Download citation
Download citation
link to html
In the crystal structure of the title compound, [Ni(C10H4Cl2NO2)2]n, the NiII atom, which lies on a symmetry plane, is N,O-chelated by the carboxyl­ate anion, and adjacent formula units are linked by carboxyl­ate bridges into a linear chain. The metal shows octa­hedral coordination.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680702082X/ng2259sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680702082X/ng2259Isup2.hkl
Contains datablock I

CCDC reference: 650515

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.031
  • wR factor = 0.085
  • Data-to-parameter ratio = 12.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.62 mm
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 1.96
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Quinolinecarboxylates generally chelate to metal atoms, and some metal quinolinecarboxylates have been reported such as, for example, bis(6-methyl-4-hydroxy-3-quinolinecarboxylate) mono(oxo)monohydroxyvanadium(V) and Cd(H2O)(4-quinolinecarboxylato)2 (Chen et al., 2001; Yang et al., 2005). Quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) is one of the most effective herbicides (Nuria et al., 1997; Pornprom et al., 2006; Sunohara & Matsumoto, 2004; Tresch & Grossmann, 2002). The title compound is a nickel derivative (I) (Fig. 1). The NiII center exhibits a distorted octahedral geometry defined by four carboxylato oxygen atoms from four quinclorac and two nitrogen atoms from two quinclorac units. The units chelate to the metal atom, and adjacent molecules are linked by carboxylate bridges into a linear chain. The chains are assembled into a three-dimensional supramolecular architecture by interchain ππ stacking interactions (perpendicular distance: 3.44 Å, centroid-centroid distance: 3.912 Å).

Related literature top

See Chen et al. (2001) and Yang et al. (2005) for related vanadium and cadmium complexes.

For related literature, see: Nuria et al. (1997); Pornprom et al. (2006); Sunohara & Matsumoto (2004); Tresch & Grossmann (2002).

Experimental top

A mixture of quinclorac (0.5 mmol, 0.121 g), NiCl2.6H2O (1 mmol, 0.238 g) and H2O (10 ml) was treated with aqueous HCl to a pH of 5. The mixture was placed in a Teflon-lined autoclave; this was heated at 403 K for three days. Green crystals were collected and washed with water. CH&N elemental analysis. Calculated for C20H8Cl4N2O4Ni: C 44.36, H 1.48, N 5.18%; found: C 44.58, H 1.59, N 5.30%. Selected FT—IR (KBr, cm-1): 3433(w), 1581(s), 1563(s), 1482(m), 1402(s), 1347(s), 1316(m), 1139 (m), 1101(s), 927(s), 908(s), 898(s), 814(m), 761(m), 671(m).

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for all H atoms.

Structure description top

Quinolinecarboxylates generally chelate to metal atoms, and some metal quinolinecarboxylates have been reported such as, for example, bis(6-methyl-4-hydroxy-3-quinolinecarboxylate) mono(oxo)monohydroxyvanadium(V) and Cd(H2O)(4-quinolinecarboxylato)2 (Chen et al., 2001; Yang et al., 2005). Quinclorac (3,7-dichloro-8-quinolinecarboxylic acid) is one of the most effective herbicides (Nuria et al., 1997; Pornprom et al., 2006; Sunohara & Matsumoto, 2004; Tresch & Grossmann, 2002). The title compound is a nickel derivative (I) (Fig. 1). The NiII center exhibits a distorted octahedral geometry defined by four carboxylato oxygen atoms from four quinclorac and two nitrogen atoms from two quinclorac units. The units chelate to the metal atom, and adjacent molecules are linked by carboxylate bridges into a linear chain. The chains are assembled into a three-dimensional supramolecular architecture by interchain ππ stacking interactions (perpendicular distance: 3.44 Å, centroid-centroid distance: 3.912 Å).

See Chen et al. (2001) and Yang et al. (2005) for related vanadium and cadmium complexes.

For related literature, see: Nuria et al. (1997); Pornprom et al. (2006); Sunohara & Matsumoto (2004); Tresch & Grossmann (2002).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I), with the atomic numbering scheme and displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity [Symmetry codes: (i) x,-y + 1/2,z + 1/2.]
[Figure 2] Fig. 2. Three dimensional supramolecular architecture constructed by interchain ππ stacking interactions.
catena-Poly[nickel(II)-bis(µ-3,7-dichloroquinoline-8-carboxylato- κ3N,O:O')] top
Crystal data top
[Ni(C10H4Cl2NO2)2]F(000) = 1080
Mr = 540.79Dx = 1.825 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 9136 reflections
a = 13.4603 (14) Åθ = 2.0–25.0°
b = 15.8837 (19) ŵ = 1.56 mm1
c = 9.2040 (13) ÅT = 298 K
V = 1967.8 (4) Å3Block, green
Z = 40.62 × 0.21 × 0.18 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1736 independent reflections
Radiation source: fine-focus sealed tube1407 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1512
Tmin = 0.68, Tmax = 0.76k = 1817
9136 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0301P)2 + 3.058P]
where P = (Fo2 + 2Fc2)/3
1736 reflections(Δ/σ)max = 0.001
141 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Ni(C10H4Cl2NO2)2]V = 1967.8 (4) Å3
Mr = 540.79Z = 4
Orthorhombic, PccnMo Kα radiation
a = 13.4603 (14) ŵ = 1.56 mm1
b = 15.8837 (19) ÅT = 298 K
c = 9.2040 (13) Å0.62 × 0.21 × 0.18 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1736 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1407 reflections with I > 2σ(I)
Tmin = 0.68, Tmax = 0.76Rint = 0.044
9136 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.10Δρmax = 0.71 e Å3
1736 reflectionsΔρmin = 0.70 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.75000.25000.23917 (6)0.02149 (17)
Cl11.11039 (8)0.21431 (6)0.04748 (13)0.0600 (3)
Cl20.77760 (7)0.04046 (5)0.58593 (10)0.0409 (2)
N10.89128 (18)0.18780 (15)0.2319 (3)0.0249 (6)
O10.70164 (15)0.17179 (12)0.4057 (2)0.0272 (5)
O20.79907 (15)0.15853 (12)0.6024 (2)0.0261 (5)
C10.9549 (2)0.2156 (2)0.1354 (4)0.0302 (7)
H10.94770.27050.10200.036*
C21.0329 (2)0.1673 (2)0.0798 (4)0.0346 (8)
C31.0437 (3)0.0855 (2)0.1215 (4)0.0374 (8)
H31.09370.05210.08210.045*
C40.9774 (2)0.05242 (19)0.2259 (3)0.0302 (7)
C50.9032 (2)0.10672 (18)0.2842 (3)0.0248 (7)
C60.8412 (2)0.07861 (18)0.3988 (3)0.0242 (7)
C70.8512 (2)0.00314 (19)0.4443 (3)0.0292 (7)
C80.9196 (3)0.05881 (19)0.3816 (4)0.0382 (8)
H80.92150.11470.41160.046*
C90.9832 (3)0.0313 (2)0.2771 (4)0.0375 (8)
H91.03070.06770.23920.045*
C100.7738 (2)0.14138 (17)0.4749 (3)0.0233 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0241 (3)0.0229 (3)0.0175 (3)0.0024 (2)0.0000.000
Cl10.0521 (6)0.0519 (6)0.0761 (8)0.0056 (5)0.0362 (6)0.0096 (5)
Cl20.0442 (5)0.0345 (4)0.0441 (5)0.0039 (4)0.0032 (4)0.0102 (4)
N10.0245 (13)0.0264 (13)0.0238 (14)0.0024 (10)0.0015 (11)0.0010 (10)
O10.0294 (12)0.0308 (11)0.0215 (11)0.0044 (9)0.0012 (9)0.0039 (9)
O20.0299 (11)0.0279 (11)0.0205 (12)0.0016 (9)0.0001 (9)0.0026 (9)
C10.0282 (17)0.0291 (16)0.0334 (19)0.0003 (14)0.0015 (15)0.0011 (14)
C20.0289 (17)0.0380 (18)0.037 (2)0.0013 (14)0.0080 (15)0.0012 (15)
C30.0310 (18)0.043 (2)0.038 (2)0.0080 (15)0.0058 (16)0.0067 (16)
C40.0309 (17)0.0318 (16)0.0280 (18)0.0044 (14)0.0009 (14)0.0043 (13)
C50.0245 (15)0.0272 (16)0.0227 (16)0.0037 (12)0.0049 (13)0.0048 (12)
C60.0240 (16)0.0259 (15)0.0227 (16)0.0027 (12)0.0047 (13)0.0040 (12)
C70.0314 (17)0.0302 (17)0.0262 (17)0.0029 (14)0.0032 (14)0.0004 (13)
C80.048 (2)0.0227 (16)0.044 (2)0.0058 (15)0.0031 (18)0.0004 (15)
C90.040 (2)0.0315 (17)0.042 (2)0.0109 (15)0.0027 (17)0.0067 (15)
C100.0297 (17)0.0195 (14)0.0207 (16)0.0029 (12)0.0040 (13)0.0010 (12)
Geometric parameters (Å, º) top
Ni1—O2i2.033 (2)C1—H10.9300
Ni1—O2ii2.033 (2)C2—C31.362 (5)
Ni1—O1iii2.078 (2)C3—C41.412 (5)
Ni1—O12.078 (2)C3—H30.9300
Ni1—N1iii2.144 (2)C4—C91.413 (5)
Ni1—N12.144 (2)C4—C51.425 (4)
Cl1—C21.738 (3)C5—C61.417 (4)
Cl2—C71.741 (3)C6—C71.371 (4)
N1—C11.310 (4)C6—C101.519 (4)
N1—C51.384 (4)C7—C81.402 (4)
O1—C101.258 (3)C8—C91.360 (5)
O2—C101.251 (3)C8—H80.9300
O2—Ni1iv2.033 (2)C9—H90.9300
C1—C21.398 (4)
O2i—Ni1—O2ii103.47 (11)C1—C2—Cl1117.5 (2)
O2i—Ni1—O1iii85.86 (8)C2—C3—C4118.6 (3)
O2ii—Ni1—O1iii170.43 (8)C2—C3—H3120.7
O2i—Ni1—O1170.43 (8)C4—C3—H3120.7
O2ii—Ni1—O185.86 (8)C3—C4—C9122.8 (3)
O1iii—Ni1—O184.91 (11)C3—C4—C5118.3 (3)
O2i—Ni1—N1iii86.54 (9)C9—C4—C5118.9 (3)
O2ii—Ni1—N1iii91.26 (9)N1—C5—C6118.9 (3)
O1iii—Ni1—N1iii91.45 (9)N1—C5—C4120.9 (3)
O1—Ni1—N1iii91.18 (9)C6—C5—C4120.2 (3)
O2i—Ni1—N191.26 (9)C7—C6—C5117.9 (3)
O2ii—Ni1—N186.54 (9)C7—C6—C10122.6 (3)
O1iii—Ni1—N191.18 (9)C5—C6—C10119.2 (2)
O1—Ni1—N191.45 (9)C6—C7—C8122.4 (3)
N1iii—Ni1—N1176.44 (13)C6—C7—Cl2119.7 (2)
C1—N1—C5118.3 (3)C8—C7—Cl2117.9 (2)
C1—N1—Ni1116.4 (2)C9—C8—C7120.2 (3)
C5—N1—Ni1121.36 (19)C9—C8—H8119.9
C10—O1—Ni1111.16 (18)C7—C8—H8119.9
C10—O2—Ni1iv130.39 (19)C8—C9—C4120.2 (3)
N1—C1—C2123.6 (3)C8—C9—H9119.9
N1—C1—H1118.2C4—C9—H9119.9
C2—C1—H1118.2O2—C10—O1126.9 (3)
C3—C2—C1120.1 (3)O2—C10—C6114.4 (3)
C3—C2—Cl1122.4 (3)O1—C10—C6118.6 (3)
O2i—Ni1—N1—C19.6 (2)C9—C4—C5—N1176.6 (3)
O2ii—Ni1—N1—C193.8 (2)C3—C4—C5—C6174.1 (3)
O1iii—Ni1—N1—C195.5 (2)C9—C4—C5—C64.5 (4)
O1—Ni1—N1—C1179.6 (2)N1—C5—C6—C7177.1 (3)
O2i—Ni1—N1—C5166.9 (2)C4—C5—C6—C73.9 (4)
O2ii—Ni1—N1—C563.5 (2)N1—C5—C6—C108.4 (4)
O1iii—Ni1—N1—C5107.2 (2)C4—C5—C6—C10170.5 (3)
O1—Ni1—N1—C522.3 (2)C5—C6—C7—C80.1 (5)
O2ii—Ni1—O1—C10109.87 (19)C10—C6—C7—C8174.4 (3)
O1iii—Ni1—O1—C1067.61 (18)C5—C6—C7—Cl2179.4 (2)
N1iii—Ni1—O1—C10158.96 (19)C10—C6—C7—Cl25.1 (4)
N1—Ni1—O1—C1023.44 (19)C6—C7—C8—C93.8 (5)
C5—N1—C1—C21.4 (5)Cl2—C7—C8—C9175.8 (3)
Ni1—N1—C1—C2156.6 (3)C7—C8—C9—C43.2 (5)
N1—C1—C2—C32.6 (5)C3—C4—C9—C8177.6 (3)
N1—C1—C2—Cl1179.9 (3)C5—C4—C9—C80.9 (5)
C1—C2—C3—C42.7 (5)Ni1iv—O2—C10—O19.3 (4)
Cl1—C2—C3—C4179.9 (3)Ni1iv—O2—C10—C6169.08 (18)
C2—C3—C4—C9179.4 (3)Ni1—O1—C10—O2110.4 (3)
C2—C3—C4—C50.9 (5)Ni1—O1—C10—C667.9 (3)
C1—N1—C5—C6173.8 (3)C7—C6—C10—O264.5 (4)
Ni1—N1—C5—C629.3 (4)C5—C6—C10—O2109.7 (3)
C1—N1—C5—C45.1 (4)C7—C6—C10—O1117.0 (3)
Ni1—N1—C5—C4151.8 (2)C5—C6—C10—O168.8 (4)
C3—C4—C5—N14.9 (4)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+3/2, y, z1/2; (iii) x+3/2, y+1/2, z; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C10H4Cl2NO2)2]
Mr540.79
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)298
a, b, c (Å)13.4603 (14), 15.8837 (19), 9.2040 (13)
V3)1967.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.62 × 0.21 × 0.18
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.68, 0.76
No. of measured, independent and
observed [I > 2σ(I)] reflections
9136, 1736, 1407
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.10
No. of reflections1736
No. of parameters141
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.70

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—O2i2.033 (2)Ni1—N12.144 (2)
Ni1—O12.078 (2)O2—Ni1ii2.033 (2)
O2i—Ni1—O2iii103.47 (11)O1iv—Ni1—O184.91 (11)
O2i—Ni1—O1iv85.86 (8)O1—Ni1—N191.45 (9)
O2iii—Ni1—O1iv170.43 (8)N1iv—Ni1—N1176.44 (13)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+3/2, y, z1/2; (iv) x+3/2, y+1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds