Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S205322962400010X/oc3022sup1.cif | |
Portable Document Format (PDF) file https://doi.org/10.1107/S205322962400010X/oc3022sup2.pdf |
CCDC reference: 1561729
C66H44Cu3Eu2N18O31 | Dx = 1.921 Mg m−3 |
Mr = 2079.73 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3c | Cell parameters from 4858 reflections |
a = 14.0021 (3) Å | θ = 2.9–26.1° |
c = 63.523 (3) Å | µ = 2.70 mm−1 |
V = 10785.7 (5) Å3 | T = 296 K |
Z = 6 | Brick, blue |
F(000) = 6162 | 0.25 × 0.23 × 0.20 mm |
CCD area detector diffractometer | 2373 independent reflections |
Radiation source: fine-focus sealed tube | 2002 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
phi and ω scans | θmax = 26.1°, θmin = 1.9° |
Absorption correction: multi-scan Sheldrick, G. M.. SADABS | h = −17→14 |
Tmin = 0.659, Tmax = 0.745 | k = −17→17 |
21300 measured reflections | l = −78→65 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0569P)2 + 20.0828P] where P = (Fo2 + 2Fc2)/3 |
2373 reflections | (Δ/σ)max < 0.001 |
180 parameters | Δρmax = 2.15 e Å−3 |
0 restraints | Δρmin = −0.59 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Eu1 | 1.0000 | 0.0000 | 0.075327 (4) | 0.02052 (13) | |
Cu1 | 1.0000 | 0.37628 (4) | 0.2500 | 0.02130 (17) | |
N1 | 0.9450 (2) | 0.2460 (2) | 0.22993 (4) | 0.0241 (6) | |
N2 | 0.8518 (3) | 0.0527 (3) | 0.22484 (5) | 0.0469 (10) | |
N3 | 0.8745 (3) | −0.2084 (3) | 0.05255 (6) | 0.0338 (8) | |
C1 | 1.0971 (3) | 0.2270 (3) | 0.11008 (5) | 0.0216 (7) | |
C2 | 1.0514 (3) | 0.2191 (3) | 0.13157 (5) | 0.0221 (7) | |
C3 | 0.9584 (3) | 0.1229 (3) | 0.13794 (5) | 0.0286 (8) | |
H3A | 0.9197 | 0.0670 | 0.1282 | 0.034* | |
C4 | 0.9224 (3) | 0.1088 (3) | 0.15859 (6) | 0.0294 (8) | |
H4A | 0.8604 | 0.0432 | 0.1626 | 0.035* | |
C5 | 0.9774 (3) | 0.1907 (3) | 0.17335 (5) | 0.0229 (7) | |
C6 | 1.0691 (3) | 0.2882 (3) | 0.16693 (6) | 0.0348 (9) | |
H6A | 1.1062 | 0.3448 | 0.1766 | 0.042* | |
C7 | 1.1062 (3) | 0.3027 (3) | 0.14626 (5) | 0.0306 (8) | |
H7A | 1.1678 | 0.3686 | 0.1422 | 0.037* | |
C8 | 0.9432 (3) | 0.1740 (3) | 0.19581 (5) | 0.0248 (7) | |
C9 | 0.8809 (4) | 0.0704 (3) | 0.20466 (6) | 0.0412 (11) | |
H9A | 0.8579 | 0.0094 | 0.1960 | 0.049* | |
C10 | 0.8846 (4) | 0.1413 (3) | 0.23663 (6) | 0.0357 (10) | |
H10A | 0.8642 | 0.1304 | 0.2507 | 0.043* | |
C11 | 0.9723 (3) | 0.2605 (3) | 0.20960 (5) | 0.0245 (7) | |
H11A | 1.0127 | 0.3321 | 0.2045 | 0.029* | |
O1 | 1.0467 (2) | 0.1468 (2) | 0.09779 (4) | 0.0377 (7) | |
O2 | 1.1875 (2) | 0.3124 (2) | 0.10583 (4) | 0.0259 (5) | |
O3 | 0.9371 (2) | −0.1995 (2) | 0.06795 (4) | 0.0350 (6) | |
O4 | 0.8741 (2) | −0.1208 (2) | 0.04757 (4) | 0.0383 (7) | |
O5 | 0.8196 (3) | −0.2949 (3) | 0.04348 (6) | 0.0617 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu1 | 0.02541 (15) | 0.02541 (15) | 0.01072 (18) | 0.01271 (8) | 0.000 | 0.000 |
Cu1 | 0.0318 (3) | 0.0254 (2) | 0.0088 (3) | 0.01592 (17) | −0.0010 (2) | −0.00049 (11) |
N1 | 0.0315 (16) | 0.0256 (15) | 0.0143 (13) | 0.0136 (13) | 0.0033 (12) | 0.0008 (11) |
N2 | 0.073 (3) | 0.0261 (18) | 0.0212 (16) | 0.0094 (19) | 0.0104 (17) | 0.0038 (14) |
N3 | 0.0319 (17) | 0.033 (2) | 0.0339 (19) | 0.0141 (16) | 0.0010 (15) | −0.0067 (15) |
C1 | 0.0302 (19) | 0.0273 (19) | 0.0127 (16) | 0.0185 (16) | 0.0000 (14) | −0.0006 (14) |
C2 | 0.0290 (18) | 0.0288 (18) | 0.0134 (15) | 0.0181 (16) | 0.0001 (13) | −0.0012 (13) |
C3 | 0.031 (2) | 0.031 (2) | 0.0163 (17) | 0.0094 (16) | −0.0001 (14) | −0.0081 (15) |
C4 | 0.0299 (19) | 0.0263 (18) | 0.0197 (18) | 0.0048 (16) | 0.0045 (15) | −0.0020 (14) |
C5 | 0.0323 (19) | 0.0267 (18) | 0.0124 (16) | 0.0168 (15) | 0.0043 (13) | −0.0014 (13) |
C6 | 0.048 (2) | 0.0265 (19) | 0.0164 (17) | 0.0088 (18) | 0.0051 (16) | −0.0063 (15) |
C7 | 0.041 (2) | 0.0232 (19) | 0.0169 (17) | 0.0077 (17) | 0.0060 (15) | −0.0027 (14) |
C8 | 0.0332 (19) | 0.0274 (19) | 0.0143 (16) | 0.0155 (16) | 0.0045 (14) | 0.0022 (13) |
C9 | 0.066 (3) | 0.024 (2) | 0.0220 (19) | 0.014 (2) | 0.004 (2) | −0.0040 (16) |
C10 | 0.049 (2) | 0.028 (2) | 0.0202 (19) | 0.0114 (19) | 0.0094 (17) | 0.0039 (15) |
C11 | 0.0295 (19) | 0.0256 (18) | 0.0158 (16) | 0.0118 (16) | 0.0035 (14) | 0.0015 (14) |
O1 | 0.0471 (17) | 0.0382 (17) | 0.0201 (14) | 0.0155 (14) | 0.0028 (12) | −0.0103 (12) |
O2 | 0.0280 (13) | 0.0335 (14) | 0.0146 (12) | 0.0141 (12) | 0.0031 (10) | −0.0006 (10) |
O3 | 0.0389 (16) | 0.0338 (15) | 0.0338 (15) | 0.0194 (13) | −0.0063 (13) | −0.0001 (12) |
O4 | 0.0457 (17) | 0.0376 (16) | 0.0345 (15) | 0.0230 (14) | −0.0144 (13) | −0.0074 (12) |
O5 | 0.059 (2) | 0.041 (2) | 0.077 (3) | 0.0188 (18) | −0.026 (2) | −0.0295 (18) |
Eu1—O1i | 2.312 (3) | N3—O4 | 1.270 (4) |
Eu1—O1ii | 2.312 (3) | N3—O3 | 1.277 (4) |
Eu1—O1 | 2.312 (3) | C1—O1 | 1.256 (4) |
Eu1—O4i | 2.469 (3) | C1—O2 | 1.261 (5) |
Eu1—O4ii | 2.469 (3) | C1—C2 | 1.488 (5) |
Eu1—O4 | 2.469 (3) | C2—C3 | 1.386 (5) |
Eu1—O3 | 2.518 (3) | C2—C7 | 1.390 (5) |
Eu1—O3ii | 2.518 (3) | C3—C4 | 1.384 (5) |
Eu1—O3i | 2.518 (3) | C3—H3A | 0.9300 |
Eu1—N3i | 2.927 (3) | C4—C5 | 1.380 (5) |
Eu1—N3 | 2.927 (3) | C4—H4A | 0.9300 |
Eu1—N3ii | 2.927 (3) | C5—C6 | 1.388 (5) |
Cu1—O2iii | 1.945 (2) | C5—C8 | 1.486 (4) |
Cu1—O2iv | 1.945 (2) | C6—C7 | 1.389 (5) |
Cu1—N1 | 2.035 (3) | C6—H6A | 0.9300 |
Cu1—N1v | 2.035 (3) | C7—H7A | 0.9300 |
Cu1—O3vi | 2.580 (3) | C8—C11 | 1.380 (5) |
Cu1—O3vii | 2.580 (3) | C8—C9 | 1.384 (5) |
N1—C11 | 1.334 (4) | C9—H9A | 0.9300 |
N1—C10 | 1.343 (5) | C10—H10A | 0.9300 |
N2—C10 | 1.319 (5) | C11—H11A | 0.9300 |
N2—C9 | 1.330 (5) | O2—Cu1viii | 1.945 (2) |
N3—O5 | 1.208 (4) | ||
O1i—Eu1—O1ii | 85.90 (11) | N3i—Eu1—N3ii | 97.68 (9) |
O1i—Eu1—O1 | 85.90 (11) | N3—Eu1—N3ii | 97.68 (9) |
O1ii—Eu1—O1 | 85.90 (11) | O2iii—Cu1—O2iv | 96.56 (15) |
O1i—Eu1—O4i | 146.86 (10) | O2iii—Cu1—N1 | 166.84 (11) |
O1ii—Eu1—O4i | 124.99 (9) | O2iv—Cu1—N1 | 88.14 (11) |
O1—Eu1—O4i | 84.92 (10) | O2iii—Cu1—N1v | 88.14 (11) |
O1i—Eu1—O4ii | 84.92 (10) | O2iv—Cu1—N1v | 166.84 (11) |
O1ii—Eu1—O4ii | 146.86 (10) | N1—Cu1—N1v | 89.98 (16) |
O1—Eu1—O4ii | 124.99 (9) | O2iii—Cu1—O3vi | 100.65 (10) |
O4i—Eu1—O4ii | 74.64 (11) | O2iv—Cu1—O3vi | 82.50 (10) |
O1i—Eu1—O4 | 125.00 (9) | N1—Cu1—O3vi | 92.13 (10) |
O1ii—Eu1—O4 | 84.92 (11) | N1v—Cu1—O3vi | 84.56 (10) |
O1—Eu1—O4 | 146.86 (10) | O2iii—Cu1—O3vii | 82.50 (10) |
O4i—Eu1—O4 | 74.64 (11) | O2iv—Cu1—O3vii | 100.65 (10) |
O4ii—Eu1—O4 | 74.64 (11) | N1—Cu1—O3vii | 84.56 (10) |
O1i—Eu1—O3 | 74.13 (9) | N1v—Cu1—O3vii | 92.13 (10) |
O1ii—Eu1—O3 | 74.35 (10) | O3vi—Cu1—O3vii | 175.33 (13) |
O1—Eu1—O3 | 152.61 (10) | C11—N1—C10 | 116.7 (3) |
O4i—Eu1—O3 | 121.91 (10) | C11—N1—Cu1 | 121.3 (2) |
O4ii—Eu1—O3 | 72.51 (9) | C10—N1—Cu1 | 122.0 (2) |
O4—Eu1—O3 | 51.18 (9) | C10—N2—C9 | 116.2 (3) |
O1i—Eu1—O3ii | 74.35 (10) | O5—N3—O4 | 122.8 (4) |
O1ii—Eu1—O3ii | 152.62 (10) | O5—N3—O3 | 121.6 (4) |
O1—Eu1—O3ii | 74.13 (9) | O4—N3—O3 | 115.6 (3) |
O4i—Eu1—O3ii | 72.51 (9) | O5—N3—Eu1 | 177.8 (3) |
O4ii—Eu1—O3ii | 51.18 (9) | O4—N3—Eu1 | 56.68 (17) |
O4—Eu1—O3ii | 121.90 (10) | O3—N3—Eu1 | 58.92 (18) |
O3—Eu1—O3ii | 116.62 (4) | O1—C1—O2 | 124.3 (3) |
O1i—Eu1—O3i | 152.62 (10) | O1—C1—C2 | 118.4 (3) |
O1ii—Eu1—O3i | 74.13 (9) | O2—C1—C2 | 117.2 (3) |
O1—Eu1—O3i | 74.35 (10) | C3—C2—C7 | 118.5 (3) |
O4i—Eu1—O3i | 51.18 (9) | C3—C2—C1 | 120.0 (3) |
O4ii—Eu1—O3i | 121.91 (10) | C7—C2—C1 | 121.2 (3) |
O4—Eu1—O3i | 72.51 (9) | C4—C3—C2 | 120.9 (3) |
O3—Eu1—O3i | 116.62 (4) | C4—C3—H3A | 119.5 |
O3ii—Eu1—O3i | 116.61 (4) | C2—C3—H3A | 119.5 |
O1i—Eu1—N3i | 162.42 (10) | C5—C4—C3 | 120.9 (3) |
O1ii—Eu1—N3i | 99.78 (10) | C5—C4—H4A | 119.6 |
O1—Eu1—N3i | 78.00 (11) | C3—C4—H4A | 119.6 |
O4i—Eu1—N3i | 25.45 (9) | C4—C5—C6 | 118.4 (3) |
O4ii—Eu1—N3i | 98.49 (10) | C4—C5—C8 | 121.3 (3) |
O4—Eu1—N3i | 72.33 (9) | C6—C5—C8 | 120.2 (3) |
O3—Eu1—N3i | 123.38 (9) | C5—C6—C7 | 121.0 (3) |
O3ii—Eu1—N3i | 94.27 (10) | C5—C6—H6A | 119.5 |
O3i—Eu1—N3i | 25.74 (9) | C7—C6—H6A | 119.5 |
O1i—Eu1—N3 | 99.78 (10) | C6—C7—C2 | 120.2 (3) |
O1ii—Eu1—N3 | 78.00 (11) | C6—C7—H7A | 119.9 |
O1—Eu1—N3 | 162.42 (10) | C2—C7—H7A | 119.9 |
O4i—Eu1—N3 | 98.49 (10) | C11—C8—C9 | 114.6 (3) |
O4ii—Eu1—N3 | 72.33 (9) | C11—C8—C5 | 122.7 (3) |
O4—Eu1—N3 | 25.45 (9) | C9—C8—C5 | 122.6 (3) |
O3—Eu1—N3 | 25.74 (9) | N2—C9—C8 | 124.1 (4) |
O3ii—Eu1—N3 | 123.38 (9) | N2—C9—H9A | 118.0 |
O3i—Eu1—N3 | 94.27 (10) | C8—C9—H9A | 118.0 |
N3i—Eu1—N3 | 97.68 (9) | N2—C10—N1 | 125.4 (4) |
O1i—Eu1—N3ii | 77.99 (11) | N2—C10—H10A | 117.3 |
O1ii—Eu1—N3ii | 162.42 (10) | N1—C10—H10A | 117.3 |
O1—Eu1—N3ii | 99.78 (10) | N1—C11—C8 | 123.0 (3) |
O4i—Eu1—N3ii | 72.33 (9) | N1—C11—H11A | 118.5 |
O4ii—Eu1—N3ii | 25.45 (9) | C8—C11—H11A | 118.5 |
O4—Eu1—N3ii | 98.49 (10) | C1—O1—Eu1 | 164.0 (3) |
O3—Eu1—N3ii | 94.28 (10) | C1—O2—Cu1viii | 128.1 (2) |
O3ii—Eu1—N3ii | 25.74 (9) | N3—O3—Eu1 | 95.3 (2) |
O3i—Eu1—N3ii | 123.38 (9) | N3—O4—Eu1 | 97.9 (2) |
Symmetry codes: (i) −x+y+2, −x+1, z; (ii) −y+1, x−y−1, z; (iii) −y+4/3, −x+5/3, z+1/6; (iv) y+2/3, −x+y+4/3, −z+1/3; (v) −x+2, −x+y+1, −z+1/2; (vi) −x+y+7/3, y+2/3, z+1/6; (vii) x−y−1/3, x−2/3, −z+1/3; (viii) x−y+2/3, x−2/3, −z+1/3. |