Download citation
Download citation
link to html
In 8a-azonia­[6]­helicene hexa­fluoro­phos­phate or 8a-azoniaphenanthro[3,4-c]phen­an­threne hexa­fluoro­phos­phate, C25H16N+·PF6-, replacement of an outer bridgehead carbon of hexahelicene by a quaternary Nsp2 atom results in a geometrical change in the helical structure. The racemic heterohelicene forms homochiral columnar stacks through intermolecular [pi]-[pi] donor-acceptor interactions in the crystalline state.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102023739/ob1095sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102023739/ob1095Isup2.hkl
Contains datablock I

CCDC reference: 178160

Comment top

Helicenes, a well known representataive of non-planar polycyclic aromatic compounds, have fascinated many chemists since the first synthesis of [6]helicene (Newman et al., 1955) because of their unique helical structure (Laarhoven & Prinsen, 1984). A number of carbohelicenes and heterohelicenes incorporating thiophene, pyrrole, furan and pyridine rings have been synthesized to date and some of their crystal structures were also detemined (Meurer & Vögtle, 1985). Recently, we succeeded in the first synthesis of cationic heterohexahelicenes, azonia[6]helicenes, that possess a quaternary Nsp2 atom at a bridgehead position of the outer or inner helix skelton (Arai et al., 1989, 1995). The present study is concerned with the structure of the 8a-azonia[6]helicene hexafluorophosphate salt, (I), which has a quaternary N atom at the outer bridgehead and can be compared with the structure of carbohexahelicene (de Rango et al., 1973). Also, this cationic heterohelicene has π-electron acceptor and donor parts in one molecule and is therefore expected to form a well defind stacked structure in the crystalline state.

Single-crystal X-ray analysis revealed that (I) crystallized as a racemate and the unit cell contains two enantiometric pairs of the cationic heterohelicene and four counter-anions. The molecular geometry of the azonia[6]helicene cation substantially resembles that of carbo[6]helicene and shows common features which are generally found in all other helicenes studied: the aromatic rings deviate significantly from planarity, the inner CC bonds are lengthened and the outer bonds are shortened than 1.39 Å (typical aromatic CC distance).

However, the salient structural difference from carbo[6]helicene appeared around the N atom. The three NC bond lengths of (I) are significantly contracted (ca −0.03 Å) compared with those of the corresponding CC bonds in carbo[6]helicene and the bond angles C8—N8a—C9 and C16b—C16c—C16d for (I) are also slightly different from the corresponding angles of carbo[6]helicene (Table 1). From the structural data of the quinolizinium cation (Sato et al., 2001) and azoniafluoranthene (Boubekeur et al., 1989), those differences are considered to be a common feature in azonia aromatic compounds (Arai & Hida, 1992). These subtle changes at the central moiety alters the geometry of the helix of helicene. Table 1 summarizes the angles between the least-square planes of the six-membered rings and the torsion angles of the inner bonds, together with the corresponding values for the carbo[6]helicene taken from the literature (de Rango et al., 1973). These values indicate that 8a-azonia[6]helicene tends to be flattened compared with carbo[6]helicene; the angle between the least-square planes of the two terminal benzene rings of (I) is 49.85 (6)° versus 58.5° in carbo[6]helicene.

On the other hand, inspection of the molecular packing of (I) reveals the formation of a well defined one-dimensional helical columnar structure extending along the b axis (Fig. 2). Each column consists of a single enantiomer and the interstitial regions of the column are occupied by PF6 anions (Fig. 2, left). The helicene molecules are stacked one above the other in an antiparallel arrangement (Fig. 2, right). The mean interplanar separation between the overlapped naphthalene rings is ca 3.5 Å, which suggests the presence of a face-to-face-type ππ interaction. In addition, attractive electronic interactions between the central π-accepting quinolizinium moiety and the terminal π-donative benzene rings facilitate the above geometrical arrangement and contribute to the stabilization of the columnar stacks. It has been reported that planar acridizinium (benzo[b]quinolizinium) cations in the crystalline state exist exclusively facing each other in an anti-head-to-tail arrangement (Ihmels et al., 1999).

Fig. 3 shows the secondary packing diagram of the helical columns in the crystal, viewed in a projection along the b axis. There are homochiral arrays (of the columns) parallel to the ab plane with periodical inversion of the helicity along the c axis. The packing pattern of racemic (I) differs greatly from that of the carbo- and other hetero-helicenes; most racemic helicenes form racemate crystals in which two antipodes stack either alternately or in an interpenetrative fashion. To the best of our knowledge, one crystalline form of carbo[5]helicene is the only example where similar homochiral arrays are formed in the crystal structure (Kuroda, 1982).

Experimental top

Compound (I) was prepared by the photocyclization of 2-stylylnaphtho[1,2-a]quinolizinium hexafluorophosphate similarly to the perchrolate salt as already reported (Arai et al., 1989). Single crystals of (I) were obtained by slow evaporation from an acetonitrile solution (m.p. 508–510 K).

Computing details top

Data collection: CrystalClear (Rigaku Corporation, 2000); cell refinement: CrystalClear; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994) and DIRDIF94 (Beurskens et al., 1994); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPIII (Johnson & Burnett, 1996); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. The molecular structure of the 8a-azonia[6]helicene in (I), shown with 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Two views of the X-ray diagram of one of the enantiomerically pure cylindrical column stacks extending along the b axis. The PF6 anions have been omitted for clarify in the righthand view.
[Figure 3] Fig. 3. The crystal packing in (I), viewed down the b axis.
8a-Azoniahexahelicene hexafluorophosphate top
Crystal data top
C25H16N+·F6PF(000) = 968.00
Mr = 475.37Dx = 1.619 Mg m3
Monoclinic, P21/cMelting point: 508-510 K K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.7107 Å
a = 9.1026 (7) ÅCell parameters from 4702 reflections
b = 12.1235 (9) Åθ = 3.4–27.5°
c = 18.019 (1) ŵ = 0.21 mm1
β = 101.219 (3)°T = 153 K
V = 1950.5 (2) Å3Prism, yellow
Z = 40.35 × 0.30 × 0.30 mm
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3690 reflections with I > 2σ(I)
Detector resolution: 14.62 pixels mm-1Rint = 0.022
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995)
h = 1111
Tmin = 0.880, Tmax = 0.938k = 1515
11700 measured reflectionsl = 2322
4412 independent reflections
Refinement top
Refinement on F2H-atom parameters not refined
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.1568P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.126(Δ/σ)max = 0.030
S = 0.92Δρmax = 0.30 e Å3
3690 reflectionsΔρmin = 0.29 e Å3
362 parameters
Crystal data top
C25H16N+·F6PV = 1950.5 (2) Å3
Mr = 475.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1026 (7) ŵ = 0.21 mm1
b = 12.1235 (9) ÅT = 153 K
c = 18.019 (1) Å0.35 × 0.30 × 0.30 mm
β = 101.219 (3)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
4412 independent reflections
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995)
3690 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.938Rint = 0.022
11700 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038362 parameters
wR(F2) = 0.126H-atom parameters not refined
S = 0.92Δρmax = 0.30 e Å3
3690 reflectionsΔρmin = 0.29 e Å3
Special details top

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.

Refinement. The structure was solved by direct method and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Refinement using reflections with F2 > 2.0 σ(F2). The weighted R-factor (wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.62476 (4)0.30363 (3)0.57999 (2)0.0271 (1)
F10.6241 (1)0.41089 (8)0.63146 (6)0.0473 (3)
F20.6708 (1)0.23051 (8)0.65472 (5)0.0424 (3)
F30.7970 (1)0.32397 (9)0.57845 (6)0.0459 (3)
F40.4517 (1)0.2840 (1)0.58107 (6)0.0542 (3)
F50.5789 (1)0.3760 (1)0.50539 (6)0.0514 (3)
F60.6262 (2)0.1952 (1)0.52970 (6)0.0577 (3)
N8a0.6908 (1)0.0214 (1)0.77651 (8)0.0296 (3)
C11.0917 (2)0.0987 (1)0.71085 (8)0.0226 (3)
C21.2128 (2)0.1454 (1)0.68750 (8)0.0264 (3)
C31.2111 (2)0.1632 (1)0.61009 (9)0.0302 (3)
C41.0844 (2)0.1398 (1)0.55813 (9)0.0308 (3)
C4a0.9559 (2)0.0966 (1)0.58080 (8)0.0269 (3)
C50.8168 (2)0.0898 (1)0.52788 (9)0.0336 (3)
C60.6889 (2)0.0660 (1)0.55097 (9)0.0349 (4)
C6a0.6907 (2)0.0335 (1)0.62709 (9)0.0292 (3)
C70.5551 (2)0.0155 (1)0.6531 (1)0.0358 (4)
C80.5567 (2)0.0024 (1)0.7259 (1)0.0356 (4)
C90.6849 (2)0.0366 (1)0.8523 (1)0.0361 (4)
C100.8092 (2)0.0571 (1)0.90359 (9)0.0350 (4)
C10a0.9464 (2)0.0793 (1)0.87960 (8)0.0289 (3)
C111.0764 (2)0.1095 (1)0.93290 (9)0.0335 (3)
C121.2041 (2)0.1382 (1)0.91016 (9)0.0330 (3)
C12a1.2040 (2)0.1538 (1)0.83154 (8)0.0264 (3)
C131.3284 (2)0.2029 (1)0.8080 (1)0.0333 (3)
C141.3229 (2)0.2315 (1)0.7345 (1)0.0349 (4)
C151.1901 (2)0.2152 (1)0.68096 (9)0.0322 (3)
C161.0683 (2)0.1638 (1)0.70137 (8)0.0266 (3)
C16a1.0747 (2)0.1281 (1)0.77628 (8)0.0228 (3)
C16b0.9497 (2)0.0753 (1)0.80187 (8)0.0237 (3)
C16c0.8261 (2)0.0250 (1)0.75162 (8)0.0242 (3)
C16d0.8275 (2)0.0238 (1)0.67909 (8)0.0235 (3)
C16e0.9615 (2)0.0694 (1)0.65812 (8)0.0224 (3)
H11.0950.0880.76190.02441*
H21.3020.1680.72650.03340*
H31.3010.1970.59390.02925*
H41.0780.1620.5060.05128*
H50.8180.1100.4750.05458*
H60.5940.0750.5140.04470*
H70.4610.0260.6180.04533*
H80.4730.0050.7510.04625*
H90.5840.0270.8630.03691*
H100.8030.0680.9570.04273*
H111.0670.1100.9860.05443*
H121.2920.1560.9450.03821*
H131.4170.2170.8480.03832*
H141.4050.2640.7140.04974*
H151.1830.2400.6300.03697*
H160.9770.1560.66260.03185*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0257 (2)0.0329 (2)0.0237 (2)0.0019 (1)0.0074 (2)0.0004 (1)
F10.0579 (7)0.0346 (6)0.0501 (6)0.0093 (5)0.0121 (5)0.0062 (4)
F20.0581 (6)0.0358 (5)0.0326 (5)0.0000 (5)0.0072 (4)0.0065 (4)
F30.0252 (5)0.0591 (7)0.0542 (6)0.0007 (4)0.0100 (4)0.0092 (5)
F40.0309 (5)0.0924 (9)0.0412 (6)0.0153 (5)0.0121 (4)0.0047 (6)
F50.0388 (6)0.0784 (8)0.0371 (6)0.0047 (5)0.0074 (4)0.0257 (5)
F60.0787 (9)0.0556 (7)0.0427 (6)0.0119 (6)0.0216 (6)0.0215 (5)
N8a0.0252 (6)0.0250 (6)0.0414 (7)0.0009 (5)0.0130 (5)0.0032 (5)
C10.0242 (6)0.0220 (6)0.0216 (6)0.0024 (5)0.0044 (5)0.0011 (5)
C20.0246 (7)0.0249 (7)0.0298 (7)0.0027 (5)0.0055 (5)0.0021 (6)
C30.0327 (8)0.0263 (7)0.0341 (8)0.0031 (6)0.0130 (6)0.0048 (6)
C40.0411 (8)0.0274 (7)0.0252 (7)0.0047 (6)0.0095 (6)0.0044 (6)
C4a0.0336 (7)0.0220 (7)0.0240 (7)0.0047 (6)0.0026 (6)0.0006 (5)
C50.0440 (9)0.0272 (8)0.0253 (8)0.0027 (6)0.0042 (6)0.0020 (6)
C60.0338 (8)0.0269 (7)0.0370 (8)0.0020 (6)0.0104 (6)0.0036 (6)
C6a0.0254 (7)0.0212 (7)0.0378 (8)0.0026 (5)0.0023 (6)0.0044 (6)
C70.0222 (7)0.0267 (8)0.055 (1)0.0013 (6)0.0014 (7)0.0071 (7)
C80.0210 (7)0.0271 (7)0.060 (1)0.0003 (6)0.0099 (7)0.0050 (7)
C90.0389 (9)0.0289 (8)0.0473 (10)0.0034 (6)0.0248 (7)0.0062 (7)
C100.0466 (9)0.0303 (8)0.0340 (8)0.0073 (7)0.0222 (7)0.0041 (6)
C10a0.0371 (8)0.0232 (7)0.0288 (8)0.0063 (6)0.0121 (6)0.0011 (5)
C110.0483 (9)0.0289 (8)0.0233 (7)0.0082 (7)0.0067 (6)0.0016 (6)
C120.0379 (8)0.0276 (7)0.0295 (8)0.0061 (6)0.0036 (6)0.0063 (6)
C12a0.0265 (7)0.0210 (6)0.0305 (7)0.0041 (5)0.0028 (5)0.0062 (5)
C130.0245 (7)0.0286 (8)0.0459 (9)0.0014 (6)0.0048 (6)0.0120 (7)
C140.0298 (7)0.0279 (8)0.0505 (10)0.0074 (6)0.0166 (7)0.0104 (7)
C150.0391 (8)0.0272 (7)0.0335 (8)0.0077 (6)0.0153 (7)0.0049 (6)
C160.0283 (7)0.0243 (7)0.0278 (7)0.0043 (5)0.0067 (6)0.0039 (5)
C16a0.0230 (6)0.0198 (6)0.0262 (7)0.0012 (5)0.0062 (5)0.0041 (5)
C16b0.0254 (7)0.0204 (6)0.0262 (7)0.0041 (5)0.0070 (5)0.0016 (5)
C16c0.0225 (6)0.0192 (6)0.0323 (7)0.0012 (5)0.0091 (5)0.0053 (5)
C16d0.0233 (6)0.0196 (6)0.0268 (7)0.0019 (5)0.0026 (5)0.0033 (5)
C16e0.0239 (6)0.0183 (6)0.0244 (7)0.0038 (5)0.0029 (5)0.0016 (5)
Geometric parameters (Å, º) top
P1—F11.598 (1)C12a—C131.416 (2)
P1—F21.599 (1)C12a—C16a1.420 (2)
P1—F31.592 (1)C13—C141.361 (3)
P1—F41.597 (1)C14—C151.406 (2)
P1—F51.591 (1)C15—C161.382 (2)
P1—F61.598 (1)C16—C16a1.408 (2)
N8a—C81.393 (2)C16a—C16b1.456 (2)
N8a—C91.390 (2)C16b—C16c1.436 (2)
N8a—C16c1.391 (2)C16c—C16d1.437 (2)
C1—C21.376 (2)C16d—C16e1.455 (2)
C1—C16e1.412 (2)C1—H10.92
C2—C31.408 (2)C2—H21.00
C3—C41.366 (2)C3—H31.01
C4—C4a1.413 (2)C4—H40.96
C4a—C51.432 (2)C5—H50.98
C4a—C16e1.423 (2)C6—H60.99
C5—C61.342 (3)C7—H70.97
C6—C6a1.424 (2)C8—H80.96
C6a—C71.420 (2)C9—H90.98
C6a—C16d1.410 (2)C10—H100.99
C7—C81.328 (3)C11—H110.98
C9—C101.338 (2)C12—H120.94
C10—C10a1.424 (3)C13—H130.99
C10a—C111.419 (2)C14—H140.98
C10a—C16b1.408 (2)C15—H150.95
C11—C121.351 (3)C16—H160.98
C12—C12a1.429 (2)
F1···F63.196 (2)C1···C16b3.104 (2)
F1···C9i3.262 (2)C1···C163.191 (2)
F1···C12ii3.326 (2)C2···C4a2.786 (2)
F1···C12aii3.340 (2)C2···C8x3.556 (2)
F1···C2ii3.380 (2)C3···C16e2.822 (2)
F1···C1ii3.452 (2)C10···C3ii3.402 (2)
F1···C8i3.491 (2)C10a···C3ii3.455 (2)
F2···C73.162 (2)C3···C7x3.559 (2)
F2···F53.190 (1)C11···C4ii3.390 (2)
F2···C16c3.208 (2)C4···C5vii3.392 (2)
F2···C2ii3.209 (2)C4a···C6a2.809 (2)
F2···C6a3.250 (2)C12···C4aii3.546 (2)
F2···C83.300 (2)C11···C4aii3.579 (2)
F2···N8a3.335 (2)C5···C16d2.823 (2)
F2···C16d3.390 (2)C12···C5ii3.498 (2)
F2···C1ii3.576 (2)C6···C16e2.833 (2)
F3···F43.189 (1)C13···C6aii3.419 (2)
F3···C10iii3.486 (2)C7···C16c2.789 (2)
F3···C163.557 (2)C8···C16d2.775 (2)
F4···C14iv3.269 (2)C14···C8ii3.492 (2)
F4···C15iv3.358 (2)C14···C8x3.521 (2)
F4···C12v3.571 (2)C9···C16b2.777 (2)
F4···C9i3.598 (2)C10···C16c2.799 (2)
F5···C10iii3.149 (2)C10···C11xi3.557 (2)
F5···C9iii3.270 (2)C10a···C12a2.802 (2)
F5···F5vi3.323 (2)C11···C16a2.828 (2)
F5···C12v3.512 (2)C12···C16b2.827 (2)
F6···C3vii3.185 (2)C12a···C152.793 (2)
F6···C63.228 (2)C13···C162.784 (2)
F6···C6a3.273 (2)C14···C16a2.811 (2)
F6···C6viii3.342 (2)C16···C16b2.521 (2)
F6···C4vii3.393 (2)C16···C16e3.042 (2)
F6···C73.528 (2)C16···C16c3.048 (2)
N8a···C10a2.771 (2)C16···C16d3.130 (2)
N8a···C6a2.773 (2)C16a···C16c2.547 (2)
N8a···C14ix3.521 (2)C16a···C16d3.161 (2)
C1···C16d2.530 (2)C16a···C16e3.237 (2)
C1···C42.785 (2)C16b···C16d2.573 (2)
C1···C16a3.007 (2)C16b···C16e3.148 (2)
C1···C16c3.054 (2)C16c···C16e2.545 (2)
F1—P1—F289.56 (5)C12a—C16a—C16b117.8 (1)
F1—P1—F389.94 (6)C16—C16a—C16b123.3 (1)
F1—P1—F489.95 (7)C10a—C16b—C16a118.0 (1)
F1—P1—F590.68 (6)C10a—C16b—C16c118.5 (1)
F1—P1—F6179.10 (6)C16a—C16b—C16c123.5 (1)
F2—P1—F390.15 (6)N8a—C16c—C16b116.4 (1)
F2—P1—F490.28 (6)N8a—C16c—C16d116.4 (1)
F2—P1—F5179.75 (6)C16b—C16c—C16d127.2 (1)
F2—P1—F689.53 (6)C6a—C16d—C16c118.4 (1)
F3—P1—F4179.55 (6)C6a—C16d—C16e118.2 (1)
F3—P1—F589.85 (6)C16c—C16d—C16e123.3 (1)
F3—P1—F690.04 (7)C1—C16e—C4a117.8 (1)
F4—P1—F589.72 (6)C1—C16e—C16d123.8 (1)
F4—P1—F690.08 (7)C4a—C16e—C16d118.1 (1)
F5—P1—F690.22 (6)C16e—C1—H1119.6
C8—N8a—C9118.0 (1)C2—C1—H1119.4
C8—N8a—C16c120.8 (1)C1—C2—H2119.1
C9—N8a—C16c121.2 (1)C3—C2—H2120.2
C2—C1—C16e121.0 (1)C2—C3—H3119.7
C1—C2—C3120.7 (1)C4—C3—H3120.7
C2—C3—C4119.5 (2)C3—C4—H4119.5
C3—C4—C4a121.0 (1)C4a—C4—H4119.1
C4—C4a—C5120.2 (1)C4a—C5—H5117.1
C4—C4a—C16e119.7 (1)C6—C5—H5121.6
C5—C4a—C16e119.8 (1)C5—C6—H6117.9
C4a—C5—C6121.0 (1)C6a—C6—H6121.4
C5—C6—C6a120.7 (1)C6a—C7—H7118.6
C6—C6a—C7120.8 (1)C8—C7—H7120.5
C6—C6a—C16d120.4 (1)N8a—C8—H8111.1
C7—C6a—C16d118.7 (1)C7—C8—H8127.9
C6a—C7—C8120.5 (1)N8a—C9—H9113.4
N8a—C8—C7120.9 (2)C10—C9—H9125.6
N8a—C9—C10120.9 (2)C9—C10—H10120.1
C9—C10—C10a120.0 (2)C10a—C10—H10119.4
C10—C10a—C11120.5 (1)C10a—C11—H11116.7
C10—C10a—C16b119.0 (1)C12—C11—H11122.3
C11—C10a—C16b120.4 (1)C11—C12—H12122.2
C10a—C11—C12120.9 (2)C12a—C12—H12117.5
C11—C12—C12a120.0 (1)C12a—C13—H13116.7
C12—C12a—C13120.4 (1)C14—C13—H13122.1
C12—C12a—C16a120.4 (1)C13—C14—H14125.7
C13—C12a—C16a119.0 (1)C15—C14—H14114.6
C12a—C13—C14121.2 (1)C14—C15—H15120.3
C13—C14—C15119.7 (2)C16—C15—H15119.4
C14—C15—C16120.5 (1)C15—C16—H16117.7
C15—C16—C16a120.5 (1)C16a—C16—H16121.7
C12a—C16a—C16118.6 (1)
N8a—C9—C10—C10a9.0 (2)C8—N8a—C16c—C16b162.7 (1)
N8a—C16c—C16b—C10a23.3 (2)C8—N8a—C16c—C16d18.5 (2)
N8a—C16c—C16b—C16a153.1 (1)C8—C7—C6a—C16d4.7 (2)
N8a—C16c—C16d—C16e153.0 (1)C9—N8a—C16c—C16b17.2 (2)
N8a—C16c—C16d—C6a23.4 (2)C9—N8a—C16c—C16d161.6 (1)
N8a—C8—C7—C6a10.2 (2)C9—C10—C10a—C11175.1 (1)
C1—C2—C3—C44.0 (2)C9—C10—C10a—C16b2.3 (2)
C1—C16e—C4a—C47.0 (2)C10—C9—N8a—C16c1.1 (2)
C1—C16e—C4a—C5167.2 (1)C10—C10a—C11—C12175.3 (1)
C1—C16e—C16d—C6a158.3 (1)C10—C10a—C16b—C16a162.5 (1)
C1—C16e—C16d—C16c18.2 (2)C10—C10a—C16b—C16c14.1 (2)
C2—C1—C16e—C4a4.1 (2)C10a—C11—C12—C12a9.0 (2)
C2—C1—C16e—C16d177.5 (1)C10a—C16b—C16a—C12a16.6 (2)
C2—C3—C4—C4a0.9 (2)C10a—C16b—C16a—C16157.3 (1)
C3—C2—C1—C16e1.4 (2)C10a—C16b—C16c—C16d155.4 (1)
C3—C4—C4a—C5169.5 (1)C11—C10a—C16b—C16a14.9 (2)
C3—C4—C4a—C16e4.6 (2)C11—C10a—C16b—C16c168.5 (1)
C4—C4a—C5—C6169.2 (1)C11—C12—C12a—C13168.4 (1)
C4—C4a—C16e—C16d179.2 (1)C11—C12—C12a—C16a6.7 (2)
C4a—C5—C6—C6a7.8 (2)C12—C11—C10a—C16b2.0 (2)
C4a—C16e—C16d—C6a15.1 (2)C12—C12a—C13—C14171.3 (1)
C4a—C16e—C16d—C16c168.4 (1)C12—C12a—C16a—C16168.0 (1)
C5—C4a—C16e—C16d6.7 (2)C12—C12a—C16a—C16b6.2 (2)
C5—C6—C6a—C7175.7 (2)C12a—C13—C14—C151.9 (2)
C5—C6—C6a—C16d1.2 (2)C12a—C16a—C16—C154.9 (2)
C6—C5—C4a—C16e4.9 (2)C12a—C16a—C16b—C16c166.9 (1)
C6—C6a—C7—C8172.3 (2)C13—C12a—C16a—C167.1 (2)
C6—C6a—C16d—C16c170.7 (1)C13—C12a—C16a—C16b178.6 (1)
C6—C6a—C16d—C16e12.7 (2)C13—C14—C15—C164.2 (2)
C6a—C16d—C16c—C16b157.9 (1)C14—C13—C12a—C16a3.8 (2)
C7—C6a—C16d—C16c12.3 (2)C14—C15—C16—C16a0.7 (2)
C7—C6a—C16d—C16e164.3 (1)C15—C16—C16a—C16b178.8 (1)
C7—C8—N8a—C9178.3 (1)C16—C16a—C16b—C16c19.1 (2)
C7—C8—N8a—C16c1.8 (2)C16a—C16b—C16c—C16d28.2 (2)
C8—N8a—C9—C10178.8 (1)C16b—C16c—C16d—C16e25.7 (2)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+2, y+1/2, z+3/2; (iii) x, y+1/2, z1/2; (iv) x1, y, z; (v) x1, y+1/2, z1/2; (vi) x+1, y+1, z+1; (vii) x+2, y, z+1; (viii) x+1, y, z+1; (ix) x+2, y1/2, z+3/2; (x) x+1, y, z; (xi) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC25H16N+·F6P
Mr475.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)9.1026 (7), 12.1235 (9), 18.019 (1)
β (°) 101.219 (3)
V3)1950.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.35 × 0.30 × 0.30
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(Blessing, 1995)
Tmin, Tmax0.880, 0.938
No. of measured, independent and
observed [I > 2σ(I)] reflections
11700, 4412, 3690
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.126, 0.92
No. of reflections3690
No. of parameters362
No. of restraints?
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.30, 0.29

Computer programs: CrystalClear (Rigaku Corporation, 2000), CrystalClear, TEXSAN (Molecular Structure Corporation, 1999), SIR92 (Altomare et al., 1994) and DIRDIF94 (Beurskens et al., 1994), SHELXL93 (Sheldrick, 1993), ORTEPIII (Johnson & Burnett, 1996), TEXSAN.

Comparison of selected geometric parameters top
azonia[6]acarbo[6]b
Selected bond lengths (Å) and angles (°) around the N atom
N8a(C8a)—C81.393 (2)1.416 (6)
N8a(C8a)—C91.390 (2)1.420 (6)
N8a(C8a)—C16c1.391 (2)1.420 (4)
C16b—C16c1.436 (2)1.444 (4)
C16c—C16d1.437 (2)1.449 (4)
C8—N8a(C8a)—C9118.0 (1)122.2 (4)
C8—N8a(C8a)—C16c118.0 (1)119.0 (3)
C9—N8a(C8a)—C16c118.0 (1)118.8 (3)
N8a(C8a)—C16c—C16b116.4 (1)116.9 (3)
N8a(C8a)—C16c—C16d116.4 (1)117.5 (3)
C16b—C16c—C16d127.2 (1)125.6 (3)
Angles (°) between two least-squares planes
A-B12.26 (6)9.8
B-C12.80 (6)15.2
C-D14.07 (6)14.4
D-E12.71 (6)15.2
E-F11.87 (6)11.5
A-F49.85 (6)58.5
Torsion angles (°) of the inner helix skelton
C1—C16e—C16d—C16c18.2 (2)11.2
C16e—C16d—C16c—C16b25.7 (2)30.0
C16d—C16c—C16b—C16a28.2 (2)30.3
C16c—C16b—C16a—C1619.1 (2)15.2
Non-bonding distance (Å) between terminal rings
C1···C163.191 (2)3.03
Notes: (a) this work; (b) de Rango et al. (1973).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds