Download citation
Download citation
link to html
The title compound, [Ni(C17H34N4)](ClO4)2, has singlet ground-state nickel(II) complex cations in tetrahedrally twisted square-planar coordination by the four N atoms of the 15-membered di­amine di­imine tetra­aza­macrocycle and disordered perchlorate anions, linked into molecular clusters by N—H...O hydrogen bonds and weak Ni...O interactions. The cation has approximate twofold symmetry, with bond lengths Ni—Namine of 1.920 (2) and 1.924 (2) Å, and Ni—Nimine of 1.915 (2) and 1.929 (2) Å, and trans–N—Ni—N angles of 165.1 (1) and 163.4 (1)°, with the shortest Ni...O distance being 3.27 (3) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536800020559/na6009sup1.cif
Contains datablocks global, nfc10

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536800020559/na6009Isup2.hkl
Contains datablock I

CCDC reference: 155850

Key indicators

  • Single-crystal X-ray study
  • T = 203 K
  • Mean [sigma](C-C) = 0.005 Å
  • Disorder in solvent or counterion
  • R factor = 0.042
  • wR factor = 0.105
  • Data-to-parameter ratio = 16.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry
Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent disorder ....................... 50.00 Perc. PLAT_320 Alert C Check Hybridisation of C(7) in main residue ? PLAT_320 Alert C Check Hybridisation of C(13) in main residue ?
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
3 Alert Level C = Please check

Comment top

The preparations of hexamethyl–diamine–diimine macrocycle compounds of nickel(II) and copper(II) by reactions with acetone of the metal-ion compounds of diamines with varying chain length have been described (Curtis, 1968). Reaction of equimolar amounts of tris(ethane-1,2-diamine)- and tris(propane-1,3-diamine)nickel(II) perchlorates with acetone yields [Ni(trans-[15]diene)](ClO4)2·H2O (trans-[15]diene 5,7,7,13,15,14-hexamethyl-1,5,8,12-tetraazacyclopentadeca-4,12-diene) (Curtis & House, 1967; Curtis & Gainsford, 1986), while reaction of 4,4,9,9-tetramethyl-5,8-diazoniumdodecane-2,11-dione diperchlorate [formed by reaction of ethane-1,2-diammonium perchlorate with acetone (Curtis, 1982)] with (propane-1,3-diamine)nickel(II) or -copper(II) perchlorates yields 5,5,7,13,15,15-hexamethyl-1,4,8,12-tetraazacyclopentadeca-7,12-diene (cis-[15]diene) complex cations (Curtis & Gainsford, 1986). The structures of N-rac-[Cu(cis-[15]diene)]2Cl(ClO4)3 (Gladkikh & Curtis, 1996) and N-rac-[Ni(trans-[15]diene)](ClO4)2·H2O (Curtis & Gainsford, 1986) have been reported.

The title compound, 1RS,4RS-[Ni(cis-[15]diene)](ClO4)2, (I), has discrete singlet ground-state nickel(II) square-planar complex cations and perchlorate anions, linked to form molecular clusters by N—H···O hydrogen bonding and weak Ni···O interactions (Fig. 1 and Table 1). The closest Ni···O contact, of 3.27 (3) Å, indicates no significant axial coordination. The distances C7—N8 and N12—C13 and the angles about these atoms confirm the locations of two imine functions.

The cation shows approximate twofold symmetry through C10, Ni and the midpoint of C2—C3 (configuration 1RS,4RS, N-rac). There is appreciable tetrahedral twisting of the coordination plane with displacements from the best N4 plane of ±0.26 Å. The chelate ring conformations and displacements of atoms from the relevant NiN2 planes (Å, s.u. < 0.003 Å) are: N1—Ni—N4, gauche, C2, 0.433; C3, -0.253; N4—Ni—N8, half chair, C5, -1.99 (C51, -2.465; C52, -1.249); C6, -1.016; C7, 0.748 (C71, 0.664); N8—Ni—N12, asym.-twist, C9, -0.828; C10, 0.123; C11, 0.694; N12—Ni—N1, half-chair, C13, 0.618 (C131, 0.462); C14, 0.781; C15, 1.094 (C151, 1.072; C152, 2.448). The intracyclic angles at the central C atoms C5—-C6–C7 and C13—C14—C15 of the trimethyl substituted chelate rings are, as usual, large (cf. angle C9—C10—C11).

The structure has weakly bound `molecules', [Ni(cis-[15]diene)](ClO4)2, with a perchlorate ion above each face of the macrocycle, with weak Ni···O interactions, shorter for the minor oxygen sites [Ni···O12, 3.47 (1); Ni···O18, 3.27 (3), Ni···O23, 3.74 (1); Ni···O26, 3.71 (3) Å] and weak N—H···O hydrogen bonds, shorter for the major oxygen sites. These `molecules' are linked by C—H···O interactions (Table 2).

The nickel(II) compound of a related 15-membered hexaaza macrocycle, which has the C9 and C11 methylene groups of cis-[15]diene replaced by NH groups, has a similar structure, with the N-rac-configuration with approximate twofold symmetry, and with similar dimensions: Ni—Namine 1.908 (4) and 1.913 (4) Å, Ni—Nimine 1.885 (4) and 1.902 (4) Å, and trans-N—Ni—N angles 167.9 (2) and 166.9 (2)° (Curtis et al., 1998). The isomeric cation present for N-rac-[Ni(trans-[15]diene)](ClO4)2·H2O has similar coordination geometry with Ni—Namine 1.882 (4) and 1.913 (4) Å, Ni—Nimine 1.924 (4) and 1.896 (4) Å, and trans-N—Ni—N angles of 169.4 (2) and 166.1 (2)°, although this cation is saddle shaped. The general conformation and tetrahedral twisting of the NiN4 group is also similar for N-rac-[Cu(cis-[15]diene)]2Cl(ClO4)3 with trans-N—Cu—N angles 168.3 (3) and 158.0 (3)°.

The Ni—N distances observed for N-rac-[Ni(cis-[15]diene)](ClO4)2 are within the range found for singlet ground state nickel compounds of related 14-membered macrocycles for which many structures have been reported (Donnelly & Zimmer, 1999; Cambridge Structural Database, 2000), including the fourteen-membered homologue N-rac-[Ni(cis-[14]diene)](ClO4)2 [Ni—Namine 1.927 (6) and Ni—Nimine 1.891 (6) Å] (Kilbourn et al., 1969). N-rac-[Ni(cis-[15]diene)](ClO4)2 is unusual in that the Ni—Nimine distance Ni—N12 is longer than both Ni—Namine distances, whereas bonds to imine nitrogen are more typically ca 0.03 Å shorter, as observed for N-rac-[Cu(cis-[15]diene)]2Cl(ClO4)3.

The tetrahedral twisting of the N4 plane for N-rac-[Ni(cis-[15]diene)](ClO4)2 is similar to that observed for other 15-membered tetraaza macrocyles coordinated to singlet ground-state nickel(II), and much greater than observed for related 14-membered macrocycle compounds, including N-rac-[Ni(cis-[14]diene)](ClO4)2, which has trans-N—Ni—N of 175.7 (3)°.

Experimental top

N-rac-[Ni(cis-[15]diene)](ClO4)2 was prepared as reported by Curtis & Gainsford (1986) and crystallized from water.

Refinement top

The perchlorate ions were refined as rigid groups with two sets of O-atom sites, both with large displacement parameters, O1–O4 and O5–O8 with occupancies of 0.887 and 0.123 about Cl1, and O21–O24 and O25–O28 with occupancies of 0.855 and 0.145 about Cl2, respectively.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SMART; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL93 (Sheldrick, 1993).

Figures top
[Figure 1] Fig. 1. View of the title compound.
[(1RS,4RS)-5,5,7,13,15,15-Hexamethyl-1,4,8,12-tetraazacyclopentadeca- 7,12-diene-N1,N4,N8,N12]nickel(II) diperchlorate top
Crystal data top
[Ni(C17H34N4)](ClO4)2F(000) = 1160
Mr = 552.09Dx = 1.529 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.3529 (1) ÅCell parameters from 8197 reflections
b = 16.1128 (1) Åθ = 1.9–27.5°
c = 15.0400 (1) ŵ = 1.08 mm1
β = 107.025 (1)°T = 203 K
V = 2398.94 (3) Å3Prism, orange
Z = 40.25 × 0.17 × 0.16 mm
Data collection top
Siemens SMART CCD
diffractometer
5243 independent reflections
Radiation source: fine-focus sealed tube4531 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.002
area–detector ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1312
Tmin = 0.774, Tmax = 0.879k = 020
14323 measured reflectionsl = 019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105Only H-atom coordinates refined
S = 1.04 w = 1/[σ2(Fo2) + (0.048P)2 + 3.2464P]
where P = (Fo2 + 2Fc2)/3
5243 reflections(Δ/σ)max = 0.001
327 parametersΔρmax = 0.70 e Å3
40 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Ni(C17H34N4)](ClO4)2V = 2398.94 (3) Å3
Mr = 552.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.3529 (1) ŵ = 1.08 mm1
b = 16.1128 (1) ÅT = 203 K
c = 15.0400 (1) Å0.25 × 0.17 × 0.16 mm
β = 107.025 (1)°
Data collection top
Siemens SMART CCD
diffractometer
5243 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4531 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.879Rint = 0.002
14323 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04240 restraints
wR(F2) = 0.105Only H-atom coordinates refined
S = 1.04Δρmax = 0.70 e Å3
5243 reflectionsΔρmin = 0.66 e Å3
327 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni0.48685 (3)0.07048 (2)0.22713 (2)0.02468 (10)
N10.3671 (2)0.00883 (13)0.25706 (15)0.0295 (4)
H10.3292 (2)0.01636 (13)0.29833 (15)0.050*
C20.4522 (3)0.0785 (2)0.3073 (2)0.0436 (7)
H2A0.4780 (3)0.1150 (2)0.2632 (2)0.080*
H2B0.4025 (3)0.1113 (2)0.3413 (2)0.080*
C30.5754 (3)0.0405 (2)0.3736 (2)0.0441 (7)
H3A0.5510 (3)0.0111 (2)0.4234 (2)0.080*
H3B0.6414 (3)0.0837 (2)0.4016 (2)0.080*
N40.6333 (2)0.01842 (13)0.3191 (2)0.0310 (5)
H40.6817 (2)0.01217 (13)0.2882 (2)0.050*
C50.7283 (3)0.0822 (2)0.3781 (2)0.0352 (6)
C510.6467 (3)0.1436 (2)0.4166 (2)0.0428 (7)
H51A0.6005 (3)0.1143 (2)0.4547 (2)0.080*
H51B0.5807 (3)0.1708 (2)0.3656 (2)0.080*
H51C0.7068 (3)0.1848 (2)0.4541 (2)0.080*
C520.8342 (3)0.0388 (2)0.4572 (2)0.0556 (9)
H52A0.8852 (3)0.0000 (2)0.4314 (2)0.080*
H52B0.7896 (3)0.0091 (2)0.4960 (2)0.080*
H52C0.8951 (3)0.0799 (2)0.4944 (2)0.080*
C60.8035 (3)0.1250 (2)0.3173 (2)0.0409 (7)
H6A0.8596 (3)0.1685 (2)0.3552 (2)0.050*
H6B0.8652 (3)0.0840 (2)0.3040 (2)0.050*
C70.7276 (3)0.1634 (2)0.2272 (2)0.0491 (8)
C710.8180 (3)0.2065 (3)0.1789 (3)0.0630 (10)
H71A0.7633 (3)0.2303 (3)0.1208 (3)0.080*
H71B0.8807 (3)0.1667 (3)0.1664 (3)0.080*
H71C0.8681 (3)0.2503 (3)0.2186 (3)0.080*
N80.6126 (2)0.1267 (2)0.1768 (2)0.0398 (6)
C90.5470 (3)0.1537 (2)0.0801 (2)0.0395 (6)
H9A0.4927 (3)0.1080 (2)0.0453 (2)0.080*
H9B0.6165 (3)0.1675 (2)0.0501 (2)0.080*
C100.4574 (4)0.2285 (2)0.0773 (2)0.0491 (8)
H10A0.5123 (4)0.2789 (2)0.0847 (2)0.080*
H10B0.3894 (4)0.2310 (2)0.0163 (2)0.080*
C110.3868 (3)0.2262 (2)0.1522 (2)0.0377 (6)
H11A0.4494 (3)0.2452 (2)0.2110 (2)0.080*
H11B0.3098 (3)0.2644 (2)0.1356 (2)0.080*
N120.3382 (2)0.1419 (2)0.1652 (2)0.0405 (6)
C130.2147 (3)0.1171 (2)0.1159 (2)0.0459 (8)
C1310.1055 (3)0.1801 (2)0.0762 (2)0.0498 (8)
H13A0.1455 (3)0.2303 (2)0.0602 (2)0.080*
H13B0.0592 (3)0.1931 (2)0.1220 (2)0.080*
H13C0.0414 (3)0.1576 (2)0.0209 (2)0.080*
C140.1597 (3)0.0386 (2)0.1419 (2)0.0376 (6)
H14A0.0859 (3)0.0208 (2)0.0880 (2)0.050*
H14B0.1193 (3)0.0519 (2)0.1915 (2)0.050*
C150.2523 (3)0.0362 (2)0.1743 (2)0.0339 (6)
C1510.1699 (3)0.1040 (2)0.2044 (3)0.0477 (8)
H15A0.1354 (3)0.0828 (2)0.2534 (3)0.080*
H15B0.2272 (3)0.1517 (2)0.2273 (3)0.080*
H15C0.0949 (3)0.1205 (2)0.1517 (3)0.080*
C1520.3075 (3)0.0680 (2)0.0975 (2)0.0421 (7)
H15D0.3658 (3)0.1153 (2)0.1200 (2)0.080*
H15E0.3588 (3)0.0244 (2)0.0790 (2)0.080*
H15F0.2331 (3)0.0846 (2)0.0444 (2)0.080*
Cl10.77772 (9)0.09388 (7)0.15944 (7)0.0601 (2)0.877 (7)
O110.8237 (4)0.1649 (3)0.1282 (4)0.101 (2)0.877 (7)
O120.6406 (5)0.0874 (6)0.1386 (6)0.189 (5)0.877 (7)
O130.8290 (6)0.0227 (3)0.1248 (4)0.135 (2)0.877 (7)
O140.8332 (4)0.0909 (3)0.2582 (3)0.094 (2)0.877 (7)
Cl110.77772 (9)0.09388 (7)0.15944 (7)0.0601 (2)0.123 (7)
O150.821 (2)0.1052 (17)0.0771 (15)0.073 (8)*0.123 (7)
O160.849 (2)0.0370 (14)0.2240 (15)0.056 (6)*0.123 (7)
O170.778 (5)0.176 (2)0.203 (3)0.35 (6)*0.123 (7)
O180.631 (3)0.0703 (15)0.1312 (19)0.046 (6)*0.123 (7)
Cl20.23467 (8)0.16963 (5)0.40219 (5)0.0432 (2)0.855 (8)
O210.3456 (4)0.2205 (3)0.4528 (3)0.0865 (15)0.855 (8)
O220.1775 (5)0.2026 (3)0.3119 (2)0.0719 (11)0.855 (8)
O230.2872 (5)0.0877 (2)0.3974 (2)0.0690 (13)0.855 (8)
O240.1387 (4)0.1676 (3)0.4535 (3)0.0645 (10)0.855 (8)
Cl210.23467 (8)0.16963 (5)0.40219 (5)0.0432 (2)0.145 (8)
O250.186 (2)0.0849 (11)0.3588 (14)0.068 (6)*0.145 (8)
O260.359 (2)0.1822 (19)0.400 (2)0.118 (11)*0.145 (8)
O270.189 (2)0.1782 (13)0.4747 (13)0.048 (6)*0.145 (8)
O280.143 (2)0.2234 (14)0.3266 (15)0.058 (6)*0.145 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0216 (2)0.0245 (2)0.0277 (2)0.00088 (11)0.00687 (12)0.00188 (12)
N10.0321 (11)0.0277 (11)0.0294 (11)0.0039 (9)0.0103 (9)0.0021 (8)
C20.048 (2)0.0306 (14)0.047 (2)0.0058 (12)0.0049 (13)0.0084 (12)
C30.049 (2)0.0362 (15)0.039 (2)0.0045 (13)0.0007 (13)0.0122 (12)
N40.0311 (11)0.0269 (11)0.0320 (11)0.0026 (9)0.0047 (9)0.0015 (9)
C50.0285 (13)0.0380 (15)0.0341 (14)0.0001 (11)0.0013 (11)0.0015 (11)
C510.046 (2)0.041 (2)0.040 (2)0.0070 (13)0.0123 (13)0.0118 (13)
C520.044 (2)0.058 (2)0.050 (2)0.001 (2)0.0107 (15)0.009 (2)
C60.0238 (12)0.049 (2)0.048 (2)0.0034 (12)0.0068 (12)0.0026 (13)
C70.0291 (14)0.068 (2)0.050 (2)0.0083 (14)0.0111 (13)0.014 (2)
C710.039 (2)0.086 (3)0.069 (2)0.017 (2)0.023 (2)0.013 (2)
N80.0291 (11)0.0460 (14)0.0414 (13)0.0053 (10)0.0057 (10)0.0123 (11)
C90.0396 (15)0.048 (2)0.0325 (14)0.0025 (13)0.0128 (12)0.0060 (12)
C100.057 (2)0.044 (2)0.052 (2)0.0111 (15)0.025 (2)0.0204 (14)
C110.0368 (14)0.0295 (14)0.048 (2)0.0046 (11)0.0139 (12)0.0088 (12)
N120.0278 (11)0.0349 (13)0.054 (2)0.0014 (10)0.0045 (10)0.0141 (11)
C130.0248 (13)0.051 (2)0.061 (2)0.0048 (12)0.0108 (13)0.0187 (15)
C1310.0300 (14)0.063 (2)0.057 (2)0.0129 (14)0.0142 (13)0.023 (2)
C140.0243 (12)0.048 (2)0.041 (2)0.0033 (11)0.0104 (11)0.0026 (12)
C150.0287 (13)0.0368 (14)0.0367 (14)0.0071 (11)0.0103 (11)0.0063 (11)
C1510.040 (2)0.043 (2)0.064 (2)0.0130 (13)0.0211 (15)0.0061 (15)
C1520.040 (2)0.047 (2)0.040 (2)0.0045 (13)0.0131 (12)0.0139 (13)
Cl10.0452 (4)0.0704 (6)0.0663 (6)0.0102 (4)0.0185 (4)0.0217 (5)
O110.095 (3)0.071 (3)0.150 (4)0.005 (2)0.055 (3)0.055 (3)
O120.041 (2)0.354 (12)0.158 (6)0.031 (4)0.007 (3)0.147 (7)
O130.143 (5)0.091 (4)0.172 (6)0.012 (3)0.046 (4)0.055 (3)
O140.094 (3)0.114 (4)0.067 (2)0.029 (3)0.014 (2)0.007 (2)
Cl110.0452 (4)0.0704 (6)0.0663 (6)0.0102 (4)0.0185 (4)0.0217 (5)
Cl20.0469 (4)0.0430 (4)0.0454 (4)0.0013 (3)0.0226 (3)0.0007 (3)
O210.055 (2)0.090 (3)0.102 (3)0.024 (2)0.003 (2)0.018 (2)
O220.103 (3)0.072 (2)0.040 (2)0.015 (2)0.021 (2)0.005 (2)
O230.105 (3)0.057 (2)0.056 (2)0.028 (2)0.041 (2)0.0021 (14)
O240.049 (2)0.089 (3)0.065 (2)0.001 (2)0.033 (2)0.008 (2)
Cl210.0469 (4)0.0430 (4)0.0454 (4)0.0013 (3)0.0226 (3)0.0007 (3)
Geometric parameters (Å, º) top
Ni—N81.915 (2)C10—C111.513 (4)
Ni—N41.920 (2)C10—H10A0.98
Ni—N11.924 (2)C10—H10B0.98
Ni—N121.929 (2)C11—N121.480 (4)
N1—C21.489 (4)C11—H11A0.98
N1—C151.513 (3)C11—H11B0.98
N1—O232.929 (3)N12—C131.338 (4)
N1—O253.13 (2)C13—C141.487 (4)
N1—H10.92C13—C1311.507 (4)
C2—C31.499 (4)C131—H13A0.97
C2—H2A0.98C131—H13B0.97
C2—H2B0.98C131—H13C0.97
C3—N41.491 (4)C14—C151.528 (4)
C3—H3A0.98C14—H14A0.98
C3—H3B0.98C14—H14B0.98
N4—C51.516 (3)C15—C1521.521 (4)
N4—O143.054 (5)C15—C1511.535 (4)
N4—O163.11 (2)C151—H15A0.97
N4—H40.92C151—H15B0.97
C5—C511.521 (4)C151—H15C0.97
C5—C61.528 (4)C152—H15D0.97
C5—C521.531 (4)C152—H15E0.97
C51—H51A0.97C152—H15F0.97
C51—H51B0.97Cl1—O121.365 (5)
C51—H51C0.97Cl1—O111.375 (3)
C52—H52A0.97Cl1—O131.425 (5)
C52—H52B0.97Cl1—O141.428 (4)
C52—H52C0.97Cl11—O161.38 (2)
C6—C71.489 (4)Cl11—O151.44 (2)
C6—H6A0.98Cl11—O171.47 (3)
C6—H6B0.98Cl11—O181.50 (2)
C7—N81.346 (4)Cl2—O221.416 (3)
C7—C711.511 (4)Cl2—O241.426 (3)
C71—H71A0.97Cl2—O211.434 (3)
C71—H71B0.97Cl2—O231.438 (3)
C71—H71C0.97Cl21—O261.31 (2)
N8—C91.478 (4)Cl21—O271.32 (2)
C9—C101.514 (4)Cl21—O281.52 (2)
C9—H9A0.98Cl21—O251.53 (2)
C9—H9B0.98
N8—Ni—N490.38 (10)C10—C9—H9A109.4 (2)
N8—Ni—N1165.11 (11)N8—C9—H9B109.37 (14)
N4—Ni—N188.19 (9)C10—C9—H9B109.4 (2)
N8—Ni—N1293.73 (10)H9A—C9—H9B108.0
N4—Ni—N12163.43 (11)C11—C10—C9112.6 (2)
N1—Ni—N1291.83 (10)C11—C10—H10A109.1 (2)
C2—N1—C15113.8 (2)C9—C10—H10A109.1 (2)
C2—N1—Ni107.0 (2)C11—C10—H10B109.1 (2)
C15—N1—Ni114.0 (2)C9—C10—H10B109.1 (2)
C2—N1—O23106.5 (2)H10A—C10—H10B107.8
C15—N1—O23115.3 (2)N12—C11—C10112.2 (3)
Ni—N1—O2398.82 (11)N12—C11—H11A109.2 (2)
C2—N1—O25117.7 (4)C10—C11—H11A109.2 (2)
C15—N1—O2596.0 (4)N12—C11—H11B109.17 (14)
Ni—N1—O25108.2 (3)C10—C11—H11B109.2 (2)
C2—N1—H1107.2 (2)H11A—C11—H11B107.9
C15—N1—H1107.23 (13)C13—N12—C11120.5 (2)
Ni—N1—H1107.23 (6)C13—N12—Ni126.0 (2)
O23—N1—H19.42 (10)C11—N12—Ni110.9 (2)
N1—C2—C3107.0 (2)N12—C13—C14119.1 (3)
N1—C2—H2A110.3 (2)N12—C13—C131120.2 (3)
C3—C2—H2A110.3 (2)C14—C13—C131112.1 (2)
N1—C2—H2B110.32 (15)C13—C131—H13A109.5 (2)
C3—C2—H2B110.3 (2)C13—C131—H13B109.5 (2)
H2A—C2—H2B108.6H13A—C131—H13B109.5
N4—C3—C2107.1 (2)C13—C131—H13C109.5 (2)
N4—C3—H3A110.3 (2)H13A—C131—H13C109.5
C2—C3—H3A110.3 (2)H13B—C131—H13C109.5
N4—C3—H3B110.29 (15)C13—C14—C15120.2 (2)
C2—C3—H3B110.3 (2)C13—C14—H14A107.3 (2)
H3A—C3—H3B108.5C15—C14—H14A107.28 (15)
C3—N4—C5114.0 (2)C13—C14—H14B107.3 (2)
C3—N4—Ni108.3 (2)C15—C14—H14B107.28 (15)
C5—N4—Ni111.5 (2)H14A—C14—H14B106.9
C3—N4—O14102.4 (2)N1—C15—C152110.1 (2)
C5—N4—O14100.7 (2)N1—C15—C14107.5 (2)
Ni—N4—O14119.82 (12)C152—C15—C14111.3 (2)
C3—N4—O16121.9 (5)N1—C15—C151109.6 (2)
C5—N4—O1691.9 (4)C152—C15—C151110.5 (2)
Ni—N4—O16108.4 (4)C14—C15—C151107.7 (2)
C3—N4—H4107.6 (2)C15—C151—H15A109.5 (2)
C5—N4—H4107.61 (14)C15—C151—H15B109.5 (2)
Ni—N4—H4107.61 (7)H15A—C151—H15B109.5
O14—N4—H412.22 (9)C15—C151—H15C109.5 (2)
N4—C5—C51109.0 (2)H15A—C151—H15C109.5
N4—C5—C6108.2 (2)H15B—C151—H15C109.5
C51—C5—C6111.8 (2)C15—C152—H15D109.5 (2)
N4—C5—C52109.9 (2)C15—C152—H15E109.5 (2)
C51—C5—C52110.6 (3)H15D—C152—H15E109.5
C6—C5—C52107.2 (2)C15—C152—H15F109.47 (15)
C5—C51—H51A109.5 (2)H15D—C152—H15F109.5
C5—C51—H51B109.5 (2)H15E—C152—H15F109.5
H51A—C51—H51B109.5O12—Cl1—O11115.2 (4)
C5—C51—H51C109.47 (15)O12—Cl1—O13109.2 (5)
H51A—C51—H51C109.5O11—Cl1—O13110.0 (3)
H51B—C51—H51C109.5O12—Cl1—O14108.1 (4)
C5—C52—H52A109.5 (2)O11—Cl1—O14108.1 (3)
C5—C52—H52B109.5 (2)O13—Cl1—O14105.9 (3)
H52A—C52—H52B109.5Cl1—O14—H498.2 (2)
C5—C52—H52C109.5 (2)Cl1—O14—N4103.3 (2)
H52A—C52—H52C109.5O16—Cl11—O15116.8 (12)
H52B—C52—H52C109.5O16—Cl11—O17110.7 (18)
C7—C6—C5120.5 (2)O15—Cl11—O17107.8 (18)
C7—C6—H6A107.2 (2)O16—Cl11—O18108.6 (12)
C5—C6—H6A107.2 (2)O15—Cl11—O18109.2 (12)
C7—C6—H6B107.2 (2)O17—Cl11—O18102.9 (18)
C5—C6—H6B107.2 (2)Cl11—O16—N4101.8 (10)
H6A—C6—H6B106.8O22—Cl2—O24111.4 (3)
N8—C7—C6118.3 (3)O22—Cl2—O21109.9 (3)
N8—C7—C71120.1 (3)O24—Cl2—O21107.6 (3)
C6—C7—C71113.1 (3)O22—Cl2—O23110.7 (2)
C7—C71—H71A109.5 (2)O24—Cl2—O23109.9 (2)
C7—C71—H71B109.5 (2)O21—Cl2—O23107.2 (2)
H71A—C71—H71B109.5Cl2—O23—H1136.3 (2)
C7—C71—H71C109.5 (2)Cl2—O23—N1135.6 (2)
H71A—C71—H71C109.5O26—Cl21—O27126.6 (15)
H71B—C71—H71C109.5O26—Cl21—O28107.2 (14)
C7—N8—C9120.0 (2)O27—Cl21—O28105.2 (11)
C7—N8—Ni125.2 (2)O26—Cl21—O25109.1 (14)
C9—N8—Ni111.0 (2)O27—Cl21—O25107.1 (11)
N8—C9—C10111.3 (2)O28—Cl21—O2597.7 (11)
N8—C9—H9A109.4 (2)Cl21—O25—N1118.0 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O230.922.032.93 (1)166
N1—H1···O250.922.243.13 (3)163
N4—H4···O120.922.483.23 (1)138
N4—H4···O140.922.173.06 (1)163
N4—H4···O160.922.253.12 (2)156
N4—H4···O180.922.453.16 (3)134
C51—H51B···O260.972.512.98 (3)110
C6—H6B···O160.982.273.07 (2)137
C14—H14B···O250.982.463.28 (2)140
C71—H71C···O17i0.972.482.96 (5)111
C131—H13C···O15ii0.972.482.90 (5)106
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C17H34N4)](ClO4)2
Mr552.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)203
a, b, c (Å)10.3529 (1), 16.1128 (1), 15.0400 (1)
β (°) 107.025 (1)
V3)2398.94 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.25 × 0.17 × 0.16
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.774, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
14323, 5243, 4531
Rint0.002
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.105, 1.04
No. of reflections5243
No. of parameters327
No. of restraints40
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.70, 0.66

Computer programs: SMART (Siemens, 1995), SMART, SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), ORTEP-3 (Farrugia, 1997).

Selected geometric parameters (Å, º) top
Ni—N81.915 (2)Ni—N121.929 (2)
Ni—N41.920 (2)C7—N81.346 (4)
Ni—N11.924 (2)N12—C131.338 (4)
N8—Ni—N490.38 (10)C7—N8—Ni125.2 (2)
N8—Ni—N1165.11 (11)C9—N8—Ni111.0 (2)
N4—Ni—N188.19 (9)C11—C10—C9112.6 (2)
N8—Ni—N1293.73 (10)C13—N12—C11120.5 (2)
N4—Ni—N12163.43 (11)C13—N12—Ni126.0 (2)
N1—Ni—N1291.83 (10)C11—N12—Ni110.9 (2)
C7—C6—C5120.5 (2)N12—C13—C14119.1 (3)
N8—C7—C6118.3 (3)N12—C13—C131120.2 (3)
N8—C7—C71120.1 (3)C14—C13—C131112.1 (2)
C6—C7—C71113.1 (3)C13—C14—C15120.2 (2)
C7—N8—C9120.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O230.922.032.93 (1)166
N1—H1···O250.922.243.13 (3)163
N4—H4···O120.922.483.23 (1)138
N4—H4···O140.922.173.06 (1)163
N4—H4···O160.922.253.12 (2)156
N4—H4···O180.922.453.16 (3)134
C51—H51B···O260.972.512.98 (3)110
C6—H6B···O160.982.273.07 (2)137
C14—H14B···O250.982.463.28 (2)140
C71—H71C···O17i0.972.482.96 (5)111
C131—H13C···O15ii0.972.482.90 (5)106
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds