Download citation
Download citation
link to html
The title compound, [PdCl2(C9H9F2N)2], was obtained from the condensation reaction of acetone with trans-dichloro­bis(3,5-difluoro­aniline)palladium(II) under crystallization conditions. The Pd atom lies on an inversion centre and shows a square-planar geometry. The mol­ecules are linked via non-classical C—H...Cl and C—H...F inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040055/ob6596sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040055/ob6596Isup2.hkl
Contains datablock I

CCDC reference: 296622

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.027
  • wR factor = 0.059
  • Data-to-parameter ratio = 14.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT027_ALERT_3_B _diffrn_reflns_theta_full (too) Low ............ 24.99 Deg.
Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.03
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Palladium complexes have acquired tremendous importance in recent years due to the main role that palladium has gained in the realm of metal-mediated organic synthesis (Negishi & De Meijere, 2002), becoming a keystone in processes otherwise difficult to achieve or even impossible without the presence of the metal complex, such as the arylation of olefins (Heck reaction; Beletskaya & Cheprakov, 2000). In fact, similar complexes have been successfully employed in this process allowing fine-tuning of electronic effects (Baldovino-Pantaleón et al., 2005b), given the facility of modifying the number and disposition of the F atoms in the aromatic ring of the aniline. In this paper, we report the crystal structure of the title compound, (I), as one of a series of compounds we have studied in the course of our research into the synthesis of transition metal complexes bearing fluorinated ligands (Redón et al., 2003, 2002, 2001; Arroyo et al., 2003; Morales-Morales et al., 2001; García et al., 1993, Herrera-Alvarez et al., 2004; Fierro-Arias et al., 2005; Baldovino-Pantaleón et al., 2005a or b?).

Fig. 1 shows the Pd metal centre of (I) to be in a centrosymmetric square-planar environment, with the 3,5-difluorophenylisopropylideneamine and Cl ligands in trans positions. The isopropylideneamine group [r.m.s. deviation 0.0011 (2) Å] makes a dihedral angle of 83.8 (1)° with the plane formed by atoms Pd1/Cl1/N1/Cl1i/N1i [symmetry code: (i) 1 − x, 1 − y, 1 − z], and the 3,5-difluorophenyl substituent (r.m.s. deviation 0.0054 Å) makes an angle of 73.55 (9)° with the coordination plane. The corresponding angles in dichlorobis(N-isopropylideneaniline-N)palladium(II) are 88.1 and 66.8°, respectively (Clegg et al., 1987).

The crystal packing of (I) (Fig. 2) shows non-classical C—H···Cl/F hydrogen bonds (Table 2).

Experimental top

Compound (I) was obtained from the condensation reaction of the bis(3,5-difluoroaniline) complex trans-[PdCl2(C9H9F2N)2] (Baldovino-Pantaleón et al., 2005b) with acetone, after standing for 4 d under crystallization conditions.

Refinement top

H atoms were included in calculated positions, with C—H = 0.96–0.98 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL/PC (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by the symmetry operator (1 − x, 1 − y, 1 − z).
[Figure 2] Fig. 2. The crystal packing of (I). Dashed lines indicate C—H···Cl/F interactions.
trans-Dichlorobis[N-(3,5-difluorophenyl)isopropylideneamine]palladium(II) top
Crystal data top
[PdCl2(C9H9F2N)2]Z = 1
Mr = 515.64F(000) = 256
Triclinic, P1Dx = 1.702 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7654 (7) ÅCell parameters from 3473 reflections
b = 7.9246 (7) Åθ = 2.5–30.7°
c = 9.3977 (8) ŵ = 1.23 mm1
α = 113.735 (2)°T = 291 K
β = 105.458 (2)°Prism, yellow
γ = 92.253 (2)°0.12 × 0.10 × 0.08 mm
V = 503.15 (8) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1781 independent reflections
Radiation source: fine-focus sealed tube1710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 0.661 pixels mm-1θmax = 25.0°, θmin = 2.5°
ω scansh = 99
Absorption correction: analytical
(SHELXTL; Sheldrick, 1997b)
k = 99
Tmin = 0.867, Tmax = 0.908l = 1111
4178 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0285P)2]
where P = (Fo2 + 2Fc2)/3
1781 reflections(Δ/σ)max = 0.004
126 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[PdCl2(C9H9F2N)2]γ = 92.253 (2)°
Mr = 515.64V = 503.15 (8) Å3
Triclinic, P1Z = 1
a = 7.7654 (7) ÅMo Kα radiation
b = 7.9246 (7) ŵ = 1.23 mm1
c = 9.3977 (8) ÅT = 291 K
α = 113.735 (2)°0.12 × 0.10 × 0.08 mm
β = 105.458 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1781 independent reflections
Absorption correction: analytical
(SHELXTL; Sheldrick, 1997b)
1710 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.908Rint = 0.029
4178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.01Δρmax = 0.50 e Å3
1781 reflectionsΔρmin = 0.25 e Å3
126 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.50000.50000.50000.04124 (12)
Cl10.27632 (10)0.25261 (10)0.42028 (11)0.0658 (2)
F10.1188 (3)0.7515 (3)0.9420 (3)0.1045 (8)
F20.3931 (3)1.2686 (3)0.9185 (3)0.1016 (7)
N10.3120 (3)0.6651 (3)0.4810 (3)0.0416 (5)
C10.2884 (3)0.7856 (4)0.6344 (3)0.0442 (6)
C20.2123 (4)0.7065 (4)0.7143 (4)0.0572 (8)
H20.17280.57840.66970.069*
C30.1972 (4)0.8258 (5)0.8634 (4)0.0660 (9)
C40.2568 (4)1.0135 (5)0.9365 (4)0.0660 (9)
H40.24631.08991.03810.079*
C50.3329 (4)1.0831 (4)0.8517 (4)0.0619 (8)
C60.3501 (4)0.9744 (4)0.7011 (3)0.0548 (7)
H60.40171.02670.64640.066*
C70.2639 (5)0.5535 (4)0.1944 (3)0.0651 (8)
H7A0.36890.49890.22100.078*
H7B0.28770.63160.14360.078*
H7C0.16300.45620.12060.078*
C80.2205 (4)0.6680 (4)0.3465 (3)0.0477 (7)
C90.0712 (4)0.7783 (4)0.3312 (4)0.0619 (8)
H9A0.02930.81260.42490.074*
H9B0.02700.70430.23400.074*
H9C0.11510.88920.32480.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.04240 (19)0.03710 (18)0.04577 (19)0.01298 (13)0.01555 (13)0.01749 (13)
Cl10.0551 (5)0.0475 (4)0.0936 (6)0.0061 (4)0.0236 (4)0.0287 (4)
F10.140 (2)0.1195 (18)0.0966 (16)0.0315 (16)0.0734 (15)0.0640 (15)
F20.139 (2)0.0571 (13)0.0893 (15)0.0078 (13)0.0595 (15)0.0015 (11)
N10.0433 (12)0.0374 (12)0.0446 (12)0.0128 (10)0.0151 (10)0.0165 (10)
C10.0421 (15)0.0478 (16)0.0451 (15)0.0186 (13)0.0153 (12)0.0201 (13)
C20.064 (2)0.0526 (18)0.0610 (19)0.0168 (15)0.0239 (16)0.0270 (15)
C30.070 (2)0.087 (3)0.064 (2)0.0291 (19)0.0337 (18)0.046 (2)
C40.070 (2)0.077 (2)0.0513 (18)0.0292 (19)0.0271 (16)0.0200 (18)
C50.068 (2)0.0507 (19)0.0591 (19)0.0156 (16)0.0243 (16)0.0123 (15)
C60.0637 (19)0.0479 (17)0.0562 (18)0.0150 (15)0.0289 (15)0.0186 (14)
C70.083 (2)0.0613 (19)0.0472 (17)0.0192 (18)0.0189 (16)0.0201 (15)
C80.0532 (17)0.0386 (15)0.0511 (16)0.0102 (13)0.0163 (14)0.0188 (13)
C90.0625 (19)0.0564 (19)0.0654 (19)0.0208 (16)0.0121 (16)0.0285 (16)
Geometric parameters (Å, º) top
Pd1—N1i2.0185 (19)C4—C51.366 (5)
Pd1—N12.0185 (19)C4—H40.9300
Pd1—Cl1i2.2974 (7)C5—C61.376 (4)
Pd1—Cl12.2974 (7)C6—H60.9300
F1—C31.351 (4)C7—C81.488 (4)
F2—C51.349 (3)C7—H7A0.9600
N1—C81.285 (3)C7—H7B0.9600
N1—C11.438 (3)C7—H7C0.9600
C1—C61.375 (4)C8—C91.490 (4)
C1—C21.375 (4)C9—H9A0.9600
C2—C31.379 (4)C9—H9B0.9600
C2—H20.9300C9—H9C0.9600
C3—C41.362 (4)
N1i—Pd1—N1180.000 (1)F2—C5—C4118.4 (3)
N1i—Pd1—Cl1i90.49 (6)F2—C5—C6118.1 (3)
N1—Pd1—Cl1i89.51 (6)C4—C5—C6123.5 (3)
N1i—Pd1—Cl189.51 (6)C1—C6—C5117.6 (3)
N1—Pd1—Cl190.49 (6)C1—C6—H6121.2
Cl1i—Pd1—Cl1180.000 (1)C5—C6—H6121.2
C8—N1—C1121.3 (2)C8—C7—H7A109.5
C8—N1—Pd1124.61 (18)C8—C7—H7B109.5
C1—N1—Pd1114.09 (15)H7A—C7—H7B109.5
C6—C1—C2121.7 (3)C8—C7—H7C109.5
C6—C1—N1119.5 (2)H7A—C7—H7C109.5
C2—C1—N1118.7 (2)H7B—C7—H7C109.5
C1—C2—C3117.0 (3)N1—C8—C7118.6 (2)
C1—C2—H2121.5N1—C8—C9124.3 (3)
C3—C2—H2121.5C7—C8—C9117.1 (2)
F1—C3—C4118.0 (3)C8—C9—H9A109.5
F1—C3—C2117.9 (3)C8—C9—H9B109.5
C4—C3—C2124.1 (3)H9A—C9—H9B109.5
C3—C4—C5116.1 (3)C8—C9—H9C109.5
C3—C4—H4122.0H9A—C9—H9C109.5
C5—C4—H4122.0H9B—C9—H9C109.5
Cl1i—Pd1—N1—C899.0 (2)F1—C3—C4—C5179.1 (3)
Cl1—Pd1—N1—C881.0 (2)C2—C3—C4—C51.1 (5)
Cl1i—Pd1—N1—C180.18 (17)C3—C4—C5—F2179.6 (3)
Cl1—Pd1—N1—C199.82 (17)C3—C4—C5—C60.2 (5)
C8—N1—C1—C670.9 (3)C2—C1—C6—C50.1 (4)
Pd1—N1—C1—C6108.3 (2)N1—C1—C6—C5176.8 (2)
C8—N1—C1—C2112.3 (3)F2—C5—C6—C1179.9 (3)
Pd1—N1—C1—C268.5 (3)C4—C5—C6—C10.6 (5)
C6—C1—C2—C31.3 (4)C1—N1—C8—C7174.2 (2)
N1—C1—C2—C3178.0 (2)Pd1—N1—C8—C75.0 (4)
C1—C2—C3—F1178.4 (3)C1—N1—C8—C96.2 (4)
C1—C2—C3—C41.8 (5)Pd1—N1—C8—C9174.6 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···F1ii0.962.543.327 (5)140
C7—H7C···F1iii0.962.473.351 (4)153
C9—H9C···Cl1iv0.962.783.694 (3)161
Symmetry codes: (ii) x, y, z1; (iii) x, y+1, z+1; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[PdCl2(C9H9F2N)2]
Mr515.64
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.7654 (7), 7.9246 (7), 9.3977 (8)
α, β, γ (°)113.735 (2), 105.458 (2), 92.253 (2)
V3)503.15 (8)
Z1
Radiation typeMo Kα
µ (mm1)1.23
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionAnalytical
(SHELXTL; Sheldrick, 1997b)
Tmin, Tmax0.867, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
4178, 1781, 1710
Rint0.029
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.059, 1.01
No. of reflections1781
No. of parameters126
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL/PC (Sheldrick, 1997b), SHELXTL/PC.

Selected geometric parameters (Å, º) top
Pd1—N12.0185 (19)F2—C51.349 (3)
Pd1—Cl12.2974 (7)N1—C81.285 (3)
F1—C31.351 (4)N1—C11.438 (3)
N1—Pd1—Cl190.49 (6)N1—C8—C7118.6 (2)
C8—N1—C1121.3 (2)N1—C8—C9124.3 (3)
C8—N1—Pd1124.61 (18)C7—C8—C9117.1 (2)
C1—N1—Pd1114.09 (15)
Cl1—Pd1—N1—C881.0 (2)Pd1—N1—C1—C268.5 (3)
Cl1—Pd1—N1—C199.82 (17)Pd1—N1—C8—C75.0 (4)
C8—N1—C1—C670.9 (3)C1—N1—C8—C96.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···F1i0.962.543.327 (5)140
C7—H7C···F1ii0.962.473.351 (4)153
C9—H9C···Cl1iii0.962.783.694 (3)161
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z+1; (iii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds