 (14)0.00023 (12)
Mo20.00644 (18)0.00642 (18)0.00563 (17)0.00039 (13)0.00091 (13)0.00049 (13)
Mo30.00645 (18)0.00621 (18)0.00491 (17)0.00024 (13)0.00165 (13)0.00006 (13)
Mo40.00588 (18)0.00619 (17)0.00511 (17)0.00021 (13)0.00164 (13)0.00030 (12)
Mo50.00617 (19)0.00582 (17)0.00506 (17)0.00013 (13)0.00150 (13)0.00032 (13)
O10.0100 (17)0.0088 (16)0.0047 (14)0.0021 (12)0.0018 (12)0.0004 (11)
O20.0104 (16)0.0056 (14)0.0058 (14)0.0018 (12)0.0010 (12)0.0011 (11)
O30.0080 (16)0.0072 (15)0.0048 (14)0.0023 (11)0.0019 (12)0.0010 (11)
O40.0096 (17)0.0104 (16)0.0091 (15)0.0005 (13)0.0033 (13)0.0005 (12)
O50.0075 (16)0.0087 (15)0.0085 (15)0.0008 (12)0.0015 (12)0.0027 (12)
O60.0103 (17)0.0114 (16)0.0099 (16)0.0024 (13)0.0034 (13)0.0048 (13)
O70.0092 (16)0.0083 (14)0.0047 (13)0.0043 (12)0.0023 (12)0.0029 (11)
O80.0049 (15)0.0106 (16)0.0072 (14)0.0016 (12)0.0002 (11)0.0013 (12)
Geometric parameters (Å, º) top
Sm—O1i2.355 (3)Mo2—Mo52.7527 (6)
Sm—O1ii2.384 (4)Mo2—Mo32.8309 (6)
Sm—O4iii2.398 (4)Mo2—Smxi3.3621 (5)
Sm—O7ii2.517 (3)Mo3—O62.065 (3)
Sm—O5iv2.584 (3)Mo3—O32.066 (3)
Sm—O3v2.652 (3)Mo3—O4vii2.075 (3)
Sm—O8iii2.748 (3)Mo3—O2viii2.081 (3)
Sm—O2i2.750 (3)Mo3—O82.148 (3)
Sm—O6iii2.894 (3)Mo3—Mo4xii2.6020 (6)
Sm—O2vi2.947 (3)Mo3—Mo5xiii2.6727 (6)
Sm—Mo2ii3.3621 (5)Mo3—Mo52.7647 (5)
Sm—Mo4iv3.3626 (4)Mo3—Mo1ix2.8073 (6)
Mo1—O5vii2.038 (3)Mo3—Smxiv3.6241 (5)
Mo1—O7viii2.071 (3)Mo4—O52.049 (3)
Mo1—O8ix2.126 (3)Mo4—O7viii2.065 (3)
Mo1—O82.129 (3)Mo4—O3x2.068 (3)
Mo1—O4vii2.132 (4)Mo4—O1ix2.082 (3)
Mo1—Mo1ix2.6818 (8)Mo4—O2xv2.102 (3)
Mo1—Mo2ix2.6876 (5)Mo4—Mo3x2.6020 (6)
Mo1—Mo42.7964 (5)Mo4—Mo2ix2.7249 (6)
Mo1—Mo3ix2.8073 (6)Mo4—Mo5x2.7393 (5)
Mo1—Mo5x2.8077 (5)Mo4—Mo5ix2.7580 (6)
Mo1—Mo22.9050 (6)Mo4—Smxvi3.3626 (4)
Mo1—Mo33.0787 (6)Mo5—O6vii2.028 (3)
Mo2—O6vii1.998 (3)Mo5—O5xvii2.059 (3)
Mo2—O12.014 (3)Mo5—O2viii2.072 (3)
Mo2—O4vii2.063 (3)Mo5—O3xiii2.085 (3)
Mo2—O8ix2.100 (3)Mo5—Mo3xiii2.6727 (6)
Mo2—O72.122 (3)Mo5—Mo4xii2.7393 (5)
Mo2—Mo1ix2.6876 (5)Mo5—Mo4ix2.7580 (6)
Mo2—Mo4ix2.7249 (6)Mo5—Mo1xii2.8077 (5)
O1i—Sm—O1ii73.97 (12)O1i—Sm—O4iii72.04 (10)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x, y+1/2, z+3/2; (vii) x, y1/2, z+1/2; (viii) x, y1/2, z1/2; (ix) x+1, y, z+1; (x) x+1, y, z; (xi) x+1, y1/2, z+3/2; (xii) x1, y, z; (xiii) x, y, z+1; (xiv) x, y1, z; (xv) x+1, y1/2, z1/2; (xvi) x+1, y1/2, z+1/2; (xvii) x1, y1/2, z+1/2.
(EuMo5O8) top
Crystal data top
EuMo5O8F(000) = 1348
Mr = 759.66Dx = 7.750 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
a = 7.5554 (1) ÅCell parameters from 12022 reflections
b = 9.1622 (2) Åθ = 1.0–37.8°
c = 9.9685 (2) ŵ = 18.84 mm1
β = 109.3560 (9)°T = 293 K
V = 651.06 (2) Å3Irregular plate, black
Z = 40.10 × 0.07 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
3471 independent reflections
Radiation source: fine-focus sealed tube3034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ scans (κ = 0) + additional ω scansθmax = 37.8°, θmin = 2.9°
Absorption correction: multi-scan
r.h. blessing, acta cryst. (1995), a51, 33-38
h = 013
Tmin = 0.168, Tmax = 0.358k = 015
6545 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0324P)2 + 2.9295P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 1.06Δρmax = 3.59 e Å3
3471 reflectionsΔρmin = 4.08 e Å3
128 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0189 (4)
Crystal data top
EuMo5O8V = 651.06 (2) Å3
Mr = 759.66Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5554 (1) ŵ = 18.84 mm1
b = 9.1622 (2) ÅT = 293 K
c = 9.9685 (2) Å0.10 × 0.07 × 0.05 mm
β = 109.3560 (9)°
Data collection top
Nonius KappaCCD
diffractometer
3471 independent reflections
Absorption correction: multi-scan
r.h. blessing, acta cryst. (1995), a51, 33-38
3034 reflections with I > 2σ(I)
Tmin = 0.168, Tmax = 0.358Rint = 0.031
6545 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032128 parameters
wR(F2) = 0.0770 restraints
S = 1.06Δρmax = 3.59 e Å3
3471 reflectionsΔρmin = 4.08 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu0.25260 (3)0.50439 (2)0.53847 (2)0.00844 (6)
Mo10.61048 (4)0.11430 (3)0.48321 (3)0.00357 (7)
Mo20.38030 (4)0.11665 (3)0.68171 (3)0.00373 (7)
Mo30.17803 (4)0.12587 (3)0.38692 (3)0.00352 (7)
Mo40.81246 (4)0.13160 (3)0.29888 (3)0.00356 (7)
Mo50.00146 (4)0.12247 (3)0.58633 (3)0.00343 (7)
O10.3947 (4)0.0057 (3)0.8401 (3)0.0061 (5)
O20.0046 (4)0.2247 (3)0.9347 (3)0.0059 (4)
O30.0077 (4)0.0004 (3)0.2363 (3)0.0068 (5)
O40.4015 (4)0.2558 (3)0.0200 (3)0.0057 (5)
O50.7988 (4)0.2484 (3)0.1175 (3)0.0055 (5)
O60.2015 (4)0.2470 (3)0.2162 (3)0.0064 (5)
O70.6030 (4)0.2405 (3)0.8267 (3)0.0051 (4)
O80.3864 (4)0.0015 (3)0.3330 (3)0.0058 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu0.00776 (10)0.00835 (10)0.00840 (10)0.00025 (6)0.00159 (7)0.00039 (6)
Mo10.00322 (12)0.00361 (13)0.00387 (13)0.00012 (9)0.00118 (10)0.00004 (9)
Mo20.00304 (12)0.00396 (13)0.00408 (13)0.00029 (9)0.00103 (10)0.00020 (9)
Mo30.00348 (13)0.00383 (13)0.00346 (13)0.00001 (9)0.00141 (10)0.00017 (9)
Mo40.00314 (13)0.00383 (13)0.00373 (13)0.00025 (9)0.00115 (10)0.00037 (9)
Mo50.00305 (13)0.00346 (13)0.00382 (13)0.00023 (8)0.00117 (10)0.00018 (9)
O10.0052 (11)0.0056 (12)0.0061 (11)0.0018 (8)0.0001 (9)0.0004 (8)
O20.0042 (10)0.0067 (11)0.0061 (10)0.0004 (8)0.0011 (9)0.0000 (9)
O30.0069 (11)0.0071 (12)0.0067 (12)0.0010 (9)0.0025 (10)0.0006 (8)
O40.0040 (11)0.0065 (11)0.0070 (11)0.0011 (8)0.0022 (9)0.0010 (9)
O50.0030 (10)0.0062 (11)0.0071 (11)0.0004 (8)0.0016 (9)0.0029 (9)
O60.0059 (11)0.0074 (12)0.0057 (11)0.0000 (9)0.0016 (9)0.0029 (9)
O70.0045 (11)0.0056 (11)0.0050 (10)0.0019 (9)0.0013 (9)0.0013 (9)
O80.0058 (11)0.0061 (12)0.0067 (11)0.0002 (8)0.0039 (9)0.0001 (8)
Bond lengths (Å) top
Eu—O1i2.535 (3)Mo2—Mo32.8286 (4)
Eu—O1ii2.545 (3)Mo2—Euxi3.4022 (4)
Eu—O4iii2.596 (3)Mo2—Euxii3.7566 (4)
Eu—O7i2.657 (3)Mo3—O32.041 (3)
Eu—O2ii2.715 (3)Mo3—O2viii2.057 (3)
Eu—O5iv2.744 (3)Mo3—O4vii2.074 (3)
Eu—O3v2.751 (3)Mo3—O62.087 (3)
Eu—O8iii2.771 (3)Mo3—O82.151 (3)
Eu—O2vi2.932 (3)Mo3—Mo4xiii2.6067 (4)
Eu—O6iii2.947 (3)Mo3—Mo5xiv2.6951 (4)
Eu—Mo2i3.4022 (4)Mo3—Mo52.7529 (4)
Eu—Mo4iv3.4651 (4)Mo3—Mo1ix2.7749 (4)
Mo1—O5vii2.034 (3)Mo3—Euxii3.6758 (4)
Mo1—O7viii2.037 (3)Mo4—O7viii2.060 (3)
Mo1—O4vii2.105 (3)Mo4—O3x2.064 (3)
Mo1—O8ix2.110 (3)Mo4—O1ix2.065 (3)
Mo1—O82.120 (3)Mo4—O52.074 (3)
Mo1—Mo2ix2.6947 (4)Mo4—O2xv2.091 (3)
Mo1—Mo42.7549 (4)Mo4—Mo3x2.6067 (4)
Mo1—Mo1ix2.7670 (6)Mo4—Mo2ix2.7420 (4)
Mo1—Mo5x2.7678 (4)Mo4—Mo5x2.7430 (4)
Mo1—Mo3ix2.7749 (4)Mo4—Mo5ix2.7720 (4)
Mo1—Mo23.0366 (4)Mo4—Euxvi3.4651 (4)
Mo1—Mo33.0869 (5)Mo5—O5xvii2.021 (3)
Mo2—O11.910 (3)Mo5—O6vii2.035 (3)
Mo2—O6vii1.953 (3)Mo5—O2viii2.072 (3)
Mo2—O4vii2.040 (3)Mo5—O3xiv2.074 (3)
Mo2—O8ix2.115 (3)Mo5—Mo3xiv2.6951 (4)
Mo2—O72.144 (3)Mo5—Mo4xiii2.7430 (4)
Mo2—Mo1ix2.6947 (4)Mo5—Mo1xiii2.7678 (4)
Mo2—Mo52.7218 (4)Mo5—Mo4ix2.7720 (4)
Mo2—Mo4ix2.7420 (4)Mo5—Mo5xiv2.8327 (6)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x, y+1/2, z+3/2; (vii) x, y1/2, z+1/2; (viii) x, y1/2, z1/2; (ix) x+1, y, z+1; (x) x+1, y, z; (xi) x+1, y1/2, z+3/2; (xii) x, y1, z; (xiii) x1, y, z; (xiv) x, y, z+1; (xv) x+1, y1/2, z1/2; (xvi) x+1, y1/2, z+1/2; (xvii) x1, y1/2, z+1/2.

Experimental details

(CeMo5O8)(PrMo5O8)(NdMo5O8)(SmMo5O8)
Crystal data
Chemical formulaCeMo5O8PrMo5O8NdMo5O8SmMo5O8
Mr747.82748.61751.94758.05
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)293293293293
a, b, c (Å)7.5643 (1), 9.0693 (1), 9.9150 (2)7.5662 (1), 9.0569 (1), 9.9175 (1)7.5606 (1), 9.0392 (1), 9.9082 (2)7.5620 (2), 9.0197 (2), 9.9226 (2)
α, β, γ (°)90, 109.2113 (8), 9090, 109.3293 (7), 9090, 109.4513 (7), 9090, 109.6643 (12), 90
V3)642.32 (2)641.30 (1)638.50 (2)637.32 (3)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)16.4216.9417.5218.62
Crystal size (mm)0.14 × 0.10 × 0.080.24 × 0.11 × 0.040.13 × 0.13 × 0.080.09 × 0.06 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionGaussian
'(Coppens, P., Leiserowitz, L. & Rabinovich, D. 1965)'
Gaussian
'(Coppens, P., Leiserowitz, L. & Rabinovich, D. 1965)'
Multi-scan
r.h. blessing, acta cryst. (1995), a51, 33-38
Multi-scan
r.h. blessing, acta cryst. (1995), a51, 33-38
Tmin, Tmax0.064, 0.1810.090, 0.5240.113, 0.2520.378, 0.513
No. of measured, independent and
observed [I > 2σ(I)] reflections
12944, 3402, 3314 14762, 3411, 3329 17433, 3404, 3193 15935, 3395, 2569
Rint0.0640.0910.0520.075
(sin θ/λ)max1)0.8630.8620.8620.861
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.080, 1.26 0.029, 0.070, 1.19 0.024, 0.055, 1.16 0.039, 0.087, 1.03
No. of reflections3402341134043395
No. of parameters128128128128
Δρmax, Δρmin (e Å3)2.54, 2.502.45, 3.321.63, 1.824.49, 2.89


(EuMo5O8)
Crystal data
Chemical formulaEuMo5O8
Mr759.66
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.5554 (1), 9.1622 (2), 9.9685 (2)
α, β, γ (°)90, 109.3560 (9), 90
V3)651.06 (2)
Z4
Radiation typeMo Kα
µ (mm1)18.84
Crystal size (mm)0.10 × 0.07 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
r.h. blessing, acta cryst. (1995), a51, 33-38
Tmin, Tmax0.168, 0.358
No. of measured, independent and
observed [I > 2σ(I)] reflections
6545, 3471, 3034
Rint0.031
(sin θ/λ)max1)0.863
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.06
No. of reflections3471
No. of parameters128
Δρmax, Δρmin (e Å3)3.59, 4.08

Computer programs: COLLECT (Nonius, 1998), COLLECT, DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND(Bergerhoff, 1996).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds