Download citation
Download citation
link to html
Crystals of CuII(NO3)2(pm)3 (1), and two crystalline forms of CuII(NO3)2(H2O)2(pm)2, (2) and (3), showed ferromagnetic, antiferromagnetic and paramagnetic interactions at extremely low temperatures, respectively. Crystal structure analyses revealed that the complexes were catena-dinitrato[μ-pyrimidine-κN1N3]-(pyrimidine-N1)copper(II), [Cu(NO3)2(pm)2]n, catena-diaquadinitrato[μ-pyrimidine-κN1N3]copper(II), [Cu(NO3)2(H2O)2(pm)]n, and diaquadinitratodipyrimidinecopper(II), Cu(NO3)2(H2O)2(pm)2 for (1), (2) and (3), respectively. In (1) the Cu atom is coordinated by the two nitrates and N atoms of the non-bridging pyrimidine and bridging pyrimidine to form a one-dimensional coordination polymer. The complex is a five-coordinated square pyramid and can be regarded as a pseudo-seven-coordinated complex, since other short non-bonding Cu...O contacts are observed. In the crystals of (2) the pyrimidine bridges the Cu atoms to form a one-dimensional coordination chain. On the other hand, complex (3) is not a coordination polymer. It is important to form a coordination polymer for the appearance of the magnetic interactions. Types of coordination of the bridging organic moieties should also play an important role in magnetic properties. Magnetic measurements of (1) and (2) show that they are good examples of uniform S = 1/2 ferro- and antiferromagnetic Heisenberg chains with exchange parameters 2J/kB = +1.8 and −36 K, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768101002737/oa0034sup1.cif
Contains datablocks 1a, text, 1b, 2, 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768101002737/oa00341asup2.hkl
Contains datablock 1a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768101002737/oa00341bsup3.hkl
Contains datablock 1b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768101002737/oa00342sup4.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768101002737/oa00343sup5.hkl
Contains datablock 3

CCDC references: 166489; 166490; 166491; 166492

Computing details top

Data collection: AFC Control Software (Rigaku, 1994) for (1a), (2); AFC Control Software Ver.5.3.1 (Rigaku, 1994) for (1b), (3). Cell refinement: AFC Control Software (Rigaku, 1994) for (1a), (2); AFC Control Software Ver.5.3.1 (Rigaku, 1994) for (1b), (3). For all compounds, data reduction: TEXSAN, (Molecular Science Corporation, 1992). Program(s) used to solve structure: SIR88 (Burla. et al. 1989) for (1a), (1b), (3); DIRDIF92 (Beurskens et al., 1992) for (2). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) for (1a), (2), (3); MOLLY5 (Hansen & Coppens, 1978) for (1b). For all compounds, molecular graphics: ORTEPII (Johnson, 1972); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
(1a) catena-dinitrato-[m-pyrimidine-N1:N3]-(pyrimidine-N1)-copper(II) top
Crystal data top
Cu(II)(NO3)2(C4H4N2)2F(000) = 700
Mr = 347.74Dx = 1.887 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 9.991 (5) Åθ = 14.8–17.5°
b = 8.531 (6) ŵ = 1.83 mm1
c = 14.359 (5) ÅT = 295 K
V = 1223.9 (11) Å3Prism, blue
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Rigaku AFC7R
diffractometer
1394 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.000
Graphite monochromatorθmax = 27.5°, θmin = 2.4°
ω–2θ scansh = 012
Absorption correction: ψ scan (north, et al., 1968)
?
k = 011
Tmin = 0.582, Tmax = 0.711l = 180
1464 measured reflections3 standard reflections every 150 reflections
1464 independent reflections intensity decay: 0.2%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullRiding
R[F2 > 2σ(F2)] = 0.029Calculated w = 1/[σ2(Fo2) + (0.0619P)2 + 0.1183P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.70 e Å3
1464 reflectionsΔρmin = 0.60 e Å3
199 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0030 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.011 (19)
Crystal data top
Cu(II)(NO3)2(C4H4N2)2V = 1223.9 (11) Å3
Mr = 347.74Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 9.991 (5) ŵ = 1.83 mm1
b = 8.531 (6) ÅT = 295 K
c = 14.359 (5) Å0.40 × 0.30 × 0.20 mm
Data collection top
Rigaku AFC7R
diffractometer
1394 reflections with I > 2σ(I)
Absorption correction: ψ scan (north, et al., 1968)
?
Rint = 0.000
Tmin = 0.582, Tmax = 0.7113 standard reflections every 150 reflections
1464 measured reflections intensity decay: 0.2%
1464 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029Riding
wR(F2) = 0.078Δρmax = 0.70 e Å3
S = 1.04Δρmin = 0.60 e Å3
1464 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
199 parametersAbsolute structure parameter: 0.011 (19)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.62030 (3)0.30440 (4)0.49625 (5)0.02450 (14)
O10.6662 (3)0.1936 (3)0.6140 (2)0.0347 (6)
O20.8303 (4)0.1010 (4)0.6950 (2)0.0468 (7)
O30.8665 (3)0.1934 (3)0.5568 (3)0.0456 (8)
O40.5602 (3)0.4150 (3)0.38263 (18)0.0334 (5)
O50.7612 (3)0.3624 (4)0.3352 (2)0.0492 (7)
O60.6164 (3)0.4613 (4)0.2395 (2)0.0507 (8)
N10.7926 (3)0.1625 (3)0.6224 (2)0.0328 (6)
N20.6490 (3)0.4132 (3)0.3167 (2)0.0307 (6)
N30.5773 (3)0.0968 (3)0.4323 (2)0.0298 (6)
N40.6375 (4)0.1684 (4)0.4031 (4)0.0488 (10)
N50.7083 (2)0.5032 (3)0.5453 (2)0.0272 (5)
N60.9050 (3)0.6583 (3)0.5491 (2)0.0277 (5)
C10.6554 (4)0.0286 (4)0.4433 (3)0.0405 (9)
H10.72890.01790.48250.052 (13)*
C20.5311 (4)0.1816 (4)0.3480 (3)0.0414 (9)
H20.51450.27730.31920.060 (16)*
C30.4459 (4)0.0605 (5)0.3323 (3)0.0417 (8)
H30.37190.07230.29360.07 (2)*
C40.4724 (4)0.0815 (4)0.3756 (3)0.0354 (7)
H40.41640.16680.36510.037 (12)*
C50.8318 (3)0.5389 (4)0.5181 (2)0.0275 (7)
H50.87050.47450.47330.034 (13)*
C60.8461 (4)0.7534 (4)0.6119 (3)0.0319 (6)
H60.89380.83830.63530.050 (16)*
C70.7192 (4)0.7284 (4)0.6417 (3)0.0398 (8)
H70.67850.79710.68330.055 (16)*
C80.6518 (4)0.5982 (4)0.6087 (3)0.0357 (7)
H80.56630.57600.63070.030 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0234 (2)0.0197 (2)0.0304 (2)0.00116 (10)0.00185 (17)0.00080 (16)
O10.0331 (14)0.0344 (14)0.0367 (14)0.0001 (9)0.0035 (12)0.0060 (9)
O20.0577 (18)0.0414 (14)0.0415 (15)0.0159 (14)0.0132 (14)0.0008 (12)
O30.0372 (16)0.046 (2)0.053 (2)0.0022 (10)0.0063 (13)0.0034 (13)
O40.0346 (12)0.0293 (12)0.0362 (13)0.0046 (9)0.0002 (10)0.0047 (10)
O50.0319 (13)0.0605 (19)0.0551 (18)0.0065 (13)0.0014 (12)0.0125 (16)
O60.064 (2)0.0551 (19)0.0328 (15)0.0023 (14)0.0015 (11)0.0119 (15)
N10.0374 (15)0.0244 (11)0.0365 (15)0.0048 (12)0.0058 (13)0.0023 (11)
N20.0374 (14)0.0243 (14)0.0305 (14)0.0016 (11)0.0001 (12)0.0018 (11)
N30.0252 (13)0.0245 (12)0.0396 (15)0.0019 (11)0.0006 (11)0.0008 (11)
N40.049 (2)0.0265 (14)0.070 (3)0.0029 (14)0.0062 (18)0.0109 (18)
N50.0244 (11)0.0228 (10)0.0343 (12)0.0030 (10)0.0006 (11)0.0022 (11)
N60.0247 (11)0.0222 (11)0.0361 (15)0.0022 (11)0.0012 (12)0.0022 (12)
C10.0373 (16)0.0283 (17)0.056 (2)0.0053 (14)0.0103 (18)0.0059 (16)
C20.043 (2)0.0271 (16)0.055 (2)0.0029 (14)0.0058 (19)0.0110 (14)
C30.0411 (19)0.0387 (19)0.045 (2)0.0097 (15)0.0071 (16)0.0068 (16)
C40.0349 (17)0.0286 (17)0.0426 (18)0.0002 (13)0.0074 (15)0.0005 (13)
C50.0230 (13)0.0221 (13)0.0375 (17)0.0025 (12)0.0013 (11)0.0035 (11)
C60.0332 (14)0.0230 (15)0.0395 (17)0.0006 (14)0.0008 (15)0.0049 (15)
C70.0363 (19)0.0335 (15)0.050 (2)0.0023 (16)0.0088 (15)0.0172 (16)
C80.0269 (13)0.0346 (17)0.046 (2)0.0031 (14)0.0074 (15)0.0074 (17)
Geometric parameters (Å, º) top
Cu1—O11.990 (3)N5—C51.329 (4)
Cu1—O41.978 (3)N5—C81.343 (5)
Cu1—N32.041 (3)N6—C51.331 (4)
Cu1—N52.036 (3)N6—C61.348 (5)
Cu1—N6i2.303 (3)N6—Cu1ii2.303 (3)
O1—N11.296 (4)C2—C31.358 (6)
O2—N11.227 (4)C3—C41.387 (5)
O3—N11.225 (5)C6—C71.356 (6)
O4—N21.297 (4)C7—C81.384 (5)
O5—N21.231 (4)C1—H10.9300
O6—N21.227 (5)C2—H20.9300
Cu1—O32.776 (3)C3—H30.9300
Cu1—O52.752 (4)C4—H40.9300
N3—C11.334 (5)C5—H50.9300
N3—C41.333 (5)C6—H60.9300
N4—C11.337 (5)C7—H70.9300
N4—C21.330 (6)C8—H80.9300
O1—Cu1—O4175.56 (12)C5—N6—Cu1ii120.6 (2)
O1—Cu1—N391.08 (12)C6—N6—Cu1ii123.0 (2)
O1—Cu1—N590.13 (12)N3—C1—N4125.9 (4)
O1—Cu1—N6i90.05 (12)N3—C1—H1117.0
O4—Cu1—N388.77 (12)N4—C1—H1117.0
O4—Cu1—N591.10 (11)N4—C2—C3122.4 (4)
O4—Cu1—N6i85.53 (11)N4—C2—H2118.8
N3—Cu1—N5165.81 (11)C3—C2—H2118.8
N3—Cu1—N6i94.09 (12)C2—C3—C4118.1 (4)
N5—Cu1—N6i100.05 (11)C2—C3—H3121.0
Cu1—O1—N1113.6 (2)C4—C3—H3121.0
Cu1—O4—N2112.9 (2)N3—C4—C3120.6 (3)
O1—N1—O2117.7 (3)N3—C4—H4119.7
O1—N1—O3118.2 (3)C3—C4—H4119.7
O2—N1—O3124.1 (3)N5—C5—N6126.0 (3)
O4—N2—O5118.0 (3)N5—C5—H5117.0
O4—N2—O6118.3 (3)N6—C5—H5117.0
O5—N2—O6123.7 (4)N6—C6—C7121.7 (3)
Cu1—N3—C4121.7 (2)N6—C6—H6119.2
Cu1—N3—C1121.3 (3)C7—C6—H6119.2
C1—N3—C4117.0 (3)C6—C7—C8118.2 (3)
C1—N4—C2116.0 (4)C6—C7—H7120.9
Cu1—N5—C5119.3 (2)C8—C7—H7120.9
Cu1—N5—C8123.7 (2)N5—C8—C7120.8 (3)
C5—N5—C8116.8 (3)N5—C8—H8119.6
C5—N6—C6116.4 (3)C7—C8—H8119.6
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1/2, y+1, z.
(1b) catena-dinitrato-[m-pyrimidine-N1:N3]-(pyrimidine-N1)-copper(II) top
Crystal data top
Cu(II)(NO3)2(C4H4N2)2F(000) = 700
Mr = 347.74Dx = 1.926 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 25 reflections
a = 10.000 (2) Åθ = 14.0–15.6°
b = 8.4519 (2) ŵ = 1.87 mm1
c = 14.187 (2) ÅT = 100 K
V = 1199.1 (4) Å3Prism, blue
Z = 40.15 × 0.14 × 0.10 mm
Data collection top
Rigaku AFC7R
diffractometer
5759 reflections with > 3σ(F)
Radiation source: Rigaku rotating anodeRint = 0.069
Graphite monochromatorθmax = 60.0°, θmin = 2.0°
ω–2θ scansh = 2424
Absorption correction: analytical (de Meulenaer, et al., 1965)
?
k = 200
Tmin = 0.749, Tmax = 0.801l = 034
15315 measured reflections3 standard reflections every 100 reflections
7876 independent reflections intensity decay: 1.0%
Refinement top
Refinement on FSecondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Not refined
wR(F2) = 0.034Calculated w = 1/[σ2(Fo2)]
S = 1.24(Δ/σ)max = 0.001
5759 reflectionsΔρmax = 1.34 e Å3
535 parametersΔρmin = 1.44 e Å3
0 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.035 (9)
Crystal data top
Cu(II)(NO3)2(C4H4N2)2V = 1199.1 (4) Å3
Mr = 347.74Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 10.000 (2) ŵ = 1.87 mm1
b = 8.4519 (2) ÅT = 100 K
c = 14.187 (2) Å0.15 × 0.14 × 0.10 mm
Data collection top
Rigaku AFC7R
diffractometer
5759 reflections with > 3σ(F)
Absorption correction: analytical (de Meulenaer, et al., 1965)
?
Rint = 0.069
Tmin = 0.749, Tmax = 0.8013 standard reflections every 100 reflections
15315 measured reflections intensity decay: 1.0%
7876 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038Not refined
wR(F2) = 0.034Δρmax = 1.34 e Å3
S = 1.24Δρmin = 1.44 e Å3
5759 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
535 parametersAbsolute structure parameter: 0.035 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. For 1 b, after the refinements with full-matrix least-squares methods using the program SHELXL97 (Sheldrick, 1997) [R = 0.0366 for 4958 reflections (I>2 s(I)), wR2 = 0.1012 for 7876 reflections with 197 parameters, flack parameter = 0.0350 (9), H atoms were treated riding model] and high-order refinements with sinq/l > 0.6, further refinements were carried out using the multipole expansion atomic scattering factors by the program MOLLY5 (Hansen et al., 1978).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.62021 (2)0.30507 (2)0.500000.00978 (5)
O10.6677 (2)0.1927 (3)0.61950 (14)0.0147 (5)
O20.8333 (3)0.1030 (3)0.70201 (17)0.0183 (7)
O30.8695 (2)0.1947 (3)0.56093 (18)0.0194 (7)
O40.5599 (2)0.4159 (2)0.38476 (14)0.0137 (5)
O50.7626 (2)0.3629 (3)0.33843 (18)0.0184 (7)
O60.6185 (3)0.4614 (3)0.24014 (15)0.0192 (7)
N10.7945 (2)0.1633 (2)0.62841 (14)0.0134 (5)
N20.6503 (2)0.4133 (2)0.31875 (13)0.0127 (5)
N30.57843 (19)0.0963 (2)0.43616 (14)0.0125 (5)
N40.6411 (2)0.1709 (3)0.40536 (19)0.0181 (7)
N50.70849 (18)0.5047 (2)0.55017 (13)0.0120 (5)
N60.90607 (18)0.6592 (2)0.55368 (13)0.0120 (4)
C10.6583 (2)0.0308 (3)0.44610 (16)0.0158 (6)
C20.5317 (2)0.1875 (3)0.35149 (17)0.0169 (6)
C30.4431 (2)0.0633 (3)0.33617 (15)0.0155 (6)
C40.4709 (2)0.0794 (2)0.37983 (15)0.0143 (6)
C50.83337 (18)0.5391 (2)0.52203 (13)0.0123 (5)
C60.8490 (2)0.7577 (2)0.61613 (14)0.0137 (5)
C70.7183 (2)0.7352 (3)0.64669 (16)0.0161 (6)
C80.6512 (2)0.6027 (2)0.61287 (15)0.0148 (6)
H10.73450.01860.48550.022*
H20.51440.28690.32300.024*
H30.36670.07620.29730.020*
H40.41310.16710.37010.020*
H50.87270.47160.47620.013*
H60.89870.84450.64010.023*
H70.67700.80680.68890.038*
H80.56320.58180.63450.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01062 (6)0.00915 (5)0.00958 (5)0.00036 (7)0.00062 (11)0.00039 (12)
O10.0157 (6)0.0156 (6)0.0129 (5)0.0001 (6)0.0012 (5)0.0029 (6)
O20.0229 (9)0.0175 (7)0.0148 (7)0.0055 (7)0.0038 (7)0.0016 (7)
O30.0163 (7)0.0226 (8)0.0194 (7)0.0005 (8)0.0024 (6)0.0006 (8)
O40.0145 (6)0.0147 (6)0.0122 (5)0.0012 (5)0.0001 (5)0.0017 (5)
O50.0143 (7)0.0235 (8)0.0176 (8)0.0025 (7)0.0006 (6)0.0041 (8)
O60.0238 (9)0.0219 (8)0.0121 (6)0.0006 (8)0.0000 (7)0.0038 (6)
N10.0158 (6)0.0130 (5)0.0116 (5)0.0019 (5)0.0020 (5)0.0000 (5)
N20.0157 (6)0.0124 (5)0.0102 (5)0.0001 (5)0.0001 (5)0.0000 (5)
N30.0133 (6)0.0111 (5)0.0132 (5)0.0003 (5)0.0021 (5)0.0004 (5)
N40.0179 (7)0.0126 (6)0.0241 (9)0.0022 (6)0.0021 (7)0.0036 (6)
N50.0120 (5)0.0117 (5)0.0125 (5)0.0015 (5)0.0003 (5)0.0004 (5)
N60.0115 (5)0.0113 (5)0.0135 (5)0.0016 (5)0.0004 (5)0.0016 (5)
C10.0155 (7)0.0138 (6)0.0184 (7)0.0019 (6)0.0031 (6)0.0025 (6)
C20.0195 (7)0.0126 (6)0.0187 (7)0.0011 (6)0.0004 (6)0.0035 (6)
C30.0172 (7)0.0135 (6)0.0160 (7)0.0027 (6)0.0026 (6)0.0024 (6)
C40.0158 (6)0.0121 (6)0.0151 (6)0.0006 (5)0.0026 (5)0.0007 (5)
C50.0122 (5)0.0122 (5)0.0125 (5)0.0016 (5)0.0010 (4)0.0022 (5)
C60.0148 (6)0.0115 (5)0.0150 (6)0.0008 (5)0.0000 (5)0.0030 (5)
C70.0156 (7)0.0151 (6)0.0177 (7)0.0000 (6)0.0036 (6)0.0054 (6)
C80.0137 (6)0.0142 (6)0.0168 (7)0.0013 (5)0.0029 (5)0.0037 (6)
Geometric parameters (Å, º) top
Cu1—O12.001 (2)N5—C51.343 (3)
Cu1—O41.978 (2)N5—C81.344 (3)
Cu1—N32.0268 (19)N6—C51.327 (3)
Cu1—N52.0329 (18)N6—C61.343 (3)
Cu1—N6i2.2928 (18)N6—Cu1ii2.2928 (18)
O1—N11.298 (3)C6—C71.389 (3)
O2—N11.225 (3)C7—C81.391 (3)
O3—N11.245 (3)Cu1—O32.799 (2)
O4—N21.302 (3)Cu1—O52.742 (3)
O5—N21.233 (3)C1—H10.950
O6—N21.229 (3)C2—H20.948
N3—C11.346 (3)C3—H30.948
N3—C41.347 (3)C4—H40.950
N4—C11.329 (3)C5—H50.950
N4—C21.342 (3)C6—H60.949
C2—C31.390 (3)C7—H70.947
C3—C41.384 (3)C8—H80.948
O1—Cu1—O4175.95 (9)N3—C1—N4126.0 (2)
O1—Cu1—N390.81 (9)N4—C2—C3122.0 (2)
O1—Cu1—N589.68 (8)C2—C3—C4117.4 (2)
O1—Cu1—N6i90.17 (8)N3—C4—C3121.2 (2)
O4—Cu1—N388.85 (8)N5—C5—N6125.05 (18)
O4—Cu1—N591.66 (8)N6—C6—C7121.36 (19)
O4—Cu1—N6i85.83 (8)C6—C7—C8117.2 (2)
N3—Cu1—N5165.58 (8)N5—C8—C7121.2 (2)
N3—Cu1—N6i94.04 (7)O1—Cu1—O350.83 (9)
N5—Cu1—N6i100.37 (7)O3—Cu1—O581.67 (8)
Cu1—O1—N1113.92 (17)O4—Cu1—O551.92 (8)
Cu1—O4—N2112.01 (15)N3—C1—H1116.8
O1—N1—O2118.2 (2)N4—C1—H1117.2
O1—N1—O3118.2 (2)N4—C2—H2118.9
O2—N1—O3123.6 (2)C3—C2—H2119.1
O4—N2—O5118.4 (2)C2—C3—H3121.2
O4—N2—O6117.9 (2)C4—C3—H3121.5
O5—N2—O6123.7 (3)N3—C4—H4119.3
Cu1—N3—C1121.71 (16)C3—C4—H4119.5
Cu1—N3—C4121.47 (15)N5—C5—H5117.3
C1—N3—C4116.8 (2)N6—C5—H5117.7
C1—N4—C2116.5 (2)N6—C6—H6119.5
Cu1—N5—C5118.64 (14)C7—C6—H6119.1
Cu1—N5—C8123.92 (15)C6—C7—H7121.4
C5—N5—C8117.40 (18)C8—C7—H7121.5
C5—N6—C6117.68 (18)N5—C8—H8119.7
C5—N6—Cu1ii120.00 (14)C7—C8—H8119.1
C6—N6—Cu1ii122.31 (14)
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1/2, y+1, z.
(2) catena-diaquadinitrato-[m-pyrimidine-N1:N1]-copper(II) top
Crystal data top
Cu(II)(C4H4N2)(H2O)2(NO3)2F(000) = 612.00
Mr = 303.68Dx = 2.072 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 12.408 (8) Åθ = 12.6–16.7°
b = 11.511 (9) ŵ = 2.29 mm1
c = 7.518 (9) ÅT = 294 K
β = 114.99 (5)°Prismatic, light blue
V = 973.2 (15) Å30.40 × 0.40 × 0.30 mm
Z = 4
Data collection top
Rigaku AFC7R
diffractometer
1076 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.060
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ω–2θ scansh = 016
Absorption correction: ψ scan
(North, Phillips & Mathews, 1968)
k = 014
Tmin = 0.323, Tmax = 0.544l = 98
1162 measured reflections3 standard reflections every 150 reflections
1113 independent reflections intensity decay: 6.7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Refined
wR(F2) = 0.082Calculated w = 1/[σ2(Fo2) + (0.0538P)2 + 0.857P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.001
1113 reflectionsΔρmax = 0.61 e Å3
97 parametersΔρmin = 0.87 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.104 (4)
Crystal data top
Cu(II)(C4H4N2)(H2O)2(NO3)2V = 973.2 (15) Å3
Mr = 303.68Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.408 (8) ŵ = 2.29 mm1
b = 11.511 (9) ÅT = 294 K
c = 7.518 (9) Å0.40 × 0.40 × 0.30 mm
β = 114.99 (5)°
Data collection top
Rigaku AFC7R
diffractometer
1076 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North, Phillips & Mathews, 1968)
Rint = 0.060
Tmin = 0.323, Tmax = 0.5443 standard reflections every 150 reflections
1162 measured reflections intensity decay: 6.7%
1113 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.082Refined
S = 1.15Δρmax = 0.61 e Å3
1113 reflectionsΔρmin = 0.87 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.25000.25000.00000.0167 (2)
O10.30255 (14)0.12893 (12)0.2740 (2)0.0314 (4)
O20.3659 (2)0.26462 (14)0.4942 (3)0.0360 (5)
O30.36386 (14)0.08531 (12)0.58062 (19)0.0296 (4)
O40.34933 (12)0.13604 (12)0.0687 (2)0.0230 (3)
N10.34458 (13)0.16213 (14)0.4501 (2)0.0216 (4)
N20.39930 (12)0.34724 (12)0.1354 (2)0.0181 (3)
C10.50000.2939 (2)0.25000.0185 (5)
C20.40005 (15)0.46374 (15)0.1327 (3)0.0221 (4)
C30.50000.5262 (2)0.25000.0256 (6)
H10.50000.207 (5)0.25000.050 (12)*
H20.331 (3)0.502 (2)0.053 (4)0.032 (6)*
H30.50000.600 (3)0.25000.021 (8)*
H410.354 (2)0.068 (2)0.029 (4)0.026 (6)*
H420.349 (3)0.132 (3)0.172 (6)0.054 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0145 (3)0.0156 (3)0.0177 (3)0.00128 (8)0.00465 (16)0.00171 (8)
O10.0463 (9)0.0278 (7)0.0180 (6)0.0053 (6)0.0116 (6)0.0017 (5)
O20.0496 (12)0.0237 (8)0.0392 (10)0.0115 (7)0.0232 (9)0.0092 (6)
O30.0395 (8)0.0277 (7)0.0195 (6)0.0011 (6)0.0105 (6)0.0032 (5)
O40.0287 (7)0.0213 (7)0.0214 (7)0.0007 (5)0.0130 (5)0.0018 (5)
N10.0232 (7)0.0226 (8)0.0208 (7)0.0029 (6)0.0112 (6)0.0012 (6)
N20.0165 (7)0.0179 (7)0.0181 (7)0.0001 (5)0.0055 (6)0.0002 (5)
C10.0185 (11)0.0171 (12)0.0184 (11)0.0000.0064 (9)0.000
C20.0193 (8)0.0189 (8)0.0243 (9)0.0023 (6)0.0054 (7)0.0021 (6)
C30.0239 (12)0.0164 (12)0.0303 (14)0.0000.0053 (11)0.000
Geometric parameters (Å, º) top
Cu1—O1i2.340 (2)N2—C21.341 (2)
Cu1—O12.340 (2)C1—N2ii1.331 (2)
Cu1—O4i2.0109 (16)C2—C31.382 (2)
Cu1—O42.0109 (16)C3—C2ii1.382 (2)
Cu1—N2i2.0315 (18)O4—H410.83 (3)
Cu1—N22.0315 (18)O4—H420.78 (4)
O1—N11.260 (2)C1—H11.00 (5)
O2—N11.224 (2)C2—H20.93 (3)
O3—N11.266 (2)C3—H30.85 (4)
N2—C11.331 (2)
O1—Cu1—O1i180.0O1—N1—O3117.46 (17)
O1—Cu1—O482.22 (8)O2—N1—O3121.00 (18)
O1—Cu1—O4i97.78 (9)C1—N2—C2117.43 (16)
O1i—Cu1—O497.78 (8)Cu1—N2—C1118.55 (14)
O1i—Cu1—O4i82.22 (8)Cu1—N2—C2123.64 (12)
O1—Cu1—N291.78 (8)N2—C1—N2ii125.0 (2)
O1—Cu1—N2i88.22 (8)N2—C2—C3121.41 (17)
O1i—Cu1—N2i91.78 (8)C2—C3—C2ii117.2 (2)
O1i—Cu1—N288.22 (8)Cu1—O4—H41118.3 (18)
O4—Cu1—O4i180.0Cu1—O4—H42124 (2)
O4—Cu1—N287.71 (8)H41—O4—H42106 (3)
O4—Cu1—N2i92.29 (8)N2ii—C1—H1117.49 (11)
O4i—Cu1—N2i87.71 (8)N2—C1—H1117.49 (12)
O4i—Cu1—N292.29 (8)N2—C2—H2118.6 (17)
N2—Cu1—N2i180.0C3—C2—H2120.0 (17)
Cu1—O1—N1125.60 (13)C2—C3—H3121.38 (12)
O1—N1—O2121.54 (17)C2ii—C3—H3121.38 (12)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z+1/2.
(3) diaquadinitratodipyrimidinecopper(II) top
Crystal data top
Cu(II)(C4H4N2)2(H2O)2(NO3)2F(000) = 390.00
Mr = 383.78Dx = 1.836 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yabCell parameters from 25 reflections
a = 7.1658 (12) Åθ = 17.2–17.5°
b = 14.105 (2) ŵ = 1.63 mm1
c = 7.5358 (14) ÅT = 296 K
β = 114.324 (12)°Prism, blue
V = 694.1 (2) Å30.30 × 0.20 × 0.20 mm
Z = 2
Data collection top
Rigaku AFC7R
diffractometer
1291 reflections with I > 2σ(I)
Radiation source: Rigaku rotating anodeRint = 0.043
Graphite monochromatorθmax = 26.9°, θmin = 2.9°
ω–2θ scansh = 09
Absorption correction: ψ scan
(North, Phillips & Mathews, 1968)
k = 017
Tmin = 0.612, Tmax = 0.734l = 98
1625 measured reflections3 standard reflections every 150 reflections
1508 independent reflections intensity decay: 3.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: difference Fourier map
wR(F2) = 0.148Refined
S = 1.08Calculated w = 1/[σ2(Fo2) + (0.1118P)2 + 0.2222P]
where P = (Fo2 + 2Fc2)/3
1508 reflections(Δ/σ)max = 0.001
130 parametersΔρmax = 1.54 e Å3
0 restraintsΔρmin = 1.32 e Å3
Crystal data top
Cu(II)(C4H4N2)2(H2O)2(NO3)2V = 694.1 (2) Å3
Mr = 383.78Z = 2
Monoclinic, P21/aMo Kα radiation
a = 7.1658 (12) ŵ = 1.63 mm1
b = 14.105 (2) ÅT = 296 K
c = 7.5358 (14) Å0.30 × 0.20 × 0.20 mm
β = 114.324 (12)°
Data collection top
Rigaku AFC7R
diffractometer
1291 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North, Phillips & Mathews, 1968)
Rint = 0.043
Tmin = 0.612, Tmax = 0.7343 standard reflections every 150 reflections
1625 measured reflections intensity decay: 3.0%
1508 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.148Refined
S = 1.08Δρmax = 1.54 e Å3
1508 reflectionsΔρmin = 1.32 e Å3
130 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.00000.0235 (2)
O10.3227 (4)0.4740 (3)0.2808 (4)0.0488 (7)
O20.5284 (4)0.36486 (19)0.2676 (4)0.0507 (7)
O30.6024 (6)0.51148 (19)0.2541 (6)0.0503 (8)
O40.1498 (3)0.42298 (16)0.1170 (3)0.0303 (5)
N10.4848 (4)0.4501 (2)0.2672 (4)0.0342 (6)
N20.0342 (3)0.38376 (17)0.1397 (3)0.0252 (5)
N30.1220 (4)0.22208 (18)0.1213 (4)0.0334 (6)
C10.1084 (5)0.3038 (2)0.0413 (4)0.0285 (6)
C20.0257 (4)0.3821 (2)0.3329 (4)0.0303 (6)
C30.0176 (5)0.2999 (2)0.4285 (5)0.0363 (7)
C40.0557 (5)0.2199 (2)0.3147 (5)0.0354 (7)
H10.150 (5)0.304 (2)0.087 (5)0.021 (7)*
H20.059 (6)0.437 (3)0.385 (5)0.028 (9)*
H30.048 (7)0.305 (4)0.549 (6)0.043 (12)*
H40.057 (6)0.165 (3)0.375 (6)0.041 (10)*
H410.237 (7)0.453 (4)0.142 (6)0.053 (13)*
H420.220 (7)0.383 (3)0.033 (6)0.044 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0268 (4)0.0133 (3)0.0344 (4)0.00150 (14)0.0165 (2)0.00228 (15)
O10.0312 (13)0.0715 (18)0.0447 (14)0.0132 (13)0.0164 (11)0.0000 (14)
O20.0459 (14)0.0349 (14)0.0766 (19)0.0044 (11)0.0305 (13)0.0097 (12)
O30.0582 (19)0.0336 (14)0.075 (2)0.0030 (11)0.0434 (18)0.0040 (12)
O40.0324 (11)0.0216 (10)0.0421 (12)0.0057 (9)0.0205 (10)0.0045 (9)
N10.0321 (13)0.0389 (15)0.0314 (12)0.0039 (11)0.0129 (10)0.0034 (11)
N20.0264 (11)0.0170 (11)0.0343 (12)0.0010 (8)0.0146 (9)0.0014 (9)
N30.0391 (14)0.0197 (12)0.0424 (14)0.0051 (10)0.0178 (11)0.0002 (10)
C10.0302 (14)0.0218 (14)0.0328 (15)0.0033 (10)0.0122 (11)0.0021 (11)
C20.0332 (15)0.0234 (15)0.0349 (15)0.0035 (11)0.0144 (12)0.0045 (12)
C30.0408 (18)0.0351 (17)0.0334 (16)0.0019 (13)0.0157 (13)0.0046 (13)
C40.0381 (17)0.0242 (15)0.0458 (17)0.0010 (12)0.0192 (14)0.0079 (13)
Geometric parameters (Å, º) top
Cu1—O12.435 (3)N3—C11.323 (4)
Cu1—O41.973 (2)N3—C41.334 (4)
Cu1—N22.017 (2)C2—C31.378 (5)
Cu1—N2i2.017 (2)C3—C41.384 (5)
Cu1—O1i2.435 (3)C1—H10.89 (3)
Cu1—O4i1.973 (2)C2—H20.86 (4)
O1—N11.254 (4)C3—H30.85 (4)
O2—N11.242 (4)C4—H40.90 (4)
O3—N11.240 (4)O4—H410.84 (5)
N2—C11.335 (4)O4—H420.84 (5)
N2—C21.338 (4)
O1—Cu1—O1i180.0O1—N1—O3120.1 (3)
O1—Cu1—O491.45 (10)O2—N1—O3119.8 (3)
O1—Cu1—N293.17 (10)C1—N2—C2117.8 (3)
O4—Cu1—N289.50 (9)C1—N3—C4117.3 (3)
O1i—Cu1—O488.55 (10)N3—C1—N2124.8 (3)
O1—Cu1—O4i88.55 (10)N2—C2—C3121.4 (3)
O1i—Cu1—N286.83 (10)C2—C3—C4116.7 (3)
O1—Cu1—N2i86.83 (10)N3—C4—C3122.1 (3)
O1i—Cu1—O4i91.45 (10)Cu1—O4—H41115 (4)
O1i—Cu1—N2i93.17 (10)Cu1—O4—H42108 (3)
O4i—Cu1—O4180.0H41—O4—H42103 (4)
O4i—Cu1—N2i89.50 (9)N3—C1—H1116 (2)
O4—Cu1—N2i90.50 (9)N2—C1—H1119 (2)
O4i—Cu1—N290.50 (9)N2—C2—H2113 (2)
N2i—Cu1—N2180.0C3—C2—H2126 (2)
Cu1—O1—N1123.3 (2)C2—C3—H3116 (3)
Cu1—N2—C1120.22 (19)C4—C3—H3127 (3)
Cu1—N2—C2121.9 (2)N3—C4—H4120 (3)
O1—N1—O2120.1 (3)C3—C4—H4118 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

(1a)(1b)(2)(3)
Crystal data
Chemical formulaCu(II)(NO3)2(C4H4N2)2Cu(II)(NO3)2(C4H4N2)2Cu(II)(C4H4N2)(H2O)2(NO3)2Cu(II)(C4H4N2)2(H2O)2(NO3)2
Mr347.74347.74303.68383.78
Crystal system, space groupOrthorhombic, Pca21Orthorhombic, Pca21Monoclinic, C2/cMonoclinic, P21/a
Temperature (K)295100294296
a, b, c (Å)9.991 (5), 8.531 (6), 14.359 (5)10.000 (2), 8.4519 (2), 14.187 (2)12.408 (8), 11.511 (9), 7.518 (9)7.1658 (12), 14.105 (2), 7.5358 (14)
α, β, γ (°)90, 90, 9090, 90, 9090, 114.99 (5), 9090, 114.324 (12), 90
V3)1223.9 (11)1199.1 (4)973.2 (15)694.1 (2)
Z4442
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.831.872.291.63
Crystal size (mm)0.40 × 0.30 × 0.200.15 × 0.14 × 0.100.40 × 0.40 × 0.300.30 × 0.20 × 0.20
Data collection
DiffractometerRigaku AFC7R
diffractometer
Rigaku AFC7R
diffractometer
Rigaku AFC7R
diffractometer
Rigaku AFC7R
diffractometer
Absorption correctionψ scan (North, et al., 1968)Analytical (De Meulenaer, et al., 1965)ψ scan
(North, Phillips & Mathews, 1968)
ψ scan
(North, Phillips & Mathews, 1968)
Tmin, Tmax0.582, 0.7110.749, 0.8010.323, 0.5440.612, 0.734
No. of measured, independent and
observed reflections
1464, 1464, 1394 [I > 2σ(I)]15315, 7876, 5759 [ > 3σ(F)]1162, 1113, 1076 [I > 2σ(I)]1625, 1508, 1291 [I > 2σ(I)]
Rint0.0000.0690.0600.043
(sin θ/λ)max1)0.6501.2180.6500.637
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.078, 1.04 0.038, 0.034, 1.24 0.029, 0.082, 1.15 0.052, 0.148, 1.08
No. of reflections1464575911131508
No. of parameters19953597130
No. of restraints1000
H-atom treatmentRidingNot refinedRefinedRefined
Δρmax, Δρmin (e Å3)0.70, 0.601.34, 1.440.61, 0.871.54, 1.32
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881??
Absolute structure parameter0.011 (19)0.035 (9)??

Computer programs: AFC Control Software (Rigaku, 1994), AFC Control Software Ver.5.3.1 (Rigaku, 1994), TEXSAN, (Molecular Science Corporation, 1992), SIR88 (Burla. et al. 1989), DIRDIF92 (Beurskens et al., 1992), SHELXL97 (Sheldrick, 1997), MOLLY5 (Hansen & Coppens, 1978), ORTEPII (Johnson, 1972).

Selected geometric parameters (Å, º) for (1a) top
Cu1—O11.990 (3)O3—N11.225 (5)
Cu1—O41.978 (3)O4—N21.297 (4)
Cu1—N32.041 (3)O5—N21.231 (4)
Cu1—N52.036 (3)O6—N21.227 (5)
Cu1—N6i2.303 (3)Cu1—O32.776 (3)
O1—N11.296 (4)Cu1—O52.752 (4)
O2—N11.227 (4)
O1—Cu1—O4175.56 (12)O1—N1—O2117.7 (3)
O1—Cu1—N391.08 (12)O1—N1—O3118.2 (3)
O1—Cu1—N590.13 (12)O2—N1—O3124.1 (3)
O1—Cu1—N6i90.05 (12)O4—N2—O5118.0 (3)
O4—Cu1—N388.77 (12)O4—N2—O6118.3 (3)
O4—Cu1—N591.10 (11)O5—N2—O6123.7 (4)
O4—Cu1—N6i85.53 (11)Cu1—N3—C4121.7 (2)
N3—Cu1—N5165.81 (11)Cu1—N3—C1121.3 (3)
N3—Cu1—N6i94.09 (12)Cu1—N5—C5119.3 (2)
N5—Cu1—N6i100.05 (11)Cu1—N5—C8123.7 (2)
Cu1—O1—N1113.6 (2)C5—N6—Cu1ii120.6 (2)
Cu1—O4—N2112.9 (2)C6—N6—Cu1ii123.0 (2)
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1/2, y+1, z.
Selected geometric parameters (Å, º) for (1b) top
Cu1—O12.001 (2)O3—N11.245 (3)
Cu1—O41.978 (2)O4—N21.302 (3)
Cu1—N32.0268 (19)O5—N21.233 (3)
Cu1—N52.0329 (18)O6—N21.229 (3)
Cu1—N6i2.2928 (18)Cu1—O32.799 (2)
O1—N11.298 (3)Cu1—O52.742 (3)
O2—N11.225 (3)
O1—Cu1—O4175.95 (9)O1—N1—O2118.2 (2)
O1—Cu1—N390.81 (9)O1—N1—O3118.2 (2)
O1—Cu1—N589.68 (8)O2—N1—O3123.6 (2)
O1—Cu1—N6i90.17 (8)O4—N2—O5118.4 (2)
O4—Cu1—N388.85 (8)O4—N2—O6117.9 (2)
O4—Cu1—N591.66 (8)O5—N2—O6123.7 (3)
O4—Cu1—N6i85.83 (8)Cu1—N3—C1121.71 (16)
N3—Cu1—N5165.58 (8)Cu1—N3—C4121.47 (15)
N3—Cu1—N6i94.04 (7)Cu1—N5—C5118.64 (14)
N5—Cu1—N6i100.37 (7)Cu1—N5—C8123.92 (15)
Cu1—O1—N1113.92 (17)C5—N6—Cu1ii120.00 (14)
Cu1—O4—N2112.01 (15)C6—N6—Cu1ii122.31 (14)
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1/2, y+1, z.
Selected geometric parameters (Å, º) for (2) top
Cu1—O12.340 (2)O1—N11.260 (2)
Cu1—O42.0109 (16)O2—N11.224 (2)
Cu1—N22.0315 (18)O3—N11.266 (2)
O1—Cu1—O1i180.0O4—Cu1—N2i92.29 (8)
O1—Cu1—O482.22 (8)N2—Cu1—N2i180.0
O1—Cu1—O4i97.78 (9)Cu1—O1—N1125.60 (13)
O1—Cu1—N291.78 (8)O1—N1—O2121.54 (17)
O1—Cu1—N2i88.22 (8)O1—N1—O3117.46 (17)
O4—Cu1—O4i180.0O2—N1—O3121.00 (18)
O4—Cu1—N287.71 (8)
Symmetry code: (i) x+1/2, y+1/2, z.
Selected geometric parameters (Å, º) for (3) top
Cu1—O12.435 (3)O1—N11.254 (4)
Cu1—O41.973 (2)O2—N11.242 (4)
Cu1—N22.017 (2)O3—N11.240 (4)
O1—Cu1—O1i180.0N2i—Cu1—N2180.0
O1—Cu1—O491.45 (10)Cu1—O1—N1123.3 (2)
O1—Cu1—N293.17 (10)Cu1—N2—C1120.22 (19)
O4—Cu1—N289.50 (9)Cu1—N2—C2121.9 (2)
O1—Cu1—O4i88.55 (10)O1—N1—O2120.1 (3)
O1—Cu1—N2i86.83 (10)O1—N1—O3120.1 (3)
O4i—Cu1—O4180.0O2—N1—O3119.8 (3)
O4—Cu1—N2i90.50 (9)
Symmetry code: (i) x, y+1, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds