Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614002046/ov3046sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614002046/ov30461sup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614002046/ov30462sup3.hkl |
CCDC references: 984056; 984057
Multipurpose applications of 4,4'-bipyrazoles for supramolecular synthesis concern their diverse chemical behaviour and a range of structural roles for sustaining structures of framework solids, in particular as covalent bipyrazolate bridges (Pettinari et al., 2012), self-complementary hydrogen-bond donors and acceptors (Boldog et al., 2001) and cationic bipyrazolium tectons, which act as multiple hydrogen-bond donors (Boldog et al., 2009; Domasevitch, 2012). For each of these cases, the NH site of the pyrazole ring is a key functional prerequisite. Considering functions of bipyrazoles as simple bitopic coordination links between metal ions (Boldog et al., 2002; Tâbâcaru et al., 2012), the NH sites are also important. They commonly provide a peculiar hydrogen bonding with anionic co-ligands (Nazarenko et al., 2013; Ponomarova et al., 2013), thus appreciably contributing to the overal structure. Therefore, the substitution at the N1 atom of the pyrazole ring could be of primary significance for fine-tuning properties of the ligands in view of their ability for bridging metal ions and sustaining secondary interactions. The resulting N-substituted bipyrazoles combine such inputs as structural simplicity and chemical accessibility, being readily available either by alkylation of pyrazole ring or by heterocylization of dialdehyde precursor when reacted with substituted hydrazines (Timmermans et al., 1972). The steric effect of N-substituent could mitigate against coordination of many pyrazole rings, which may be important for control over formation of second-sphere hydrogen-bonded complexes rather than assembly of more common coordination polymers, similar to versatile 4,7-phenanthroline systems developed by Beauchamp & Loeb (2002). However, the coordination behaviour of N-substituted bipyrazoles and their utility as potentially suitable tectons for generation of supramolecular architectures does not appear to have been considered. In this context, we have examined prototypical bitopic ligand 1,1'-dimethyl-4,4'-bipyrazole (Me2bpz) and in the present contribution we report two coordination compounds of cobalt(II) chloride, namely catena-poly[[dichloridocobalt(II)]-µ- (1,1'-dimethyl-4,4'-bipyrazole-κ2N2:N2')], (1), and tetraaquabis(1,1'-dimethyl-4,4'-bipyrazole-κN2)cobalt(II) dichloride–1,1'-dimethyl-4,4'-bipyrazole–water (1/2/2), (2).
The 1,1'-dimethyl-4,4'-bipyrazole ligand (Me2bpz) was synthesized following the method of Timmermans et al. (1972). The title coordination compounds were prepared by slow evaporation of methanol solutions (4 ml) of the components. In this way, reaction of CoCl2.6H2O (26.2 mg, 0.110 mmol) and Me2bpz (16.2 mg, 0.100 mmol) gives elongated blue prisms of [CoCl2(Me2bpz)], (1), in 80% yield (23 mg) and reaction of CoCl2.6H2O (11.9 mg, 0.050 mmol) and Me2bpz (35.6 mg, 0.220 mmol) provides light-pink blocks of [Co(H2O)4(Me2bpz)2]Cl2.2Me2bpz.2H2O, (2), in 90% yield (39 mg). With the initial molar ratios of the components varied between 1:1 and 1:4, the resulting crystalline materials were mixtures of both (1) and (2).
Elemental analysis calculated for (1): C 32.90, H 3.45, N 19.19%; found: C 32.73, H 3.49, N 19.08%. Elemental analysis calculated for (2): C 43.34, H 5.91, N 25.28%; found: C 43.47, H 5.82, N 25.40%.
Crystal data, data collection and structure refinement details are summarized in Table 1. All C—H hydrogens were located from difference maps and then refined as riding, with the angles constrained, C—H distances constrained to 0.94 (pyrazole) or 0.97 Å (methyl) and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. For (2), all water H atoms were found in intermediate difference Fourier maps and were refined fully with isotropic displacement parameters [O—H = 0.77 (3)–0.91 (3) Å].
In the structure of complex (1), two independent 1,1'-dimethyl-4,4'-bipyrazole (Me2bpz) ligands reside across centres of inversion. Distorted coordination tetrahedra of Co ions comprise two chloride ligands and two N atoms of bipyrazole ligands (Table 2). Such geometry is also known for the dichloridocobalt(II) complex with 1,2-bis(pyridin-4-yl)ethane (Wang, 2008). The resulting one-dimensional polymeric chains run along the b direction. They afford very weak C—H···Cl hydrogen bonds [C···Cl1iii = 3.588 (2) Å and C2—H2···Cl1iii = 162°; symmetry code: (iii) -x+1/2, y+1/2, -z+1/2].
The structure of (2) is ionic, it comprises complex [Co(H2O)4(Me2bpz)2]2+ dications, two independent noncoordinated Me2bpz molecules (all three entitites are situated across centres of inversion), solvent water molecules and noncoordinated chloride anions (Table 3 and Fig. 3). The latter constitute centrosymmetric discrete dichlorido/diaqua ensembles, with typical O—H···Cl hydrogen-bond distances (Table 4). The metal ions have a trans-octahedral [CoN2O4] environment comprising two monodentate Me2bpz ligands, and the Co1—N2 bonds [2.2145 (13) Å] appear to be certainly longer than the Co1—O bonds involving the aqua ligands [2.0395 (11) and 2.1095 (12) Å]. Thus, even under a significant excess of the organic ligand in the reaction mixture, the product manifests relatively low actual coordination Co–pyrazole ratio of only 1:2, similar to complex (1). This is contrary to unsubstituted 4,4'-bipyrazole (H2bpz), which typically forms two-dimensional square-grid polymers {[Co(H2bpz)2Cl2].Guest}n (Boldog et al., 2002). The relatively poor coordination ability of Me2bpz is unlikely influenced by the steric effect of the methyl group only; elimination of stabilizing hydrogen-bond interactions between coordinated pyrazole and anionic co-ligands (which are typical for complexes of N-unsubstituted bipyrazoles) (Ponomarova et al., 2013) could be also important. At first glance, this precludes organization of extended frameworks based upon Me2bpz.
The Me2bpz tectons, either monodentate or noncoordinated, are crucial for sustaining the present complex structure rather as ligands of a second coordination sphere (Beauchamp & Loeb, 2002). Every pyrazole group is a hydrogen-bond acceptor and establishes a relatively short and directional O—H···N hydrogen bond with the coordinated H2O donors (Table 4). In this way, topological linkage of the metal ions (the framework nodes) is based upon hydrogen-bonded Co—OH2···Me2bpz···H2O—Co bridges or combined coordination and hydrogen-bonded Co—Me2bpz···H2O—Co bridges. Such behaviour has few precedents in the chemistry of 4,4'-bipyridine, rarely acting as a double hydrogen-bond acceptor towards metal–aqua cations (Carlucci et al., 1997) or as a monodentate ligand and acceptor of one M—OH2···N hydrogen bond (Dong et al., 2000; Abu-Shandi et al., 2001). It is worth noting that the second-sphere coordination of heterocyclic nitrogen bases, when combined with the metal–aqua cations, has received growing interest with respect to developing systems for molecular recognition (Maldonado et al., 2012).
Double bridges of the Co—Me2bpz···H2O—Co type lead to pair-wise association of the [Co(H2O)4(Me2bpz)2]2+ cations, giving rise to linear one-dimensional chains along the b direction, with a Co···Co separation of 11.1415 (10) Å (parameter b of the unit cell) (Fig. 4). Both noncoordinated Me2bpz molecules are acceptors of two O—H···N hydrogen bonds and connect tetraaquacobalt fragments in the ac plane [Co···Co = 14.1037 (10) and 14.4921 (10) Å]. The resulting cationic three-dimensional framework has composition {[Co(H2O)4(Me2bpz)2](Me2bpz)2}n2n+. It possesses a primitive cubic net topology with a point symbol of {412.63} (α-Po; three-letter notation `pcu') and two identical nets, related by a single translation vector, are interpenetrated (class Ia interpenetration, Z = 2) (Blatov et al., 2004).
This connectivity employs six out of eight available O—H donors at the tetraaquacobalt node and the remaining two O—H donors generate additional internodal links through strong O—H···OH2 hydrogen bonding [O···O = 2.6939 (18) Å; Table 4] to the above [(Cl-)2(H2O)2] assemblies (Fig. 4). These bridges unite the above independent nets. When these links are also considered for the entire topology, the interpenetration disappears and a single uninodal eight-connected net is found, with a point Schläfli symbol {424.5.63} (Fig. 5). This net is identified by a `ilc' notation in the Reticular Chemistry Structure Resource database (Blatov & Shevchenko, 1999) and it has only one precedent in crystal structures. It is notable that this topology was initially rationalized in terms of interlinking of two interpenetrated pcu frameworks (Wang et al., 2005), and therefore the present case is very illustrative for the close relation of pcu and ilc nets.
Weaker interactions in the structure comprise extensive hydrogen bonding of polarized pyrazole C—H groups and sterically accessible chloride anions of [(Cl-)2(H2O)2]. In addition to two convenient O—H···Cl hydrogen bonds, the chloride accepts in total six directional C—H···Cl hydrogen bonds [C···Cl = 3.5153 (19)–3.738 (2) Å; Table 4]. This kind of weak hydrogen bonding is greatly favored by the bipyrazole structure, which provides multiple C—H donor sites for sustaining the `chelate-like' pattern (Fig. 6). tetraaquabis(1,1'-dimethyl-4,4'-bipyrazole-κN2)cobalt(II) dichloride–1,1'-dimethyl-4,4'-bipyrazole–water (1/2/2) In summary, our study introduces a new tecton for supramolecular synthesis. In spite of the relative simplicity of coordination patterns adopted by Me2bpz, it could find special and peculiar applications as a `second-sphere ligand' for bridging of metal–aqua cations {[M(H2O)]+}n by hydrogen bonding. This complements and expands structural potential of unsubstituted bipyrazole tectons, the common type of bitopic N-donor coordination linkers.
For both compounds, data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1999); data reduction: SAINT-NT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).
[CoCl2(C8H10N4)] | F(000) = 588 |
Mr = 292.03 | Dx = 1.657 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.8762 (8) Å | Cell parameters from 7256 reflections |
b = 14.2372 (14) Å | θ = 2.6–27.9° |
c = 9.5878 (9) Å | µ = 1.89 mm−1 |
β = 104.964 (2)° | T = 223 K |
V = 1170.54 (19) Å3 | Prism, blue |
Z = 4 | 0.14 × 0.12 × 0.09 mm |
Siemens SMART CCD area-detector diffractometer | 2763 independent reflections |
Radiation source: fine-focus sealed tube | 2061 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω scans | θmax = 27.9°, θmin = 2.6° |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | h = −11→7 |
Tmin = 0.785, Tmax = 0.857 | k = −18→18 |
7256 measured reflections | l = −12→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 0.96 | w = 1/[σ2(Fo2) + (0.0511P)2] where P = (Fo2 + 2Fc2)/3 |
2763 reflections | (Δ/σ)max = 0.001 |
138 parameters | Δρmax = 0.48 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
[CoCl2(C8H10N4)] | V = 1170.54 (19) Å3 |
Mr = 292.03 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.8762 (8) Å | µ = 1.89 mm−1 |
b = 14.2372 (14) Å | T = 223 K |
c = 9.5878 (9) Å | 0.14 × 0.12 × 0.09 mm |
β = 104.964 (2)° |
Siemens SMART CCD area-detector diffractometer | 2763 independent reflections |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | 2061 reflections with I > 2σ(I) |
Tmin = 0.785, Tmax = 0.857 | Rint = 0.028 |
7256 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.084 | H-atom parameters constrained |
S = 0.96 | Δρmax = 0.48 e Å−3 |
2763 reflections | Δρmin = −0.50 e Å−3 |
138 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.25365 (4) | 0.21493 (2) | 0.11357 (3) | 0.02595 (11) | |
Cl1 | 0.03672 (8) | 0.22325 (5) | 0.19158 (8) | 0.04536 (18) | |
Cl2 | 0.22386 (8) | 0.15352 (6) | −0.10586 (7) | 0.0524 (2) | |
N1 | 0.3503 (2) | 0.34291 (13) | 0.1133 (2) | 0.0328 (5) | |
N2 | 0.3658 (2) | 0.41178 (14) | 0.2134 (2) | 0.0326 (4) | |
N3 | 0.4134 (2) | 0.13497 (14) | 0.2583 (2) | 0.0366 (5) | |
N4 | 0.5304 (3) | 0.08313 (15) | 0.2309 (2) | 0.0395 (5) | |
C1 | 0.3155 (3) | 0.3991 (2) | 0.3455 (3) | 0.0450 (7) | |
H1A | 0.3788 | 0.3510 | 0.4045 | 0.068* | |
H1B | 0.2069 | 0.3801 | 0.3211 | 0.068* | |
H1C | 0.3274 | 0.4577 | 0.3987 | 0.068* | |
C2 | 0.4355 (3) | 0.48681 (16) | 0.1747 (3) | 0.0340 (5) | |
H2 | 0.4604 | 0.5426 | 0.2282 | 0.041* | |
C3 | 0.4646 (3) | 0.46860 (16) | 0.0428 (2) | 0.0312 (5) | |
C4 | 0.4096 (3) | 0.37736 (16) | 0.0101 (3) | 0.0331 (5) | |
H4 | 0.4138 | 0.3446 | −0.0739 | 0.040* | |
C5 | 0.6047 (4) | 0.1093 (2) | 0.1180 (3) | 0.0557 (8) | |
H5A | 0.6626 | 0.1672 | 0.1446 | 0.084* | |
H5B | 0.5256 | 0.1184 | 0.0280 | 0.084* | |
H5C | 0.6754 | 0.0598 | 0.1060 | 0.084* | |
C6 | 0.5804 (3) | 0.01861 (18) | 0.3343 (3) | 0.0384 (6) | |
H6 | 0.6604 | −0.0253 | 0.3379 | 0.046* | |
C7 | 0.4942 (3) | 0.02779 (16) | 0.4347 (2) | 0.0327 (5) | |
C8 | 0.3922 (3) | 0.10152 (17) | 0.3821 (3) | 0.0345 (5) | |
H8 | 0.3180 | 0.1248 | 0.4278 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02900 (18) | 0.02089 (16) | 0.02955 (17) | −0.00168 (13) | 0.01042 (13) | 0.00677 (12) |
Cl1 | 0.0422 (4) | 0.0449 (4) | 0.0548 (4) | −0.0005 (3) | 0.0230 (3) | 0.0103 (3) |
Cl2 | 0.0480 (4) | 0.0623 (5) | 0.0464 (4) | −0.0050 (3) | 0.0110 (3) | −0.0124 (3) |
N1 | 0.0398 (12) | 0.0261 (10) | 0.0349 (11) | −0.0013 (9) | 0.0140 (9) | 0.0029 (8) |
N2 | 0.0363 (11) | 0.0310 (10) | 0.0330 (11) | 0.0005 (9) | 0.0133 (9) | 0.0014 (8) |
N3 | 0.0362 (12) | 0.0352 (11) | 0.0401 (12) | 0.0019 (9) | 0.0128 (10) | 0.0069 (9) |
N4 | 0.0352 (12) | 0.0428 (12) | 0.0428 (12) | 0.0031 (10) | 0.0143 (10) | 0.0089 (10) |
C1 | 0.0551 (17) | 0.0470 (16) | 0.0393 (15) | −0.0045 (13) | 0.0234 (13) | 0.0032 (12) |
C2 | 0.0373 (14) | 0.0245 (11) | 0.0417 (14) | 0.0006 (10) | 0.0128 (11) | 0.0026 (10) |
C3 | 0.0323 (13) | 0.0260 (11) | 0.0364 (13) | 0.0035 (10) | 0.0111 (10) | 0.0060 (10) |
C4 | 0.0399 (14) | 0.0279 (12) | 0.0344 (13) | −0.0007 (10) | 0.0151 (11) | 0.0032 (10) |
C5 | 0.0460 (17) | 0.077 (2) | 0.0506 (17) | 0.0083 (16) | 0.0233 (14) | 0.0181 (16) |
C6 | 0.0324 (14) | 0.0405 (14) | 0.0410 (14) | 0.0049 (11) | 0.0073 (11) | 0.0081 (12) |
C7 | 0.0310 (13) | 0.0294 (12) | 0.0355 (13) | −0.0041 (10) | 0.0046 (11) | 0.0017 (10) |
C8 | 0.0367 (14) | 0.0316 (12) | 0.0362 (13) | −0.0009 (11) | 0.0111 (11) | 0.0053 (10) |
Co1—N1 | 2.0143 (19) | C1—H1C | 0.9700 |
Co1—N3 | 2.053 (2) | C2—C3 | 1.379 (3) |
Co1—Cl2 | 2.2300 (8) | C2—H2 | 0.9400 |
Co1—Cl1 | 2.2416 (7) | C3—C4 | 1.395 (3) |
N1—C4 | 1.329 (3) | C3—C3i | 1.460 (4) |
N1—N2 | 1.354 (3) | C4—H4 | 0.9400 |
N2—C2 | 1.334 (3) | C5—H5A | 0.9700 |
N2—C1 | 1.459 (3) | C5—H5B | 0.9700 |
N3—C8 | 1.337 (3) | C5—H5C | 0.9700 |
N3—N4 | 1.354 (3) | C6—C7 | 1.382 (3) |
N4—C6 | 1.340 (3) | C6—H6 | 0.9400 |
N4—C5 | 1.454 (3) | C7—C8 | 1.393 (3) |
C1—H1A | 0.9700 | C7—C7ii | 1.462 (4) |
C1—H1B | 0.9700 | C8—H8 | 0.9400 |
N1—Co1—N3 | 106.40 (8) | N2—C2—C3 | 108.3 (2) |
N1—Co1—Cl2 | 107.48 (6) | N2—C2—H2 | 125.8 |
N3—Co1—Cl2 | 108.24 (6) | C3—C2—H2 | 125.8 |
N1—Co1—Cl1 | 110.82 (6) | C2—C3—C4 | 104.1 (2) |
N3—Co1—Cl1 | 107.86 (6) | C2—C3—C3i | 127.6 (3) |
Cl2—Co1—Cl1 | 115.64 (3) | C4—C3—C3i | 128.3 (3) |
C4—N1—N2 | 105.86 (18) | N1—C4—C3 | 111.1 (2) |
C4—N1—Co1 | 125.83 (16) | N1—C4—H4 | 124.5 |
N2—N1—Co1 | 128.30 (15) | C3—C4—H4 | 124.5 |
C2—N2—N1 | 110.64 (19) | N4—C5—H5A | 109.5 |
C2—N2—C1 | 127.5 (2) | N4—C5—H5B | 109.5 |
N1—N2—C1 | 121.8 (2) | H5A—C5—H5B | 109.5 |
C8—N3—N4 | 105.6 (2) | N4—C5—H5C | 109.5 |
C8—N3—Co1 | 124.51 (17) | H5A—C5—H5C | 109.5 |
N4—N3—Co1 | 127.01 (15) | H5B—C5—H5C | 109.5 |
C6—N4—N3 | 110.8 (2) | N4—C6—C7 | 108.3 (2) |
C6—N4—C5 | 126.8 (2) | N4—C6—H6 | 125.9 |
N3—N4—C5 | 121.5 (2) | C7—C6—H6 | 125.9 |
N2—C1—H1A | 109.5 | C6—C7—C8 | 104.1 (2) |
N2—C1—H1B | 109.5 | C6—C7—C7ii | 128.0 (3) |
H1A—C1—H1B | 109.5 | C8—C7—C7ii | 127.8 (3) |
N2—C1—H1C | 109.5 | N3—C8—C7 | 111.2 (2) |
H1A—C1—H1C | 109.5 | N3—C8—H8 | 124.4 |
H1B—C1—H1C | 109.5 | C7—C8—H8 | 124.4 |
N3—Co1—N1—C4 | 105.3 (2) | C8—N3—N4—C5 | −169.3 (2) |
Cl2—Co1—N1—C4 | −10.4 (2) | Co1—N3—N4—C5 | 29.4 (3) |
Cl1—Co1—N1—C4 | −137.67 (19) | N1—N2—C2—C3 | 1.4 (3) |
N3—Co1—N1—N2 | −76.3 (2) | C1—N2—C2—C3 | 179.1 (2) |
Cl2—Co1—N1—N2 | 167.92 (18) | N2—C2—C3—C4 | −1.1 (3) |
Cl1—Co1—N1—N2 | 40.7 (2) | N2—C2—C3—C3i | 178.3 (3) |
C4—N1—N2—C2 | −1.0 (3) | N2—N1—C4—C3 | 0.3 (3) |
Co1—N1—N2—C2 | −179.65 (16) | Co1—N1—C4—C3 | 178.98 (16) |
C4—N1—N2—C1 | −179.0 (2) | C2—C3—C4—N1 | 0.5 (3) |
Co1—N1—N2—C1 | 2.4 (3) | C3i—C3—C4—N1 | −178.9 (3) |
N1—Co1—N3—C8 | 114.0 (2) | N3—N4—C6—C7 | −0.2 (3) |
Cl2—Co1—N3—C8 | −130.80 (19) | C5—N4—C6—C7 | 168.8 (3) |
Cl1—Co1—N3—C8 | −5.0 (2) | N4—C6—C7—C8 | 0.0 (3) |
N1—Co1—N3—N4 | −88.1 (2) | N4—C6—C7—C7ii | 179.3 (3) |
Cl2—Co1—N3—N4 | 27.2 (2) | N4—N3—C8—C7 | −0.4 (3) |
Cl1—Co1—N3—N4 | 152.95 (18) | Co1—N3—C8—C7 | 161.45 (17) |
C8—N3—N4—C6 | 0.4 (3) | C6—C7—C8—N3 | 0.3 (3) |
Co1—N3—N4—C6 | −160.86 (17) | C7ii—C7—C8—N3 | −179.0 (3) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y, −z+1. |
[Co(C8H10N4)2(H2O)4]Cl2·2C8H10N4·2H2O | Z = 1 |
Mr = 886.73 | F(000) = 465 |
Triclinic, P1 | Dx = 1.377 Mg m−3 |
a = 9.2087 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.1415 (10) Å | Cell parameters from 10321 reflections |
c = 12.2523 (10) Å | θ = 2.3–27.7° |
α = 63.071 (2)° | µ = 0.59 mm−1 |
β = 83.665 (3)° | T = 223 K |
γ = 72.592 (2)° | Block, pink |
V = 1068.96 (16) Å3 | 0.17 × 0.14 × 0.12 mm |
Siemens SMART CCD area-detector diffractometer | 4907 independent reflections |
Radiation source: fine-focus sealed tube | 4058 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ω scans | θmax = 27.7°, θmin = 2.3° |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | h = −11→11 |
Tmin = 0.934, Tmax = 0.961 | k = −14→14 |
10321 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.104 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0747P)2] where P = (Fo2 + 2Fc2)/3 |
4907 reflections | (Δ/σ)max < 0.001 |
287 parameters | Δρmax = 0.57 e Å−3 |
0 restraints | Δρmin = −0.71 e Å−3 |
[Co(C8H10N4)2(H2O)4]Cl2·2C8H10N4·2H2O | γ = 72.592 (2)° |
Mr = 886.73 | V = 1068.96 (16) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.2087 (8) Å | Mo Kα radiation |
b = 11.1415 (10) Å | µ = 0.59 mm−1 |
c = 12.2523 (10) Å | T = 223 K |
α = 63.071 (2)° | 0.17 × 0.14 × 0.12 mm |
β = 83.665 (3)° |
Siemens SMART CCD area-detector diffractometer | 4907 independent reflections |
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | 4058 reflections with I > 2σ(I) |
Tmin = 0.934, Tmax = 0.961 | Rint = 0.036 |
10321 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.104 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.99 | Δρmax = 0.57 e Å−3 |
4907 reflections | Δρmin = −0.71 e Å−3 |
287 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.5000 | 0.5000 | 0.5000 | 0.02044 (10) | |
Cl1 | 1.04023 (5) | 0.09005 (4) | 0.30692 (4) | 0.03318 (12) | |
O1 | 0.71129 (14) | 0.47606 (12) | 0.41437 (12) | 0.0283 (3) | |
O2 | 0.42174 (15) | 0.69169 (11) | 0.35511 (11) | 0.0298 (3) | |
O3 | 0.91236 (19) | 0.22023 (15) | 0.48620 (16) | 0.0443 (4) | |
N1 | 0.28883 (17) | 0.40193 (15) | 0.37109 (14) | 0.0310 (3) | |
N2 | 0.42554 (16) | 0.39689 (13) | 0.40732 (13) | 0.0260 (3) | |
N3 | 0.68212 (17) | −0.08771 (15) | 0.32178 (15) | 0.0318 (3) | |
N4 | 0.54352 (17) | −0.09277 (14) | 0.30204 (14) | 0.0316 (3) | |
N5 | 0.2576 (2) | 0.75536 (17) | 0.04117 (16) | 0.0409 (4) | |
N6 | 0.27595 (19) | 0.77693 (17) | 0.13677 (15) | 0.0378 (4) | |
N7 | 0.75182 (19) | 0.69516 (16) | 0.05682 (15) | 0.0364 (4) | |
N8 | 0.7612 (2) | 0.57498 (17) | 0.15928 (15) | 0.0429 (4) | |
C1 | 0.1502 (2) | 0.5117 (2) | 0.3641 (2) | 0.0389 (4) | |
H1A | 0.0623 | 0.4837 | 0.3582 | 0.058* | |
H1B | 0.1519 | 0.5982 | 0.2923 | 0.058* | |
H1C | 0.1441 | 0.5260 | 0.4370 | 0.058* | |
C2 | 0.3029 (2) | 0.29851 (19) | 0.33874 (19) | 0.0359 (4) | |
H2 | 0.2233 | 0.2818 | 0.3109 | 0.043* | |
C3 | 0.4523 (2) | 0.22210 (16) | 0.35323 (15) | 0.0274 (3) | |
C4 | 0.52392 (19) | 0.28633 (16) | 0.39638 (16) | 0.0277 (3) | |
H4 | 0.6287 | 0.2562 | 0.4157 | 0.033* | |
C5 | 0.8178 (2) | −0.1930 (2) | 0.3178 (2) | 0.0426 (5) | |
H5A | 0.7933 | −0.2803 | 0.3418 | 0.064* | |
H5B | 0.8952 | −0.2078 | 0.3738 | 0.064* | |
H5C | 0.8556 | −0.1615 | 0.2353 | 0.064* | |
C6 | 0.6731 (2) | 0.02356 (19) | 0.34198 (19) | 0.0354 (4) | |
H6 | 0.7553 | 0.0474 | 0.3582 | 0.042* | |
C7 | 0.52119 (19) | 0.09595 (16) | 0.33442 (16) | 0.0274 (3) | |
C8 | 0.4461 (2) | 0.01877 (17) | 0.30994 (17) | 0.0312 (4) | |
H8 | 0.3398 | 0.0424 | 0.3002 | 0.037* | |
C9 | 0.3637 (3) | 0.6371 (3) | 0.0250 (3) | 0.0612 (7) | |
H9A | 0.4491 | 0.5953 | 0.0828 | 0.092* | |
H9B | 0.4004 | 0.6702 | −0.0578 | 0.092* | |
H9C | 0.3117 | 0.5675 | 0.0395 | 0.092* | |
C10 | 0.1360 (2) | 0.8506 (2) | −0.03049 (19) | 0.0403 (4) | |
H10 | 0.1036 | 0.8553 | −0.1028 | 0.048* | |
C11 | 0.0679 (2) | 0.93976 (18) | 0.02133 (16) | 0.0321 (4) | |
C12 | 0.1604 (2) | 0.88967 (18) | 0.12550 (17) | 0.0337 (4) | |
H12 | 0.1435 | 0.9299 | 0.1803 | 0.040* | |
C13 | 0.6411 (3) | 0.8260 (2) | 0.0424 (2) | 0.0488 (5) | |
H13A | 0.5860 | 0.8111 | 0.1176 | 0.073* | |
H13B | 0.5701 | 0.8578 | −0.0244 | 0.073* | |
H13C | 0.6933 | 0.8964 | 0.0246 | 0.073* | |
C14 | 0.8551 (2) | 0.67443 (19) | −0.02418 (17) | 0.0370 (4) | |
H14 | 0.8691 | 0.7430 | −0.1022 | 0.044* | |
C15 | 0.9370 (2) | 0.53470 (19) | 0.02742 (16) | 0.0339 (4) | |
C16 | 0.8737 (2) | 0.4786 (2) | 0.14113 (19) | 0.0426 (5) | |
H16 | 0.9063 | 0.3839 | 0.1986 | 0.051* | |
H1W | 0.773 (3) | 0.393 (3) | 0.437 (2) | 0.051 (7)* | |
H2W | 0.706 (3) | 0.512 (3) | 0.332 (2) | 0.051 (7)* | |
H3W | 0.463 (2) | 0.761 (2) | 0.3386 (17) | 0.026 (5)* | |
H4W | 0.390 (3) | 0.697 (3) | 0.289 (3) | 0.067 (8)* | |
H5W | 0.907 (3) | 0.151 (3) | 0.544 (3) | 0.056 (8)* | |
H6W | 0.949 (4) | 0.191 (3) | 0.440 (3) | 0.072 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02779 (17) | 0.01031 (14) | 0.02518 (16) | −0.00510 (11) | −0.00202 (11) | −0.00906 (11) |
Cl1 | 0.0366 (2) | 0.0279 (2) | 0.0352 (2) | −0.01064 (17) | 0.00161 (17) | −0.01334 (17) |
O1 | 0.0324 (6) | 0.0178 (5) | 0.0348 (7) | −0.0041 (5) | 0.0025 (5) | −0.0138 (5) |
O2 | 0.0459 (7) | 0.0152 (5) | 0.0293 (6) | −0.0127 (5) | −0.0096 (5) | −0.0059 (4) |
O3 | 0.0567 (10) | 0.0249 (7) | 0.0402 (8) | 0.0017 (6) | 0.0007 (7) | −0.0130 (6) |
N1 | 0.0309 (8) | 0.0247 (7) | 0.0452 (9) | −0.0057 (6) | −0.0046 (6) | −0.0222 (6) |
N2 | 0.0273 (7) | 0.0209 (6) | 0.0340 (7) | −0.0076 (5) | −0.0035 (6) | −0.0142 (5) |
N3 | 0.0302 (7) | 0.0242 (7) | 0.0492 (9) | −0.0083 (6) | 0.0007 (6) | −0.0226 (6) |
N4 | 0.0381 (8) | 0.0232 (7) | 0.0436 (8) | −0.0142 (6) | 0.0015 (6) | −0.0199 (6) |
N5 | 0.0440 (9) | 0.0345 (8) | 0.0466 (10) | −0.0013 (7) | −0.0109 (7) | −0.0234 (7) |
N6 | 0.0428 (9) | 0.0330 (8) | 0.0361 (8) | −0.0056 (7) | −0.0112 (7) | −0.0145 (7) |
N7 | 0.0412 (9) | 0.0268 (7) | 0.0353 (8) | −0.0079 (6) | 0.0083 (7) | −0.0114 (6) |
N8 | 0.0506 (10) | 0.0305 (8) | 0.0367 (9) | −0.0082 (7) | 0.0100 (7) | −0.0096 (7) |
C1 | 0.0331 (9) | 0.0317 (9) | 0.0574 (12) | −0.0023 (7) | −0.0064 (8) | −0.0269 (9) |
C2 | 0.0359 (10) | 0.0313 (9) | 0.0556 (12) | −0.0121 (7) | −0.0019 (8) | −0.0294 (9) |
C3 | 0.0349 (9) | 0.0183 (7) | 0.0341 (9) | −0.0100 (6) | −0.0001 (7) | −0.0141 (6) |
C4 | 0.0295 (8) | 0.0215 (7) | 0.0358 (9) | −0.0057 (6) | −0.0047 (7) | −0.0154 (7) |
C5 | 0.0371 (10) | 0.0321 (10) | 0.0663 (14) | −0.0053 (8) | 0.0001 (9) | −0.0307 (10) |
C6 | 0.0356 (10) | 0.0295 (9) | 0.0555 (12) | −0.0151 (7) | 0.0017 (8) | −0.0273 (8) |
C7 | 0.0330 (9) | 0.0205 (7) | 0.0359 (9) | −0.0118 (6) | 0.0045 (7) | −0.0168 (7) |
C8 | 0.0274 (8) | 0.0241 (8) | 0.0495 (10) | −0.0082 (6) | −0.0053 (7) | −0.0207 (7) |
C9 | 0.0606 (15) | 0.0462 (13) | 0.0838 (18) | 0.0099 (11) | −0.0179 (13) | −0.0456 (13) |
C10 | 0.0414 (11) | 0.0399 (10) | 0.0404 (10) | −0.0025 (8) | −0.0121 (8) | −0.0210 (8) |
C11 | 0.0385 (10) | 0.0262 (8) | 0.0297 (8) | −0.0099 (7) | −0.0062 (7) | −0.0088 (7) |
C12 | 0.0392 (10) | 0.0280 (8) | 0.0334 (9) | −0.0063 (7) | −0.0081 (7) | −0.0132 (7) |
C13 | 0.0564 (13) | 0.0317 (10) | 0.0492 (12) | −0.0052 (9) | 0.0114 (10) | −0.0168 (9) |
C14 | 0.0456 (11) | 0.0309 (9) | 0.0313 (9) | −0.0130 (8) | 0.0107 (8) | −0.0119 (7) |
C15 | 0.0382 (10) | 0.0324 (9) | 0.0325 (9) | −0.0130 (8) | 0.0049 (7) | −0.0145 (7) |
C16 | 0.0515 (12) | 0.0304 (9) | 0.0374 (10) | −0.0091 (8) | 0.0092 (9) | −0.0111 (8) |
Co1—O2i | 2.0395 (11) | C1—H1C | 0.9700 |
Co1—O2 | 2.0395 (11) | C2—C3 | 1.366 (3) |
Co1—O1i | 2.1095 (12) | C2—H2 | 0.9400 |
Co1—O1 | 2.1095 (12) | C3—C4 | 1.389 (2) |
Co1—N2i | 2.2145 (13) | C3—C7 | 1.469 (2) |
Co1—N2 | 2.2145 (13) | C4—H4 | 0.9400 |
O1—H1W | 0.86 (3) | C5—H5A | 0.9700 |
O1—H2W | 0.91 (3) | C5—H5B | 0.9700 |
O2—H3W | 0.89 (2) | C5—H5C | 0.9700 |
O2—H4W | 0.86 (3) | C6—C7 | 1.379 (2) |
O3—H5W | 0.78 (3) | C6—H6 | 0.9400 |
O3—H6W | 0.77 (3) | C7—C8 | 1.394 (2) |
N1—C2 | 1.3471 (19) | C8—H8 | 0.9400 |
N1—N2 | 1.3578 (19) | C9—H9A | 0.9700 |
N1—C1 | 1.459 (2) | C9—H9B | 0.9700 |
N2—C4 | 1.3457 (19) | C9—H9C | 0.9700 |
N3—N4 | 1.347 (2) | C10—C11 | 1.376 (3) |
N3—C6 | 1.348 (2) | C10—H10 | 0.9400 |
N3—C5 | 1.449 (2) | C11—C12 | 1.406 (2) |
N4—C8 | 1.335 (2) | C11—C11ii | 1.464 (3) |
N5—N6 | 1.335 (2) | C12—H12 | 0.9400 |
N5—C10 | 1.346 (2) | C13—H13A | 0.9700 |
N5—C9 | 1.467 (2) | C13—H13B | 0.9700 |
N6—C12 | 1.343 (2) | C13—H13C | 0.9700 |
N7—N8 | 1.345 (2) | C14—C15 | 1.379 (3) |
N7—C14 | 1.346 (2) | C14—H14 | 0.9400 |
N7—C13 | 1.453 (2) | C15—C16 | 1.386 (3) |
N8—C16 | 1.333 (2) | C15—C15iii | 1.469 (3) |
C1—H1A | 0.9700 | C16—H16 | 0.9400 |
C1—H1B | 0.9700 | ||
O2i—Co1—O2 | 180 | C2—C3—C7 | 128.21 (15) |
O2i—Co1—O1i | 88.76 (5) | C4—C3—C7 | 127.50 (16) |
O2—Co1—O1i | 91.24 (5) | N2—C4—C3 | 111.98 (15) |
O2i—Co1—O1 | 91.24 (5) | N2—C4—H4 | 124.0 |
O2—Co1—O1 | 88.76 (5) | C3—C4—H4 | 124.0 |
O1i—Co1—O1 | 180 | N3—C5—H5A | 109.5 |
O2i—Co1—N2i | 91.07 (5) | N3—C5—H5B | 109.5 |
O2—Co1—N2i | 88.93 (5) | H5A—C5—H5B | 109.5 |
O1i—Co1—N2i | 89.16 (5) | N3—C5—H5C | 109.5 |
O1—Co1—N2i | 90.84 (5) | H5A—C5—H5C | 109.5 |
O2i—Co1—N2 | 88.93 (5) | H5B—C5—H5C | 109.5 |
O2—Co1—N2 | 91.07 (5) | N3—C6—C7 | 107.36 (15) |
O1i—Co1—N2 | 90.84 (5) | N3—C6—H6 | 126.3 |
O1—Co1—N2 | 89.16 (5) | C7—C6—H6 | 126.3 |
N2i—Co1—N2 | 180 | C6—C7—C8 | 104.31 (14) |
Co1—O1—H1W | 118.9 (16) | C6—C7—C3 | 128.24 (15) |
Co1—O1—H2W | 115.6 (16) | C8—C7—C3 | 127.40 (16) |
H1W—O1—H2W | 104 (2) | N4—C8—C7 | 111.67 (15) |
Co1—O2—H3W | 121.0 (13) | N4—C8—H8 | 124.2 |
Co1—O2—H4W | 119.8 (19) | C7—C8—H8 | 124.2 |
H3W—O2—H4W | 111 (2) | N5—C9—H9A | 109.5 |
H5W—O3—H6W | 101 (3) | N5—C9—H9B | 109.5 |
C2—N1—N2 | 110.98 (14) | H9A—C9—H9B | 109.5 |
C2—N1—C1 | 126.63 (15) | N5—C9—H9C | 109.5 |
N2—N1—C1 | 122.32 (13) | H9A—C9—H9C | 109.5 |
C4—N2—N1 | 104.34 (12) | H9B—C9—H9C | 109.5 |
C4—N2—Co1 | 119.94 (11) | N5—C10—C11 | 107.57 (16) |
N1—N2—Co1 | 134.76 (10) | N5—C10—H10 | 126.2 |
N4—N3—C6 | 111.68 (14) | C11—C10—H10 | 126.2 |
N4—N3—C5 | 120.34 (13) | C10—C11—C12 | 103.89 (16) |
C6—N3—C5 | 127.97 (16) | C10—C11—C11ii | 128.8 (2) |
C8—N4—N3 | 104.97 (12) | C12—C11—C11ii | 127.3 (2) |
N6—N5—C10 | 112.35 (15) | N6—C12—C11 | 111.36 (16) |
N6—N5—C9 | 119.95 (17) | N6—C12—H12 | 124.3 |
C10—N5—C9 | 127.69 (17) | C11—C12—H12 | 124.3 |
N5—N6—C12 | 104.81 (15) | N7—C13—H13A | 109.5 |
N8—N7—C14 | 111.01 (15) | N7—C13—H13B | 109.5 |
N8—N7—C13 | 121.53 (16) | H13A—C13—H13B | 109.5 |
C14—N7—C13 | 127.47 (16) | N7—C13—H13C | 109.5 |
C16—N8—N7 | 105.23 (15) | H13A—C13—H13C | 109.5 |
N1—C1—H1A | 109.5 | H13B—C13—H13C | 109.5 |
N1—C1—H1B | 109.5 | N7—C14—C15 | 107.93 (16) |
H1A—C1—H1B | 109.5 | N7—C14—H14 | 126.0 |
N1—C1—H1C | 109.5 | C15—C14—H14 | 126.0 |
H1A—C1—H1C | 109.5 | C14—C15—C16 | 103.89 (16) |
H1B—C1—H1C | 109.5 | C14—C15—C15iii | 126.9 (2) |
N1—C2—C3 | 108.50 (15) | C16—C15—C15iii | 129.2 (2) |
N1—C2—H2 | 125.8 | N8—C16—C15 | 111.94 (17) |
C3—C2—H2 | 125.8 | N8—C16—H16 | 124.0 |
C2—C3—C4 | 104.20 (13) | C15—C16—H16 | 124.0 |
C2—N1—N2—C4 | −0.2 (2) | N4—N3—C6—C7 | −0.4 (2) |
C1—N1—N2—C4 | −177.33 (17) | C5—N3—C6—C7 | 178.60 (18) |
C2—N1—N2—Co1 | −168.43 (13) | N3—C6—C7—C8 | 0.4 (2) |
C1—N1—N2—Co1 | 14.4 (3) | N3—C6—C7—C3 | 177.95 (17) |
O2i—Co1—N2—C4 | −51.45 (13) | C2—C3—C7—C6 | 175.8 (2) |
O2—Co1—N2—C4 | 128.55 (13) | C4—C3—C7—C6 | −8.0 (3) |
O1i—Co1—N2—C4 | −140.20 (13) | C2—C3—C7—C8 | −7.3 (3) |
O1—Co1—N2—C4 | 39.80 (13) | C4—C3—C7—C8 | 168.92 (18) |
O2i—Co1—N2—N1 | 115.38 (16) | N3—N4—C8—C7 | 0.1 (2) |
O2—Co1—N2—N1 | −64.62 (16) | C6—C7—C8—N4 | −0.4 (2) |
O1i—Co1—N2—N1 | 26.64 (15) | C3—C7—C8—N4 | −177.89 (17) |
O1—Co1—N2—N1 | −153.36 (15) | N6—N5—C10—C11 | −0.9 (3) |
C6—N3—N4—C8 | 0.2 (2) | C9—N5—C10—C11 | 178.5 (2) |
C5—N3—N4—C8 | −178.92 (17) | N5—C10—C11—C12 | 0.8 (2) |
C10—N5—N6—C12 | 0.5 (2) | N5—C10—C11—C11ii | −179.8 (2) |
C9—N5—N6—C12 | −178.9 (2) | N5—N6—C12—C11 | 0.0 (2) |
C14—N7—N8—C16 | 0.5 (2) | C10—C11—C12—N6 | −0.5 (2) |
C13—N7—N8—C16 | −179.6 (2) | C11ii—C11—C12—N6 | −179.9 (2) |
N2—N1—C2—C3 | −0.1 (2) | N8—N7—C14—C15 | −0.5 (2) |
C1—N1—C2—C3 | 176.90 (18) | C13—N7—C14—C15 | 179.7 (2) |
N1—C2—C3—C4 | 0.3 (2) | N7—C14—C15—C16 | 0.2 (2) |
N1—C2—C3—C7 | 177.22 (17) | N7—C14—C15—C15iii | −179.1 (2) |
N1—N2—C4—C3 | 0.40 (19) | N7—N8—C16—C15 | −0.4 (2) |
Co1—N2—C4—C3 | 170.79 (11) | C14—C15—C16—N8 | 0.2 (2) |
C2—C3—C4—N2 | −0.5 (2) | C15iii—C15—C16—N8 | 179.4 (3) |
C7—C3—C4—N2 | −177.38 (16) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+2, −z; (iii) −x+2, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···O3 | 0.86 (3) | 1.84 (3) | 2.6939 (18) | 177 (2) |
O1—H2W···N8 | 0.91 (3) | 1.96 (3) | 2.839 (2) | 163 (2) |
O2—H3W···N4iv | 0.89 (2) | 1.84 (2) | 2.7356 (18) | 179 (2) |
O2—H4W···N6 | 0.86 (3) | 1.94 (3) | 2.755 (2) | 159 (3) |
O3—H5W···Cl1v | 0.78 (3) | 2.40 (3) | 3.1576 (17) | 162 (3) |
O3—H6W···Cl1 | 0.77 (3) | 2.33 (3) | 3.0997 (17) | 174 (3) |
C6—H6···Cl1 | 0.94 | 2.76 | 3.6126 (19) | 151 |
C8—H8···Cl1vi | 0.94 | 2.65 | 3.5814 (18) | 172 |
C10—H10···Cl1vii | 0.94 | 2.69 | 3.617 (2) | 168 |
C12—H12···Cl1viii | 0.94 | 2.77 | 3.6911 (18) | 167 |
C14—H14···Cl1iii | 0.94 | 2.59 | 3.5153 (19) | 170 |
C16—H16···Cl1 | 0.94 | 2.83 | 3.738 (2) | 163 |
Symmetry codes: (iii) −x+2, −y+1, −z; (iv) x, y+1, z; (v) −x+2, −y, −z+1; (vi) x−1, y, z; (vii) −x+1, −y+1, −z; (viii) x−1, y+1, z. |
Experimental details
(1) | (2) | |
Crystal data | ||
Chemical formula | [CoCl2(C8H10N4)] | [Co(C8H10N4)2(H2O)4]Cl2·2C8H10N4·2H2O |
Mr | 292.03 | 886.73 |
Crystal system, space group | Monoclinic, P21/n | Triclinic, P1 |
Temperature (K) | 223 | 223 |
a, b, c (Å) | 8.8762 (8), 14.2372 (14), 9.5878 (9) | 9.2087 (8), 11.1415 (10), 12.2523 (10) |
α, β, γ (°) | 90, 104.964 (2), 90 | 63.071 (2), 83.665 (3), 72.592 (2) |
V (Å3) | 1170.54 (19) | 1068.96 (16) |
Z | 4 | 1 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.89 | 0.59 |
Crystal size (mm) | 0.14 × 0.12 × 0.09 | 0.17 × 0.14 × 0.12 |
Data collection | ||
Diffractometer | Siemens SMART CCD area-detector diffractometer | Siemens SMART CCD area-detector diffractometer |
Absorption correction | Empirical (using intensity measurements) (SADABS; Sheldrick, 1996) | Empirical (using intensity measurements) (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.785, 0.857 | 0.934, 0.961 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7256, 2763, 2061 | 10321, 4907, 4058 |
Rint | 0.028 | 0.036 |
(sin θ/λ)max (Å−1) | 0.658 | 0.654 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.084, 0.96 | 0.040, 0.104, 0.99 |
No. of reflections | 2763 | 4907 |
No. of parameters | 138 | 287 |
H-atom treatment | H-atom parameters constrained | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.48, −0.50 | 0.57, −0.71 |
Computer programs: SMART-NT (Bruker, 1998), SAINT-NT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 2012).
Co1—N1 | 2.0143 (19) | Co1—Cl2 | 2.2300 (8) |
Co1—N3 | 2.053 (2) | Co1—Cl1 | 2.2416 (7) |
N1—Co1—N3 | 106.40 (8) | N1—Co1—Cl1 | 110.82 (6) |
N1—Co1—Cl2 | 107.48 (6) | N3—Co1—Cl1 | 107.86 (6) |
N3—Co1—Cl2 | 108.24 (6) | Cl2—Co1—Cl1 | 115.64 (3) |
Co1—O2 | 2.0395 (11) | Co1—N2 | 2.2145 (13) |
Co1—O1 | 2.1095 (12) | ||
O2—Co1—O1i | 91.24 (5) | O1—Co1—N2i | 90.84 (5) |
O2—Co1—O1 | 88.76 (5) | O2—Co1—N2 | 91.07 (5) |
O2—Co1—N2i | 88.93 (5) | O1—Co1—N2 | 89.16 (5) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1W···O3 | 0.86 (3) | 1.84 (3) | 2.6939 (18) | 177 (2) |
O1—H2W···N8 | 0.91 (3) | 1.96 (3) | 2.839 (2) | 163 (2) |
O2—H3W···N4ii | 0.89 (2) | 1.84 (2) | 2.7356 (18) | 179 (2) |
O2—H4W···N6 | 0.86 (3) | 1.94 (3) | 2.755 (2) | 159 (3) |
O3—H5W···Cl1iii | 0.78 (3) | 2.40 (3) | 3.1576 (17) | 162 (3) |
O3—H6W···Cl1 | 0.77 (3) | 2.33 (3) | 3.0997 (17) | 174 (3) |
C6—H6···Cl1 | 0.94 | 2.76 | 3.6126 (19) | 151 |
C8—H8···Cl1iv | 0.94 | 2.65 | 3.5814 (18) | 172 |
C10—H10···Cl1v | 0.94 | 2.69 | 3.617 (2) | 168 |
C12—H12···Cl1vi | 0.94 | 2.77 | 3.6911 (18) | 167 |
C14—H14···Cl1vii | 0.94 | 2.59 | 3.5153 (19) | 170 |
C16—H16···Cl1 | 0.94 | 2.83 | 3.738 (2) | 163 |
Symmetry codes: (ii) x, y+1, z; (iii) −x+2, −y, −z+1; (iv) x−1, y, z; (v) −x+1, −y+1, −z; (vi) x−1, y+1, z; (vii) −x+2, −y+1, −z. |