Download citation
Download citation
link to html
The structures of three new pyridine derivatives, 2-meth­oxy-4-(4-meth­oxy­phenyl)-5,6,7,8,9,10-hexa­hydro­cyclo­octa­[b]pyridine-3-carbo­nitrile, C20H22N2O2, (I), 2-eth­oxy-4-(3-nitrophenyl)-5,6,7,8,9,10-hexa­hydro­cyclo­octa­[b]pyridine-3-carbonitrile, C20H21N3O3, (II), and 2-eth­oxy-4-(4-meth­oxy­phenyl)-5,6,7,8,9,10-hexa­hydro­cyclo­octa­[b]pyridine-3-carbo­nitrile, C21H24N2O2, (III), differ in the nature of the substituents either at the 2-position of the central pyridine ring or on the pendent aryl ring. This simple change in the structure substantially alters the inter­molecular inter­action patterns. The substituted phenyl group adopts a synclinal geometry with respect to the plane of the pyridine ring in all three compounds. In (I), a C—H...N inter­action results in a one-dimensional chain parallel to the b axis. In (II), there are two C—H...N(nitrile) inter­actions from different symmetry-related mol­ecules, resulting in a two-dimensional network parallel to the bc plane. There is also a weak C—H...O inter­action from the eth­oxy group to an adjacent nitro O atom. The present work is an example of how the simple replacement of a substituent in the main mol­ecular scaffold may transform the structure type, paving the way for a variety of supra­molecular motifs and consequently altering the complexity of the inter­molecular inter­action patterns.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614000291/ov3043sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614000291/ov3043Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614000291/ov3043IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614000291/ov3043IIIsup4.hkl
Contains datablock comp3

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614000291/ov3043Isup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614000291/ov3043IIsup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614000291/ov3043IIIsup7.cml
Supplementary material

CCDC references: 980061; 980062; 980063

Introduction top

The title compounds, (I)–(III), belong to the cyclo­alkeno­pyridine class of compounds. It is observed that many naturally occurring biologically active compounds feature a cyclo­alkeno­pyridine ring as the basic skeleton. This observation prompted the development of a range of synthetic methods to prepare pharmaceuticals and agrochemicals containing the cyclo­alkeno­pyridine ring as an important building block (Thummel, 2008). The synthesis of hydrogenated compounds has been extensively studied due to their inter­esting biological properties. For example, derivatives of 1,4-di­hydro­pyridine exhibit high biological activities as calcium channel blockers (Bossert et al., 1981) and as calcium agonists or antagonists (Triggle et al., 1980; Kokubun & Reuter, 1984; Bossert & Vater, 1989; Wang et al., 1989; Alajarin et al., 1995). Cyclo­octane compounds exhibit moderate to high anti­bacterial and anti­fungal effects against pathogenic microorganisms. For example, 2-[(4-sulfonamido­phenyl)­methyl­idene]cyclo­octa­none has an excellent activity against Listeria monocytogenes (Korany et al., 2011). The above observations prompted us to synthesize the title compounds containing cyclo­alkeno­pyridine carbo­nitrile groups and substituted pyridine scaffolds and to determine their crystal structures.

Experimental top

Synthesis and crystallization top

The solvent used in the reaction is incorporated in the product at position 2. In (I), methanol was used, whereas in (II) and (III) ethanol was the solvent.

The general reaction procedure is as follows. A mixture of cyclo­octa­none (1 mmol), 4-meth­oxy­benzaldehyde/3-nitro­benzaldehyde (1 mmol), malono­nitrile (1 mmol) and lithium ethoxide (1 equivalent) was heated to reflux in methanol or ethanol (10 ml) for 2–3 h. After completion of the reaction, as evidenced by thin-layer chromatograpy, the reaction mixture was poured into crushed ice and the resultant precipitate was extracted with ethyl acetate. The excess solvent was removed under vacuum and the residue was subjected to column chromatography using a petroleum ether–ethyl acetate mixture (95:5 v/v) as eluent to obtain the pure products. For (I), yield 74%, m.p. 460–461 K; for (II), yield 64%, m.p. 394–396 K; for (III), yield 65%, m.p. 399–400 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed at calculated positions and allowed to ride on their carrier atoms, with C—H = 0.93–0.98 Å, and with Uiso = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. In (III), atoms C4 and C5 of the cyclo­octane ring are each disordered over two sites and were refined with site-occupancy factors of 0.652 (9) and 0.348 (9).

Results and discussion top

In the molecular structures of (I) (Fig. 1), (II) (Fig. 2) and (III) (Fig. 3), the cyclo­octane ring adopts a twist-boat-chair conformation, as found in related structures (Xiong et al., 2007; Fun et al., 2010; Suresh et al., 2007).

The bond lengths and angles of the phenyl rings of (I)–(III) are consistent with those observed in similar structures (Patel et al., 2002a,b,c; Black et al., 1992; Hussain et al., 1996). The deviations of the nitrile atoms (C12 and N2) from the mean plane of the pyridine ring system (N1/C1/C8–C11) are -0.0422 (1) and -0.0896 (5) Å, respectively, in (I), -0.0081 (5) and -0.0416 (2) Å, respectively, in (II), and -0.0624 (4) and -0.1038 (1) Å, respectively, in (III), indicative of coplanarity.

The phenyl substituent at C9 of the pyridine ring has a (+)synclinal conformation in (I) and a (-)synclinal conformation in (II) and (III), which is evidenced by the C96—C91—C9—C10 torsion angles (see Tables 2, 3 and 4). The C10—C12 (Csp2—Csp) bonds in (I)–(III) tend towards aromatic bond lengths (see Table 1) rather than a σ-bond (~1.50 Å), presumably due to conjugation. However, the C12N2 bond lengths in (I)–(III) are apparently normal. The meth­oxy group in (I) and the eth­oxy group in (II) and (III) are coplanar with the plane of the attached pyridine ring, as can be seen from the C10—C11—O1—C13 and N1—C11—O1—C13 torsion angles. These torsion angles are similar to those in related structures (Ramesh, Subbiahpandi et al., 2009; Ramesh, Sundaresan et al., 2009).

There are phenyl–nitrile C—H···N inter­actions within the extended structures of (I) and (II) that are not present in (III). This inter­action results in a chain with graph-set motif of C(7) (Bernstein et al., 1995) (Figs. 4 and 5). The C92···N2i distance in (II) is noticeably lengthened compared with the same contact in (I) [see Tables 5, 6 and 7; symmetry code: (i) -x, y - 1/2, -z + 1/2]. However, the geometries of these hydrogen bonds remain essentially identical. The C···N contact in (II) is recognized as a perfect hydrogen bond, since the angle tends towards linearity.

In (I), a C92—H92···N2i inter­action links the molecules into pairs (Fig. 4). These pairs are further connected through a significant ππ stacking inter­action, Cg1···Cg1ii (Cg1 is the centroid of the pyridine ring), generating a linear chain, with Cg1···Cg1ii separations of 3.7526 (2) Å [symmetry code: (ii) -x, -y, -z + 1].

In the crystal structure of (II) (Fig. 5), atom C94 of the nitro­phenyl ring is involved in weak inter­molecular C94···H94···N2ii inter­action with cyano atom N2 of an inversion-related molecule, forming a hydrogen-bonded dimer and generating an R22(18) graph-set motif; these motifs are in turn linked through the C92—H92···N2i inter­action [symmetry codes: (i) -x, y - 1/2, -z + 1/2; (ii) -x, -y + 1, -z]. Meth­oxy atom C14 is involved in a C14—H14···O2iii inter­action with nitro atom O2 of a symmetry-related molecule, generating a continuous parallel double chain with graph-set motif C(12) [symmetry code: (iii) x, y, z + 1].

The crystal structure of (III) (Fig. 6) has bifurcated intra­molecular C—H···O inter­actions. An inter­molecular C97—H97A···O2ii inter­action links inversion-related molecules into an aggregate, forming an R22(6) ring motif [symmetry code: (ii) -x + 1, -y, -z + 1] [Not the same definition as given in caption to Fig. 6 - please clarify]. An inter­molecular C92—H92···O1i inter­action forms a chain pattern running along the a axis generating a C(7) graph-set motif [symmetry code: (i) x - 1, y, z].

Related literature top

For related literature, see: Alajarin et al. (1995); Bernstein et al. (1995); Black et al. (1992); Bossert & Vater (1989); Bossert et al. (1981); Fun et al. (2010); Hussain et al. (1996); Kokubun & Reuter (1984); Korany et al. (2011); Patel et al. (2002a, 2002b, 2002c); Ramesh, Subbiahpandi, Thirumurugan, Perumal & Ponnuswamy (2009); Ramesh, Sundaresan, Thirumurugan, Perumal & Ponnuswamy (2009); Suresh et al. (2007); Thummel (2008); Triggle et al. (1980); Wang et al. (1989); Xiong et al. (2007).

Structure description top

The title compounds, (I)–(III), belong to the cyclo­alkeno­pyridine class of compounds. It is observed that many naturally occurring biologically active compounds feature a cyclo­alkeno­pyridine ring as the basic skeleton. This observation prompted the development of a range of synthetic methods to prepare pharmaceuticals and agrochemicals containing the cyclo­alkeno­pyridine ring as an important building block (Thummel, 2008). The synthesis of hydrogenated compounds has been extensively studied due to their inter­esting biological properties. For example, derivatives of 1,4-di­hydro­pyridine exhibit high biological activities as calcium channel blockers (Bossert et al., 1981) and as calcium agonists or antagonists (Triggle et al., 1980; Kokubun & Reuter, 1984; Bossert & Vater, 1989; Wang et al., 1989; Alajarin et al., 1995). Cyclo­octane compounds exhibit moderate to high anti­bacterial and anti­fungal effects against pathogenic microorganisms. For example, 2-[(4-sulfonamido­phenyl)­methyl­idene]cyclo­octa­none has an excellent activity against Listeria monocytogenes (Korany et al., 2011). The above observations prompted us to synthesize the title compounds containing cyclo­alkeno­pyridine carbo­nitrile groups and substituted pyridine scaffolds and to determine their crystal structures.

In the molecular structures of (I) (Fig. 1), (II) (Fig. 2) and (III) (Fig. 3), the cyclo­octane ring adopts a twist-boat-chair conformation, as found in related structures (Xiong et al., 2007; Fun et al., 2010; Suresh et al., 2007).

The bond lengths and angles of the phenyl rings of (I)–(III) are consistent with those observed in similar structures (Patel et al., 2002a,b,c; Black et al., 1992; Hussain et al., 1996). The deviations of the nitrile atoms (C12 and N2) from the mean plane of the pyridine ring system (N1/C1/C8–C11) are -0.0422 (1) and -0.0896 (5) Å, respectively, in (I), -0.0081 (5) and -0.0416 (2) Å, respectively, in (II), and -0.0624 (4) and -0.1038 (1) Å, respectively, in (III), indicative of coplanarity.

The phenyl substituent at C9 of the pyridine ring has a (+)synclinal conformation in (I) and a (-)synclinal conformation in (II) and (III), which is evidenced by the C96—C91—C9—C10 torsion angles (see Tables 2, 3 and 4). The C10—C12 (Csp2—Csp) bonds in (I)–(III) tend towards aromatic bond lengths (see Table 1) rather than a σ-bond (~1.50 Å), presumably due to conjugation. However, the C12N2 bond lengths in (I)–(III) are apparently normal. The meth­oxy group in (I) and the eth­oxy group in (II) and (III) are coplanar with the plane of the attached pyridine ring, as can be seen from the C10—C11—O1—C13 and N1—C11—O1—C13 torsion angles. These torsion angles are similar to those in related structures (Ramesh, Subbiahpandi et al., 2009; Ramesh, Sundaresan et al., 2009).

There are phenyl–nitrile C—H···N inter­actions within the extended structures of (I) and (II) that are not present in (III). This inter­action results in a chain with graph-set motif of C(7) (Bernstein et al., 1995) (Figs. 4 and 5). The C92···N2i distance in (II) is noticeably lengthened compared with the same contact in (I) [see Tables 5, 6 and 7; symmetry code: (i) -x, y - 1/2, -z + 1/2]. However, the geometries of these hydrogen bonds remain essentially identical. The C···N contact in (II) is recognized as a perfect hydrogen bond, since the angle tends towards linearity.

In (I), a C92—H92···N2i inter­action links the molecules into pairs (Fig. 4). These pairs are further connected through a significant ππ stacking inter­action, Cg1···Cg1ii (Cg1 is the centroid of the pyridine ring), generating a linear chain, with Cg1···Cg1ii separations of 3.7526 (2) Å [symmetry code: (ii) -x, -y, -z + 1].

In the crystal structure of (II) (Fig. 5), atom C94 of the nitro­phenyl ring is involved in weak inter­molecular C94···H94···N2ii inter­action with cyano atom N2 of an inversion-related molecule, forming a hydrogen-bonded dimer and generating an R22(18) graph-set motif; these motifs are in turn linked through the C92—H92···N2i inter­action [symmetry codes: (i) -x, y - 1/2, -z + 1/2; (ii) -x, -y + 1, -z]. Meth­oxy atom C14 is involved in a C14—H14···O2iii inter­action with nitro atom O2 of a symmetry-related molecule, generating a continuous parallel double chain with graph-set motif C(12) [symmetry code: (iii) x, y, z + 1].

The crystal structure of (III) (Fig. 6) has bifurcated intra­molecular C—H···O inter­actions. An inter­molecular C97—H97A···O2ii inter­action links inversion-related molecules into an aggregate, forming an R22(6) ring motif [symmetry code: (ii) -x + 1, -y, -z + 1] [Not the same definition as given in caption to Fig. 6 - please clarify]. An inter­molecular C92—H92···O1i inter­action forms a chain pattern running along the a axis generating a C(7) graph-set motif [symmetry code: (i) x - 1, y, z].

For related literature, see: Alajarin et al. (1995); Bernstein et al. (1995); Black et al. (1992); Bossert & Vater (1989); Bossert et al. (1981); Fun et al. (2010); Hussain et al. (1996); Kokubun & Reuter (1984); Korany et al. (2011); Patel et al. (2002a, 2002b, 2002c); Ramesh, Subbiahpandi, Thirumurugan, Perumal & Ponnuswamy (2009); Ramesh, Sundaresan, Thirumurugan, Perumal & Ponnuswamy (2009); Suresh et al. (2007); Thummel (2008); Triggle et al. (1980); Wang et al. (1989); Xiong et al. (2007).

Synthesis and crystallization top

The solvent used in the reaction is incorporated in the product at position 2. In (I), methanol was used, whereas in (II) and (III) ethanol was the solvent.

The general reaction procedure is as follows. A mixture of cyclo­octa­none (1 mmol), 4-meth­oxy­benzaldehyde/3-nitro­benzaldehyde (1 mmol), malono­nitrile (1 mmol) and lithium ethoxide (1 equivalent) was heated to reflux in methanol or ethanol (10 ml) for 2–3 h. After completion of the reaction, as evidenced by thin-layer chromatograpy, the reaction mixture was poured into crushed ice and the resultant precipitate was extracted with ethyl acetate. The excess solvent was removed under vacuum and the residue was subjected to column chromatography using a petroleum ether–ethyl acetate mixture (95:5 v/v) as eluent to obtain the pure products. For (I), yield 74%, m.p. 460–461 K; for (II), yield 64%, m.p. 394–396 K; for (III), yield 65%, m.p. 399–400 K.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were placed at calculated positions and allowed to ride on their carrier atoms, with C—H = 0.93–0.98 Å, and with Uiso = 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) otherwise. In (III), atoms C4 and C5 of the cyclo­octane ring are each disordered over two sites and were refined with site-occupancy factors of 0.652 (9) and 0.348 (9).

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. The molecular structure of (II), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 3. The molecular structure of (III), showing 30% probability displacement ellipsoids and the atom-numbering scheme. The minor disorder components of atoms C4 (C4') and C5 (C5') are indicated by dashed lines. [Added text OK?]

Fig. 4. A partial packing view of (I). A pair of molecules are interconnected through a ππ stacking interaction (dotted lines; symmetry code: -x, -y, -z + 1) and further linked through a C—H···N interaction (dashed lines), generating C(7) chain motifs. [Symmetry code: (i) x + 1, y, z.]

Fig. 5. A partial packing view of (II). Two C—H···N interactions are shown (dashed lines), one forming an inversion-related dimer generating an R22(18) motif [symmetry code: (ii) -x, -y + 1, -z] and the other linked by a C(7) motif [symmetry code: (i) x + 1, y, z]. A C14—H14···O2 interaction (dashed lines) forms a C(12) motif that lies along the c axis of the unit cell [symmetry code: (iii) x, y, z + 1]. [No symmetry code iii visible - please clarify]

Fig. 6. A partial packing view of (III). A C14—H14···O2 [labels are C97—H97A···O2ii - please clarify] interaction (dashed lines) generates an R22(6) ring motif [symmetry code: (i) -x, -y + 1, -z]. A C92—H92···O1i interaction (dashed lines) forms a C(7) motif that lies along the a axis of the unit cell [rymmetry code: (ii) x - 1, y, z].
(I) 2-Methoxy-4-(4-methoxyphenyl)-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine-3-carbonitrile top
Crystal data top
C20H22N2O2F(000) = 688
Mr = 322.40Dx = 1.272 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2000 reflections
a = 9.1018 (3) Åθ = 2–27°
b = 13.6319 (4) ŵ = 0.08 mm1
c = 13.5920 (4) ÅT = 293 K
β = 93.545 (2)°Block, colourless
V = 1683.20 (9) Å30.24 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3312 independent reflections
Radiation source: fine-focus sealed tube2605 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 0 pixels mm-1θmax = 26.0°, θmin = 2.1°
ω and φ scansh = 911
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1616
Tmin = 0.983, Tmax = 0.984l = 1616
14067 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.2615P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3312 reflectionsΔρmax = 0.17 e Å3
220 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0068 (15)
Crystal data top
C20H22N2O2V = 1683.20 (9) Å3
Mr = 322.40Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.1018 (3) ŵ = 0.08 mm1
b = 13.6319 (4) ÅT = 293 K
c = 13.5920 (4) Å0.24 × 0.22 × 0.20 mm
β = 93.545 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3312 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2605 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.984Rint = 0.028
14067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
3312 reflectionsΔρmin = 0.13 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.01417 (15)0.15522 (9)0.53767 (9)0.0416 (3)
C20.06148 (18)0.19261 (10)0.62518 (10)0.0529 (4)
H2A0.05980.14200.67540.064*
H2B0.16360.20670.60560.064*
C30.0114 (2)0.28537 (11)0.66878 (11)0.0615 (4)
H3A0.04360.30710.72360.074*
H3B0.11000.26890.69470.074*
C40.02150 (18)0.36973 (11)0.59681 (11)0.0566 (4)
H4A0.09390.35290.55010.068*
H4B0.05780.42690.63310.068*
C50.12138 (18)0.39771 (11)0.53902 (11)0.0562 (4)
H5A0.20320.37300.57420.067*
H5B0.12890.46870.53770.067*
C60.13748 (18)0.36008 (11)0.43330 (11)0.0546 (4)
H6A0.05020.37920.40060.066*
H6B0.22050.39350.40000.066*
C70.15963 (15)0.24967 (10)0.41844 (10)0.0479 (3)
H7A0.23790.22890.45900.058*
H7B0.19370.23880.35030.058*
C80.02809 (14)0.18353 (9)0.44138 (9)0.0389 (3)
C90.05028 (13)0.14299 (8)0.36540 (9)0.0357 (3)
C100.16528 (14)0.07805 (9)0.38998 (9)0.0379 (3)
C110.19909 (14)0.05635 (9)0.48967 (9)0.0409 (3)
C120.24790 (14)0.03207 (9)0.31657 (9)0.0408 (3)
C130.34950 (18)0.02813 (12)0.61122 (11)0.0583 (4)
H13A0.37780.03120.64550.087*
H13B0.43000.07370.61570.087*
H13C0.26610.05650.64050.087*
C910.01389 (13)0.16478 (9)0.25910 (9)0.0366 (3)
C920.04014 (15)0.25691 (9)0.21951 (10)0.0431 (3)
H920.07800.30670.26050.052*
C930.01094 (15)0.27545 (10)0.12073 (10)0.0465 (3)
H930.03050.33710.09530.056*
C940.04749 (14)0.20262 (10)0.05899 (9)0.0430 (3)
C950.07455 (15)0.11079 (10)0.09681 (9)0.0450 (3)
H950.11340.06140.05580.054*
C960.04344 (15)0.09281 (9)0.19631 (9)0.0426 (3)
H960.06160.03080.22140.051*
C970.1339 (2)0.15810 (14)0.10359 (11)0.0693 (5)
H97A0.06700.10390.10670.104*
H97B0.15000.18670.16790.104*
H97C0.22590.13530.08120.104*
N10.12650 (13)0.09321 (8)0.56144 (8)0.0439 (3)
N20.31438 (14)0.00665 (9)0.25930 (9)0.0555 (3)
O10.31150 (11)0.00624 (8)0.50960 (7)0.0537 (3)
O20.07348 (13)0.22916 (8)0.03738 (7)0.0627 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0499 (8)0.0371 (7)0.0383 (7)0.0094 (6)0.0072 (6)0.0019 (5)
C20.0710 (10)0.0479 (8)0.0418 (7)0.0061 (7)0.0186 (7)0.0004 (6)
C30.0879 (12)0.0550 (9)0.0421 (8)0.0043 (8)0.0094 (8)0.0091 (7)
C40.0680 (10)0.0472 (8)0.0551 (9)0.0094 (7)0.0073 (7)0.0076 (7)
C50.0651 (10)0.0433 (8)0.0616 (9)0.0007 (7)0.0141 (7)0.0064 (7)
C60.0583 (9)0.0482 (8)0.0573 (9)0.0115 (7)0.0037 (7)0.0021 (7)
C70.0440 (8)0.0511 (8)0.0488 (8)0.0012 (6)0.0031 (6)0.0078 (6)
C80.0407 (7)0.0355 (6)0.0408 (7)0.0061 (5)0.0038 (5)0.0036 (5)
C90.0384 (7)0.0323 (6)0.0361 (6)0.0064 (5)0.0001 (5)0.0018 (5)
C100.0409 (7)0.0372 (7)0.0356 (6)0.0040 (5)0.0022 (5)0.0006 (5)
C110.0437 (7)0.0393 (7)0.0391 (7)0.0040 (6)0.0014 (5)0.0038 (5)
C120.0426 (7)0.0404 (7)0.0392 (7)0.0012 (6)0.0003 (6)0.0041 (5)
C130.0603 (9)0.0637 (9)0.0488 (8)0.0056 (7)0.0127 (7)0.0166 (7)
C910.0373 (7)0.0373 (6)0.0351 (6)0.0012 (5)0.0012 (5)0.0007 (5)
C920.0491 (8)0.0379 (7)0.0418 (7)0.0027 (6)0.0006 (6)0.0028 (5)
C930.0548 (8)0.0392 (7)0.0455 (7)0.0014 (6)0.0028 (6)0.0069 (6)
C940.0436 (7)0.0503 (8)0.0349 (6)0.0056 (6)0.0012 (5)0.0035 (5)
C950.0505 (8)0.0454 (7)0.0384 (7)0.0028 (6)0.0033 (6)0.0064 (6)
C960.0503 (8)0.0365 (7)0.0407 (7)0.0028 (6)0.0002 (6)0.0007 (5)
C970.0867 (12)0.0876 (12)0.0330 (7)0.0011 (10)0.0018 (7)0.0023 (8)
N10.0532 (7)0.0436 (6)0.0349 (6)0.0062 (5)0.0024 (5)0.0020 (4)
N20.0590 (8)0.0597 (8)0.0484 (7)0.0113 (6)0.0080 (6)0.0010 (6)
O10.0534 (6)0.0635 (6)0.0434 (5)0.0102 (5)0.0034 (4)0.0110 (4)
O20.0832 (8)0.0671 (7)0.0369 (5)0.0011 (6)0.0053 (5)0.0075 (5)
Geometric parameters (Å, º) top
C1—N11.3503 (17)C10—C111.4023 (17)
C1—C81.3956 (17)C10—C121.4306 (18)
C1—C21.5000 (18)C11—N11.3115 (17)
C2—C31.530 (2)C11—O11.3468 (16)
C2—H2A0.9700C12—N21.1441 (17)
C2—H2B0.9700C13—O11.4343 (16)
C3—C41.516 (2)C13—H13A0.9600
C3—H3A0.9700C13—H13B0.9600
C3—H3B0.9700C13—H13C0.9600
C4—C51.526 (2)C91—C961.3813 (17)
C4—H4A0.9700C91—C921.3928 (18)
C4—H4B0.9700C92—C931.3758 (18)
C5—C61.524 (2)C92—H920.9300
C5—H5A0.9700C93—C941.3847 (19)
C5—H5B0.9700C93—H930.9300
C6—C71.530 (2)C94—O21.3654 (15)
C6—H6A0.9700C94—C951.3812 (19)
C6—H6B0.9700C95—C961.3863 (18)
C7—C81.5157 (19)C95—H950.9300
C7—H7A0.9700C96—H960.9300
C7—H7B0.9700C97—O21.411 (2)
C8—C91.4042 (17)C97—H97A0.9600
C9—C101.3956 (17)C97—H97B0.9600
C9—C911.4921 (16)C97—H97C0.9600
N1—C1—C8123.93 (12)C10—C9—C91118.45 (10)
N1—C1—C2113.63 (12)C8—C9—C91122.78 (11)
C8—C1—C2122.43 (13)C9—C10—C11118.79 (11)
C1—C2—C3112.25 (12)C9—C10—C12121.99 (11)
C1—C2—H2A109.2C11—C10—C12119.21 (12)
C3—C2—H2A109.2N1—C11—O1120.30 (11)
C1—C2—H2B109.2N1—C11—C10123.18 (12)
C3—C2—H2B109.2O1—C11—C10116.52 (12)
H2A—C2—H2B107.9N2—C12—C10178.35 (14)
C4—C3—C2114.78 (12)O1—C13—H13A109.5
C4—C3—H3A108.6O1—C13—H13B109.5
C2—C3—H3A108.6H13A—C13—H13B109.5
C4—C3—H3B108.6O1—C13—H13C109.5
C2—C3—H3B108.6H13A—C13—H13C109.5
H3A—C3—H3B107.5H13B—C13—H13C109.5
C3—C4—C5115.98 (14)C96—C91—C92117.97 (11)
C3—C4—H4A108.3C96—C91—C9120.64 (11)
C5—C4—H4A108.3C92—C91—C9121.37 (11)
C3—C4—H4B108.3C93—C92—C91121.01 (12)
C5—C4—H4B108.3C93—C92—H92119.5
H4A—C4—H4B107.4C91—C92—H92119.5
C6—C5—C4115.49 (13)C92—C93—C94120.23 (12)
C6—C5—H5A108.4C92—C93—H93119.9
C4—C5—H5A108.4C94—C93—H93119.9
C6—C5—H5B108.4O2—C94—C95124.95 (12)
C4—C5—H5B108.4O2—C94—C93115.38 (12)
H5A—C5—H5B107.5C95—C94—C93119.66 (12)
C5—C6—C7117.36 (13)C94—C95—C96119.53 (12)
C5—C6—H6A108.0C94—C95—H95120.2
C7—C6—H6A108.0C96—C95—H95120.2
C5—C6—H6B108.0C91—C96—C95121.59 (12)
C7—C6—H6B108.0C91—C96—H96119.2
H6A—C6—H6B107.2C95—C96—H96119.2
C8—C7—C6117.52 (12)O2—C97—H97A109.5
C8—C7—H7A107.9O2—C97—H97B109.5
C6—C7—H7A107.9H97A—C97—H97B109.5
C8—C7—H7B107.9O2—C97—H97C109.5
C6—C7—H7B107.9H97A—C97—H97C109.5
H7A—C7—H7B107.2H97B—C97—H97C109.5
C1—C8—C9117.25 (12)C11—N1—C1118.08 (11)
C1—C8—C7121.72 (11)C11—O1—C13117.41 (11)
C9—C8—C7120.90 (11)C94—O2—C97117.88 (12)
C10—C9—C8118.76 (11)
N1—C1—C2—C387.92 (15)C12—C10—C11—O11.29 (18)
C8—C1—C2—C391.42 (17)C10—C9—C91—C9666.95 (16)
C1—C2—C3—C456.67 (19)C8—C9—C91—C96111.77 (14)
C2—C3—C4—C551.18 (19)C10—C9—C91—C92111.28 (14)
C3—C4—C5—C6101.25 (16)C8—C9—C91—C9270.01 (17)
C4—C5—C6—C769.96 (18)C96—C91—C92—C930.50 (19)
C5—C6—C7—C872.66 (18)C9—C91—C92—C93177.77 (12)
N1—C1—C8—C91.24 (18)C91—C92—C93—C941.0 (2)
C2—C1—C8—C9179.49 (11)C92—C93—C94—O2179.40 (12)
N1—C1—C8—C7177.09 (12)C92—C93—C94—C950.9 (2)
C2—C1—C8—C73.64 (19)O2—C94—C95—C96179.98 (12)
C6—C7—C8—C180.76 (17)C93—C94—C95—C960.3 (2)
C6—C7—C8—C9103.54 (14)C92—C91—C96—C950.1 (2)
C1—C8—C9—C100.46 (17)C9—C91—C96—C95178.35 (12)
C7—C8—C9—C10176.35 (11)C94—C95—C96—C910.2 (2)
C1—C8—C9—C91178.25 (11)O1—C11—N1—C1179.65 (11)
C7—C8—C9—C912.36 (18)C10—C11—N1—C10.20 (19)
C8—C9—C10—C110.53 (17)C8—C1—N1—C110.91 (19)
C91—C9—C10—C11179.30 (11)C2—C1—N1—C11179.76 (11)
C8—C9—C10—C12178.53 (11)N1—C11—O1—C131.54 (18)
C91—C9—C10—C120.24 (17)C10—C11—O1—C13178.97 (12)
C9—C10—C11—N10.91 (19)C95—C94—O2—C970.7 (2)
C12—C10—C11—N1178.18 (12)C93—C94—O2—C97179.58 (14)
C9—C10—C11—O1179.62 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C92—H92···N2i0.932.753.490 (2)138
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
(II) 2-Ethoxy-4-(3-nitrophenyl)-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine-3-carbonitrile top
Crystal data top
C20H21N3O3F(000) = 744
Mr = 351.40Dx = 1.276 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 13.2948 (6) Åθ = 2–26°
b = 11.0251 (4) ŵ = 0.09 mm1
c = 14.0788 (5) ÅT = 293 K
β = 117.566 (2)°Block, colourless
V = 1829.36 (12) Å30.21 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3399 independent reflections
Radiation source: fine-focus sealed tube2571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 2.5°
ω and φ scansh = 1216
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1313
Tmin = 0.980, Tmax = 0.984l = 1711
16156 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.3091P]
where P = (Fo2 + 2Fc2)/3
3399 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H21N3O3V = 1829.36 (12) Å3
Mr = 351.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2948 (6) ŵ = 0.09 mm1
b = 11.0251 (4) ÅT = 293 K
c = 14.0788 (5) Å0.21 × 0.20 × 0.19 mm
β = 117.566 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3399 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2571 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.984Rint = 0.030
16156 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.07Δρmax = 0.30 e Å3
3399 reflectionsΔρmin = 0.23 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.36597 (13)0.41011 (14)0.52565 (12)0.0452 (4)
C20.46750 (15)0.34889 (16)0.61207 (13)0.0547 (4)
H2A0.48830.39090.67910.066*
H2B0.53050.35660.59560.066*
C30.45028 (17)0.21487 (17)0.62719 (14)0.0627 (5)
H3A0.50920.19000.69700.075*
H3B0.37810.20600.62810.075*
C40.45164 (18)0.12803 (17)0.54357 (16)0.0677 (5)
H4A0.52170.14060.53940.081*
H4B0.45310.04580.56860.081*
C50.35358 (17)0.13832 (16)0.43116 (16)0.0640 (5)
H5A0.32990.05710.40340.077*
H5B0.29040.17650.43600.077*
C60.37691 (17)0.20869 (16)0.35095 (15)0.0595 (5)
H6A0.30860.20840.28270.071*
H6B0.43520.16640.34090.071*
C70.41459 (15)0.33994 (15)0.38117 (13)0.0503 (4)
H7A0.49220.34070.43790.060*
H7B0.41330.38090.31960.060*
C80.34122 (13)0.40896 (13)0.41786 (12)0.0432 (4)
C90.24267 (13)0.46828 (13)0.34510 (12)0.0424 (4)
C100.17521 (13)0.52697 (14)0.38253 (12)0.0451 (4)
C110.20782 (14)0.52080 (15)0.49244 (13)0.0494 (4)
C120.07292 (16)0.58885 (15)0.31150 (13)0.0506 (4)
C130.1672 (2)0.5605 (2)0.63766 (16)0.0784 (6)
H13A0.24600.58120.68370.094*
H13B0.15510.47690.65130.094*
C140.0923 (2)0.64137 (19)0.65899 (17)0.0779 (6)
H14A0.10650.72390.64710.117*
H14B0.10680.63180.73200.117*
H14C0.01460.62130.61180.117*
C910.20771 (12)0.46913 (14)0.22788 (12)0.0442 (4)
C920.13633 (16)0.38019 (17)0.16128 (15)0.0617 (5)
H920.10840.32040.18940.074*
C930.10621 (17)0.3797 (2)0.05310 (17)0.0750 (6)
H930.05900.31900.00930.090*
C940.14530 (17)0.4679 (2)0.00973 (14)0.0680 (6)
H940.12470.46810.06300.082*
C950.21497 (14)0.55493 (17)0.07608 (13)0.0541 (4)
C960.24723 (13)0.55742 (15)0.18423 (12)0.0464 (4)
H960.29520.61810.22740.056*
N10.29927 (12)0.46418 (12)0.56137 (10)0.0510 (3)
N30.26034 (18)0.64955 (18)0.03254 (14)0.0762 (5)
N20.00905 (15)0.63649 (15)0.25574 (13)0.0691 (4)
O10.13996 (11)0.57615 (12)0.52573 (9)0.0633 (4)
O20.2225 (2)0.65610 (18)0.06352 (13)0.1267 (8)
O30.33311 (16)0.71707 (19)0.09448 (15)0.1031 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0487 (9)0.0458 (8)0.0422 (8)0.0024 (7)0.0219 (7)0.0005 (7)
C20.0538 (10)0.0650 (10)0.0421 (9)0.0037 (8)0.0195 (8)0.0010 (8)
C30.0697 (12)0.0686 (11)0.0517 (10)0.0151 (9)0.0296 (9)0.0147 (9)
C40.0848 (14)0.0555 (10)0.0706 (13)0.0134 (10)0.0426 (12)0.0117 (9)
C50.0777 (13)0.0489 (9)0.0726 (13)0.0017 (9)0.0409 (11)0.0024 (9)
C60.0693 (11)0.0592 (10)0.0566 (10)0.0074 (9)0.0347 (9)0.0042 (8)
C70.0539 (9)0.0563 (9)0.0475 (9)0.0049 (8)0.0290 (8)0.0041 (7)
C80.0460 (9)0.0434 (8)0.0421 (8)0.0030 (7)0.0219 (7)0.0005 (6)
C90.0476 (9)0.0415 (8)0.0407 (8)0.0063 (7)0.0227 (7)0.0032 (6)
C100.0491 (9)0.0469 (8)0.0415 (9)0.0014 (7)0.0230 (7)0.0007 (7)
C110.0583 (10)0.0523 (9)0.0452 (9)0.0044 (8)0.0304 (8)0.0003 (7)
C120.0578 (10)0.0548 (9)0.0449 (9)0.0042 (8)0.0287 (9)0.0002 (8)
C130.1018 (16)0.0961 (15)0.0561 (11)0.0344 (13)0.0524 (12)0.0201 (11)
C140.1026 (16)0.0831 (14)0.0646 (12)0.0099 (12)0.0527 (13)0.0007 (11)
C910.0423 (8)0.0516 (9)0.0389 (8)0.0027 (7)0.0191 (7)0.0041 (7)
C920.0595 (11)0.0641 (11)0.0582 (11)0.0098 (9)0.0245 (9)0.0140 (9)
C930.0622 (12)0.0878 (14)0.0568 (12)0.0054 (11)0.0122 (10)0.0334 (11)
C940.0644 (12)0.0950 (15)0.0362 (9)0.0212 (11)0.0160 (9)0.0072 (10)
C950.0521 (10)0.0729 (11)0.0375 (9)0.0194 (9)0.0209 (8)0.0081 (8)
C960.0442 (8)0.0572 (9)0.0349 (8)0.0048 (7)0.0157 (7)0.0011 (7)
N10.0595 (8)0.0560 (8)0.0401 (7)0.0062 (7)0.0254 (7)0.0026 (6)
N30.0924 (14)0.0938 (13)0.0529 (11)0.0309 (11)0.0425 (10)0.0276 (10)
N20.0669 (10)0.0798 (11)0.0576 (10)0.0188 (9)0.0263 (9)0.0075 (8)
O10.0737 (8)0.0818 (8)0.0452 (7)0.0237 (7)0.0367 (6)0.0083 (6)
O20.204 (2)0.1275 (15)0.0590 (10)0.0287 (15)0.0699 (13)0.0315 (10)
O30.0989 (12)0.1287 (15)0.0851 (12)0.0155 (12)0.0455 (10)0.0329 (11)
Geometric parameters (Å, º) top
C1—N11.344 (2)C10—C121.434 (2)
C1—C81.396 (2)C11—N11.311 (2)
C1—C21.496 (2)C11—O11.3406 (19)
C2—C31.525 (3)C12—N21.135 (2)
C2—H2A0.9700C13—O11.455 (2)
C2—H2B0.9700C13—C141.468 (3)
C3—C41.524 (3)C13—H13A0.9700
C3—H3A0.9700C13—H13B0.9700
C3—H3B0.9700C14—H14A0.9600
C4—C51.519 (3)C14—H14B0.9600
C4—H4A0.9700C14—H14C0.9600
C4—H4B0.9700C91—C961.378 (2)
C5—C61.516 (3)C91—C921.385 (2)
C5—H5A0.9700C92—C931.384 (3)
C5—H5B0.9700C92—H920.9300
C6—C71.526 (2)C93—C941.372 (3)
C6—H6A0.9700C93—H930.9300
C6—H6B0.9700C94—C951.360 (3)
C7—C81.505 (2)C94—H940.9300
C7—H7A0.9700C95—C961.378 (2)
C7—H7B0.9700C95—N31.473 (3)
C8—C91.397 (2)C96—H960.9300
C9—C101.392 (2)N3—O21.207 (2)
C9—C911.493 (2)N3—O31.212 (2)
C10—C111.402 (2)
N1—C1—C8123.10 (14)C8—C9—C91121.33 (13)
N1—C1—C2113.51 (13)C9—C10—C11118.09 (14)
C8—C1—C2123.37 (14)C9—C10—C12121.76 (14)
C1—C2—C3114.42 (15)C11—C10—C12120.12 (14)
C1—C2—H2A108.7N1—C11—O1120.12 (14)
C3—C2—H2A108.7N1—C11—C10123.18 (14)
C1—C2—H2B108.7O1—C11—C10116.70 (14)
C3—C2—H2B108.7N2—C12—C10178.85 (19)
H2A—C2—H2B107.6O1—C13—C14107.30 (16)
C4—C3—C2116.40 (15)O1—C13—H13A110.3
C4—C3—H3A108.2C14—C13—H13A110.3
C2—C3—H3A108.2O1—C13—H13B110.3
C4—C3—H3B108.2C14—C13—H13B110.3
C2—C3—H3B108.2H13A—C13—H13B108.5
H3A—C3—H3B107.3C13—C14—H14A109.5
C5—C4—C3116.53 (16)C13—C14—H14B109.5
C5—C4—H4A108.2H14A—C14—H14B109.5
C3—C4—H4A108.2C13—C14—H14C109.5
C5—C4—H4B108.2H14A—C14—H14C109.5
C3—C4—H4B108.2H14B—C14—H14C109.5
H4A—C4—H4B107.3C96—C91—C92118.77 (15)
C6—C5—C4116.21 (17)C96—C91—C9120.61 (14)
C6—C5—H5A108.2C92—C91—C9120.61 (15)
C4—C5—H5A108.2C93—C92—C91120.42 (18)
C6—C5—H5B108.2C93—C92—H92119.8
C4—C5—H5B108.2C91—C92—H92119.8
H5A—C5—H5B107.4C94—C93—C92120.73 (18)
C5—C6—C7115.57 (14)C94—C93—H93119.6
C5—C6—H6A108.4C92—C93—H93119.6
C7—C6—H6A108.4C95—C94—C93118.17 (16)
C5—C6—H6B108.4C95—C94—H94120.9
C7—C6—H6B108.4C93—C94—H94120.9
H6A—C6—H6B107.4C94—C95—C96122.53 (18)
C8—C7—C6113.20 (13)C94—C95—N3119.57 (16)
C8—C7—H7A108.9C96—C95—N3117.89 (17)
C6—C7—H7A108.9C95—C96—C91119.38 (16)
C8—C7—H7B108.9C95—C96—H96120.3
C6—C7—H7B108.9C91—C96—H96120.3
H7A—C7—H7B107.8C11—N1—C1118.73 (13)
C1—C8—C9117.52 (13)O2—N3—O3123.3 (2)
C1—C8—C7120.91 (14)O2—N3—C95118.0 (2)
C9—C8—C7121.47 (13)O3—N3—C95118.65 (16)
C10—C9—C8119.33 (14)C11—O1—C13117.02 (14)
C10—C9—C91119.33 (14)
N1—C1—C2—C393.08 (17)C10—C9—C91—C9692.78 (18)
C8—C1—C2—C385.51 (19)C8—C9—C91—C9687.75 (19)
C1—C2—C3—C475.8 (2)C10—C9—C91—C9288.19 (19)
C2—C3—C4—C567.7 (2)C8—C9—C91—C9291.29 (19)
C3—C4—C5—C699.8 (2)C96—C91—C92—C930.5 (3)
C4—C5—C6—C758.5 (2)C9—C91—C92—C93178.51 (16)
C5—C6—C7—C847.9 (2)C91—C92—C93—C940.8 (3)
N1—C1—C8—C90.6 (2)C92—C93—C94—C950.5 (3)
C2—C1—C8—C9179.08 (14)C93—C94—C95—C960.0 (3)
N1—C1—C8—C7175.83 (14)C93—C94—C95—N3178.77 (17)
C2—C1—C8—C72.6 (2)C94—C95—C96—C910.2 (2)
C6—C7—C8—C189.35 (19)N3—C95—C96—C91179.02 (14)
C6—C7—C8—C986.96 (18)C92—C91—C96—C950.0 (2)
C1—C8—C9—C101.1 (2)C9—C91—C96—C95179.01 (14)
C7—C8—C9—C10177.51 (14)O1—C11—N1—C1179.64 (14)
C1—C8—C9—C91178.40 (14)C10—C11—N1—C10.6 (2)
C7—C8—C9—C912.0 (2)C8—C1—N1—C111.5 (2)
C8—C9—C10—C111.9 (2)C2—C1—N1—C11179.93 (15)
C91—C9—C10—C11177.63 (14)C94—C95—N3—O29.4 (3)
C8—C9—C10—C12179.72 (14)C96—C95—N3—O2171.74 (18)
C91—C9—C10—C120.2 (2)C94—C95—N3—O3170.87 (19)
C9—C10—C11—N11.1 (2)C96—C95—N3—O38.0 (3)
C12—C10—C11—N1178.95 (16)N1—C11—O1—C135.4 (3)
C9—C10—C11—O1178.71 (14)C10—C11—O1—C13174.34 (17)
C12—C10—C11—O10.8 (2)C14—C13—O1—C11172.45 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C92—H92···N2i0.932.723.644 (2)172
C94—H94···N2ii0.932.683.508 (2)148
C14—H14B···O2iii0.962.573.468 (3)155
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z; (iii) x, y, z+1.
(III) 2-Ethoxy-4-(4-methoxyphenyl)-5,6,7,8,9,10-hexahydrocycloocta[b]pyridine-3-carbonitrile top
Crystal data top
C21H24N2O2F(000) = 720
Mr = 336.42Dx = 1.211 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 6.9763 (4) Åθ = 2–26°
b = 17.8163 (8) ŵ = 0.08 mm1
c = 14.9545 (8) ÅT = 293 K
β = 96.751 (2)°Block, colourless
V = 1845.83 (17) Å30.23 × 0.21 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII are-detector
diffractometer
3433 independent reflections
Radiation source: fine-focus sealed tube2330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 2.3°
ω and φ scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1521
Tmin = 0.982, Tmax = 0.986l = 1818
17391 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.3095P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3432 reflectionsΔρmax = 0.16 e Å3
247 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (2)
Crystal data top
C21H24N2O2V = 1845.83 (17) Å3
Mr = 336.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9763 (4) ŵ = 0.08 mm1
b = 17.8163 (8) ÅT = 293 K
c = 14.9545 (8) Å0.23 × 0.21 × 0.18 mm
β = 96.751 (2)°
Data collection top
Bruker Kappa APEXII are-detector
diffractometer
3433 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2330 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.986Rint = 0.034
17391 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.16 e Å3
3432 reflectionsΔρmin = 0.14 e Å3
247 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C40.3917 (7)0.0614 (3)0.3831 (3)0.0767 (18)0.650 (10)
H4A0.40610.11540.37920.092*0.650 (10)
H4B0.50630.04170.41830.092*0.650 (10)
C50.2144 (9)0.0436 (4)0.4314 (4)0.0824 (16)0.650 (10)
H5A0.25810.02820.49270.099*0.650 (10)
H5B0.14590.00160.40140.099*0.650 (10)
C4'0.2985 (15)0.0132 (6)0.3829 (6)0.084 (3)0.350 (10)
H4'A0.163 (6)0.0141 (15)0.3720 (8)0.101*0.350 (10)
H4'B0.395 (5)0.0229 (19)0.4218 (18)0.101*0.350 (10)
C5'0.2768 (14)0.0850 (7)0.4349 (6)0.077 (3)0.350 (10)
H5'A0.33260.07760.49680.092*0.350 (10)
H5'B0.34940.12440.40950.092*0.350 (10)
C10.1900 (2)0.13976 (9)0.22592 (11)0.0462 (4)
C20.2111 (3)0.05650 (9)0.22168 (13)0.0581 (5)
H2A0.23350.04220.16120.070*
H2B0.09190.03300.23450.070*
C30.3762 (3)0.02800 (12)0.28812 (15)0.0781 (6)
H3A0.49620.03780.26340.094*
H3B0.36360.02600.29300.094*
C60.0715 (3)0.11027 (12)0.43436 (13)0.0763 (6)
H6A0.01990.09800.47630.092*
H6B0.14340.15410.45760.092*
C70.0406 (3)0.13033 (10)0.34406 (12)0.0580 (5)
H7A0.08460.08430.31360.070*
H7B0.15390.15890.35480.070*
C80.0726 (2)0.17505 (9)0.28252 (11)0.0447 (4)
C90.0722 (2)0.25347 (9)0.28436 (10)0.0412 (4)
C100.1861 (2)0.29233 (8)0.22914 (10)0.0425 (4)
C110.3014 (2)0.25129 (9)0.17668 (10)0.0450 (4)
C120.1862 (2)0.37244 (11)0.22536 (12)0.0519 (4)
C130.5493 (3)0.25098 (12)0.07986 (15)0.0738 (6)
H13A0.48110.22900.02590.089*
H13B0.61010.21090.11690.089*
C140.6963 (3)0.30398 (13)0.05557 (15)0.0805 (7)
H14A0.78630.27800.02280.121*
H14B0.76360.32530.10930.121*
H14C0.63490.34330.01870.121*
C910.0421 (2)0.29784 (8)0.34408 (10)0.0422 (4)
C920.2375 (2)0.30997 (11)0.32232 (11)0.0583 (5)
H920.30100.28820.27060.070*
C930.3392 (3)0.35351 (11)0.37575 (12)0.0619 (5)
H930.47030.36160.35940.074*
C940.2495 (3)0.38536 (9)0.45333 (11)0.0517 (4)
C950.0566 (3)0.37365 (10)0.47637 (12)0.0584 (5)
H950.00590.39470.52880.070*
C960.0453 (2)0.33042 (10)0.42164 (12)0.0558 (5)
H960.17690.32310.43770.067*
C970.2842 (3)0.45843 (13)0.58435 (14)0.0813 (7)
H97A0.38140.48600.61080.122*
H97B0.18080.49160.57370.122*
H97C0.23500.41910.62460.122*
N10.30327 (19)0.17777 (8)0.17410 (9)0.0486 (4)
N20.1864 (2)0.43630 (10)0.22199 (13)0.0786 (5)
O10.41666 (17)0.29140 (6)0.12873 (8)0.0588 (4)
O20.3659 (2)0.42667 (8)0.50144 (9)0.0728 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C40.074 (3)0.077 (3)0.077 (3)0.018 (3)0.002 (2)0.019 (2)
C50.101 (4)0.074 (4)0.074 (3)0.014 (3)0.017 (2)0.024 (3)
C4'0.095 (6)0.067 (6)0.087 (5)0.008 (5)0.005 (4)0.014 (4)
C5'0.089 (6)0.069 (7)0.071 (4)0.002 (5)0.001 (4)0.006 (4)
C10.0453 (9)0.0424 (10)0.0510 (9)0.0013 (7)0.0068 (7)0.0020 (7)
C20.0660 (12)0.0411 (11)0.0698 (12)0.0003 (8)0.0189 (9)0.0068 (8)
C30.0842 (15)0.0621 (14)0.0901 (16)0.0247 (11)0.0196 (12)0.0065 (11)
C60.0966 (17)0.0705 (15)0.0671 (13)0.0069 (12)0.0321 (12)0.0141 (10)
C70.0590 (11)0.0438 (11)0.0758 (12)0.0006 (8)0.0273 (9)0.0036 (9)
C80.0415 (9)0.0408 (10)0.0523 (9)0.0001 (7)0.0086 (7)0.0005 (7)
C90.0366 (8)0.0421 (10)0.0445 (9)0.0014 (7)0.0036 (7)0.0008 (7)
C100.0403 (8)0.0378 (10)0.0500 (9)0.0016 (7)0.0075 (7)0.0005 (7)
C110.0421 (9)0.0454 (11)0.0485 (9)0.0011 (7)0.0099 (7)0.0020 (7)
C120.0459 (10)0.0461 (12)0.0660 (11)0.0015 (8)0.0169 (8)0.0019 (8)
C130.0742 (13)0.0734 (14)0.0824 (14)0.0078 (10)0.0456 (11)0.0175 (11)
C140.0745 (14)0.0931 (17)0.0806 (15)0.0051 (12)0.0368 (12)0.0017 (12)
C910.0414 (9)0.0377 (9)0.0486 (9)0.0022 (7)0.0100 (7)0.0011 (7)
C920.0459 (10)0.0800 (14)0.0482 (10)0.0092 (9)0.0022 (8)0.0102 (9)
C930.0443 (10)0.0835 (14)0.0579 (11)0.0178 (9)0.0062 (8)0.0036 (9)
C940.0573 (11)0.0476 (11)0.0531 (10)0.0093 (8)0.0180 (8)0.0002 (8)
C950.0585 (11)0.0603 (12)0.0562 (11)0.0035 (9)0.0054 (9)0.0156 (9)
C960.0422 (9)0.0618 (12)0.0630 (11)0.0026 (8)0.0045 (8)0.0120 (9)
C970.1011 (17)0.0747 (15)0.0724 (14)0.0071 (12)0.0284 (12)0.0233 (11)
N10.0519 (8)0.0436 (9)0.0521 (8)0.0016 (6)0.0135 (6)0.0039 (6)
N20.0770 (12)0.0446 (11)0.1192 (15)0.0031 (8)0.0328 (11)0.0055 (9)
O10.0623 (8)0.0517 (8)0.0682 (8)0.0001 (5)0.0312 (6)0.0039 (6)
O20.0760 (9)0.0771 (10)0.0684 (9)0.0215 (7)0.0209 (7)0.0143 (7)
Geometric parameters (Å, º) top
C4—C31.532 (5)C9—C101.395 (2)
C4—C51.538 (10)C9—C911.492 (2)
C4—H4A0.9700C10—C111.395 (2)
C4—H4B0.9700C10—C121.428 (2)
C5—C61.555 (6)C11—N11.311 (2)
C5—H5A0.9700C11—O11.3443 (18)
C5—H5B0.9700C12—N21.139 (2)
C4'—C5'1.513 (19)C13—O11.438 (2)
C4'—C31.599 (10)C13—C141.470 (3)
C4'—H4'A1.0554C13—H13A0.9700
C4'—H4'B1.0554C13—H13B0.9700
C5'—C61.501 (10)C14—H14A0.9600
C5'—H5'A0.9700C14—H14B0.9600
C5'—H5'B0.9700C14—H14C0.9600
C1—N11.3517 (19)C91—C961.374 (2)
C1—C81.395 (2)C91—C921.380 (2)
C1—C21.493 (2)C92—C931.370 (2)
C2—C31.518 (3)C92—H920.9300
C2—H2A0.9700C93—C941.375 (2)
C2—H2B0.9700C93—H930.9300
C3—H3A0.9700C94—O21.3625 (19)
C3—H3B0.9700C94—C951.365 (2)
C6—C71.521 (3)C95—C961.380 (2)
C6—H6A0.9700C95—H950.9300
C6—H6B0.9700C96—H960.9300
C7—C81.508 (2)C97—O21.420 (2)
C7—H7A0.9700C97—H97A0.9600
C7—H7B0.9700C97—H97B0.9600
C8—C91.397 (2)C97—H97C0.9600
C3—C4—C5112.5 (6)C6—C7—H7B108.6
C3—C4—H4A109.1H7A—C7—H7B107.6
C5—C4—H4A109.1C1—C8—C9117.72 (14)
C3—C4—H4B109.1C1—C8—C7121.26 (14)
C5—C4—H4B109.1C9—C8—C7120.91 (14)
H4A—C4—H4B107.8C10—C9—C8118.81 (14)
C4—C5—C6114.2 (5)C10—C9—C91118.23 (14)
C4—C5—H5A108.7C8—C9—C91122.95 (13)
C6—C5—H5A108.7C11—C10—C9118.61 (14)
C4—C5—H5B108.7C11—C10—C12119.90 (14)
C6—C5—H5B108.7C9—C10—C12121.49 (14)
H5A—C5—H5B107.6N1—C11—O1120.46 (14)
C5'—C4'—C3112.4 (10)N1—C11—C10123.30 (14)
C5'—C4'—H4'A109.1O1—C11—C10116.23 (14)
C3—C4'—H4'A109.1N2—C12—C10179.73 (19)
C5'—C4'—H4'B109.1O1—C13—C14108.25 (17)
C3—C4'—H4'B109.1O1—C13—H13A110.0
H4'A—C4'—H4'B107.9C14—C13—H13A110.0
C6—C5'—C4'113.8 (9)O1—C13—H13B110.0
C6—C5'—H5'A108.8C14—C13—H13B110.0
C4'—C5'—H5'A108.8H13A—C13—H13B108.4
C6—C5'—H5'B108.8C13—C14—H14A109.5
C4'—C5'—H5'B108.8C13—C14—H14B109.5
H5'A—C5'—H5'B107.7H14A—C14—H14B109.5
N1—C1—C8123.14 (14)C13—C14—H14C109.5
N1—C1—C2113.98 (14)H14A—C14—H14C109.5
C8—C1—C2122.78 (14)H14B—C14—H14C109.5
C1—C2—C3112.06 (16)C96—C91—C92117.45 (15)
C1—C2—H2A109.2C96—C91—C9120.89 (14)
C3—C2—H2A109.2C92—C91—C9121.62 (14)
C1—C2—H2B109.2C93—C92—C91121.06 (16)
C3—C2—H2B109.2C93—C92—H92119.5
H2A—C2—H2B107.9C91—C92—H92119.5
C2—C3—C4116.3 (2)C92—C93—C94120.68 (16)
C2—C3—C4'109.0 (3)C92—C93—H93119.7
C2—C3—H3A108.2C94—C93—H93119.7
C4—C3—H3A108.2O2—C94—C95125.48 (17)
C4'—C3—H3A140.0O2—C94—C93115.34 (16)
C2—C3—H3B108.2C95—C94—C93119.17 (15)
C4—C3—H3B108.2C94—C95—C96119.78 (16)
C4'—C3—H3B74.1C94—C95—H95120.1
H3A—C3—H3B107.4C96—C95—H95120.1
C5'—C6—C7117.8 (4)C91—C96—C95121.85 (16)
C7—C6—C5114.8 (2)C91—C96—H96119.1
C5'—C6—H6A128.9C95—C96—H96119.1
C7—C6—H6A108.6O2—C97—H97A109.5
C5—C6—H6A108.6O2—C97—H97B109.5
C5'—C6—H6B77.7H97A—C97—H97B109.5
C7—C6—H6B108.6O2—C97—H97C109.5
C5—C6—H6B108.6H97A—C97—H97C109.5
H6A—C6—H6B107.6H97B—C97—H97C109.5
C8—C7—C6114.50 (15)C11—N1—C1118.38 (13)
C8—C7—H7A108.6C11—O1—C13117.77 (14)
C6—C7—H7A108.6C94—O2—C97118.24 (16)
C8—C7—H7B108.6
C3—C4—C5—C6103.1 (6)C91—C9—C10—C123.5 (2)
C3—C4'—C5'—C6104.7 (10)C9—C10—C11—N12.5 (2)
N1—C1—C2—C385.97 (19)C12—C10—C11—N1177.37 (15)
C8—C1—C2—C390.4 (2)C9—C10—C11—O1176.25 (14)
C1—C2—C3—C444.3 (4)C12—C10—C11—O13.9 (2)
C1—C2—C3—C4'87.3 (5)C10—C9—C91—C9676.2 (2)
C5—C4—C3—C262.5 (5)C8—C9—C91—C96102.68 (19)
C5—C4—C3—C4'26.3 (5)C10—C9—C91—C92101.52 (19)
C5'—C4'—C3—C277.8 (8)C8—C9—C91—C9279.6 (2)
C5'—C4'—C3—C430.7 (6)C96—C91—C92—C930.7 (3)
C4'—C5'—C6—C762.5 (10)C9—C91—C92—C93177.16 (16)
C4'—C5'—C6—C530.6 (7)C91—C92—C93—C941.0 (3)
C4—C5—C6—C5'33.1 (7)C92—C93—C94—O2179.21 (17)
C4—C5—C6—C770.3 (6)C92—C93—C94—C950.5 (3)
C5'—C6—C7—C842.0 (6)O2—C94—C95—C96179.93 (17)
C5—C6—C7—C878.1 (4)C93—C94—C95—C960.2 (3)
N1—C1—C8—C90.6 (2)C92—C91—C96—C950.1 (3)
C2—C1—C8—C9176.61 (15)C9—C91—C96—C95177.93 (16)
N1—C1—C8—C7175.59 (15)C94—C95—C96—C910.5 (3)
C2—C1—C8—C70.4 (2)O1—C11—N1—C1177.65 (14)
C6—C7—C8—C185.6 (2)C10—C11—N1—C11.0 (2)
C6—C7—C8—C990.47 (19)C8—C1—N1—C110.6 (2)
C1—C8—C9—C100.9 (2)C2—C1—N1—C11176.88 (14)
C7—C8—C9—C10177.09 (15)N1—C11—O1—C133.9 (2)
C1—C8—C9—C91178.02 (14)C10—C11—O1—C13174.85 (15)
C7—C8—C9—C911.8 (2)C14—C13—O1—C11163.43 (17)
C8—C9—C10—C112.3 (2)C95—C94—O2—C972.4 (3)
C91—C9—C10—C11176.62 (14)C93—C94—O2—C97177.29 (17)
C8—C9—C10—C12177.54 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C92—H92···O1i0.932.723.559 (2)150
C97—H97A···O2ii0.962.763.324 (2)118
Symmetry codes: (i) x1, y, z; (ii) x1, y+1, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC20H22N2O2C20H21N3O3C21H24N2O2
Mr322.40351.40336.42
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)293293293
a, b, c (Å)9.1018 (3), 13.6319 (4), 13.5920 (4)13.2948 (6), 11.0251 (4), 14.0788 (5)6.9763 (4), 17.8163 (8), 14.9545 (8)
β (°) 93.545 (2) 117.566 (2) 96.751 (2)
V3)1683.20 (9)1829.36 (12)1845.83 (17)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.080.090.08
Crystal size (mm)0.24 × 0.22 × 0.200.21 × 0.20 × 0.190.23 × 0.21 × 0.18
Data collection
DiffractometerBruker Kappa APEXII area-detectorBruker Kappa APEXII area-detectorBruker Kappa APEXII are-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.983, 0.9840.980, 0.9840.982, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
14067, 3312, 2605 16156, 3399, 2571 17391, 3433, 2330
Rint0.0280.0300.034
(sin θ/λ)max1)0.6170.6060.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.106, 1.04 0.043, 0.130, 1.07 0.044, 0.124, 1.03
No. of reflections331233993432
No. of parameters220236247
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.130.30, 0.230.16, 0.14

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) for (I) top
C10—C121.4306 (18)C12—N21.1441 (17)
C10—C9—C91—C9666.95 (16)C10—C11—O1—C13178.97 (12)
N1—C11—O1—C131.54 (18)
Selected geometric parameters (Å, º) for (II) top
C10—C121.434 (2)C12—N21.135 (2)
C8—C9—C91—C9687.75 (19)C10—C11—O1—C13174.34 (17)
N1—C11—O1—C135.4 (3)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C92—H92···N2i0.932.753.490 (2)138
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C92—H92···N2i0.932.723.644 (2)172
C94—H94···N2ii0.932.683.508 (2)148
C14—H14B···O2iii0.962.573.468 (3)155
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C92—H92···O1i0.932.723.559 (2)150
C97—H97A···O2ii0.962.763.324 (2)118
Symmetry codes: (i) x1, y, z; (ii) x1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds