Download citation
Download citation
link to html
The reactions of GeBr4 with 4-methyl­pyridine and 3,4-di­methyl­pyridine lead to tetra­bromo­bis(4-methyl­pyridine)­germanium, [GeBr4(C6H7N)2], and tetra­bromo­bis(3,4-di­methyl­pyridine)­germanium, [GeBr4(C7H9N)2], respectively. These structures show the same features as the corresponding silicon complexes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100014153/qa0420sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100014153/qa0420Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100014153/qa0420IIsup3.hkl
Contains datablock II

CCDC references: 153932; 153933

Computing details top

For both compounds, data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

(I) ; top
Crystal data top
[GeBr4(C6H7N)2]F(000) = 544
Mr = 578.48Dx = 2.302 Mg m3
Orthorhombic, PmnaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2Cell parameters from 5051 reflections
a = 7.360 (1) Åθ = 1–25°
b = 8.360 (1) ŵ = 11.40 mm1
c = 13.561 (1) ÅT = 173 K
V = 834.40 (16) Å3Needle, yellow
Z = 20.36 × 0.16 × 0.10 mm
Data collection top
Siemens CCD three-circle
diffractometer
1122 independent reflections
Radiation source: fine-focus sealed tube869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ω scansθmax = 28.3°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.089, Tmax = 0.319k = 1111
14794 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0202P)2 + 1.2129P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1122 reflectionsΔρmax = 0.48 e Å3
57 parametersΔρmin = 0.64 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (3)
Special details top

Experimental. ;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.73632 (5)0.16531 (4)0.42513 (3)0.03106 (13)
Ge10.50000.00000.50000.01701 (16)
N10.50000.1469 (4)0.6241 (3)0.0178 (8)
C20.50000.3075 (5)0.6141 (3)0.0222 (10)
H20.50000.35220.54970.027*
C30.50000.4082 (6)0.6938 (4)0.0255 (11)
H30.50000.52080.68400.031*
C40.50000.3459 (6)0.7891 (3)0.0223 (10)
C410.50000.4520 (6)0.8782 (3)0.0292 (11)
H41A0.50000.56390.85960.044*0.50
H41B0.39750.41960.91830.044*0.50
H41C0.50000.38520.93670.044*0.50
H41D0.39290.51950.87570.044*0.50
C50.50000.1803 (6)0.7984 (3)0.0240 (10)
H50.50000.13280.86200.029*
C60.50000.0850 (6)0.7158 (3)0.0221 (10)
H60.50000.02790.72370.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0313 (2)0.02804 (19)0.0338 (2)0.01124 (16)0.00933 (15)0.00716 (16)
Ge10.0182 (3)0.0142 (3)0.0186 (3)0.0000.0000.0030 (3)
N10.0200 (18)0.0126 (18)0.0208 (18)0.0000.0000.0046 (15)
C20.027 (2)0.018 (2)0.022 (2)0.0000.0000.0002 (19)
C30.030 (3)0.013 (2)0.034 (3)0.0000.0000.004 (2)
C40.017 (2)0.024 (2)0.025 (2)0.0000.0000.009 (2)
C410.037 (3)0.025 (3)0.026 (3)0.0000.0000.010 (2)
C50.030 (2)0.021 (2)0.021 (2)0.0000.0000.002 (2)
C60.030 (2)0.015 (2)0.021 (2)0.0000.0000.0016 (19)
Geometric parameters (Å, º) top
Br1—Ge12.4425 (4)C3—H30.9500
Ge1—N12.083 (3)C4—C51.391 (6)
Ge1—N1i2.083 (3)C4—C411.498 (6)
Ge1—Br1i2.4425 (4)C41—H41A0.9693
Ge1—Br1ii2.4425 (4)C41—H41B0.9693
Ge1—Br1iii2.4425 (4)C41—H41C0.9699
N1—C61.347 (6)C41—H41D0.9701
N1—C21.350 (5)C5—C61.374 (6)
C2—C31.369 (6)C5—H50.9500
C2—H20.9500C6—H60.9500
C3—C41.394 (7)
N1—Ge1—N1i180.0C2—C3—H3119.9
N1—Ge1—Br190.14 (7)C4—C3—H3119.9
N1i—Ge1—Br189.86 (7)C5—C4—C3117.1 (4)
N1—Ge1—Br1i89.86 (7)C5—C4—C41121.1 (4)
N1i—Ge1—Br1i90.14 (7)C3—C4—C41121.8 (4)
Br1—Ge1—Br1i180.0C4—C41—H41A111.2
N1—Ge1—Br1ii89.86 (7)C4—C41—H41B106.7
N1i—Ge1—Br1ii90.14 (7)H41A—C41—H41B114.6
Br1—Ge1—Br1ii89.19 (2)C4—C41—H41C108.6
Br1i—Ge1—Br1ii90.81 (2)H41A—C41—H41C140.2
N1—Ge1—Br1iii90.14 (7)H41B—C41—H41C51.7
N1i—Ge1—Br1iii89.86 (7)C4—C41—H41D108.5
Br1—Ge1—Br1iii90.81 (2)H41A—C41—H41D55.2
Br1i—Ge1—Br1iii89.19 (2)H41B—C41—H41D63.2
Br1ii—Ge1—Br1iii180.000 (15)H41C—C41—H41D111.3
C6—N1—C2118.3 (4)C6—C5—C4120.2 (4)
C6—N1—Ge1121.3 (3)C6—C5—H5119.9
C2—N1—Ge1120.3 (3)C4—C5—H5119.9
N1—C2—C3122.2 (4)N1—C6—C5122.0 (4)
N1—C2—H2118.9N1—C6—H6119.0
C3—C2—H2118.9C5—C6—H6119.0
C2—C3—C4120.1 (4)
N1i—Ge1—N1—C6180.0 (6)C6—N1—C2—C30.000 (2)
Br1—Ge1—N1—C6134.594 (10)Ge1—N1—C2—C3180.000 (1)
Br1i—Ge1—N1—C645.406 (10)N1—C2—C3—C40.000 (2)
Br1ii—Ge1—N1—C645.406 (10)C2—C3—C4—C50.000 (2)
Br1iii—Ge1—N1—C6134.594 (10)C2—C3—C4—C41180.000 (2)
N1i—Ge1—N1—C20 (100)C3—C4—C5—C60.000 (2)
Br1—Ge1—N1—C245.406 (10)C41—C4—C5—C6180.000 (2)
Br1i—Ge1—N1—C2134.594 (10)C2—N1—C6—C50.000 (2)
Br1ii—Ge1—N1—C2134.594 (10)Ge1—N1—C6—C5180.000 (1)
Br1iii—Ge1—N1—C245.406 (10)C4—C5—C6—N10.000 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x+1, y, z.
(II) ; top
Crystal data top
[GeBr4(C7H9N)2]Dx = 2.276 Mg m3
Mr = 606.53Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, CmcaCell parameters from 3846 reflections
a = 7.477 (1) Åθ = 1–25°
b = 17.942 (5) ŵ = 10.76 mm1
c = 13.194 (3) ÅT = 173 K
V = 1770.0 (7) Å3Plate, yellow
Z = 40.22 × 0.12 × 0.05 mm
F(000) = 1152
Data collection top
Siemens CCD three-circle
diffractometer
1134 independent reflections
Radiation source: fine-focus sealed tube898 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
ω scansθmax = 27.8°, θmin = 2.8°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.200, Tmax = 0.580k = 2323
12371 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0315P)2 + 6.1521P]
where P = (Fo2 + 2Fc2)/3
1134 reflections(Δ/σ)max < 0.001
62 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.78 e Å3
Special details top

Experimental. ;

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.50000.50000.50000.0149 (2)
Br10.73194 (6)0.42244 (2)0.42398 (3)0.02444 (15)
N10.50000.4321 (3)0.6297 (4)0.0165 (10)
C20.50000.3577 (3)0.6207 (5)0.0183 (13)
H20.50000.33690.55440.022*
C30.50000.3095 (3)0.7025 (4)0.0172 (12)
C310.50000.2267 (3)0.6870 (5)0.0267 (15)
H31A0.50000.21520.61440.040*
H31B0.39320.20510.71850.040*
C40.50000.3412 (3)0.8010 (5)0.0180 (13)
C410.50000.2930 (4)0.8943 (5)0.0243 (14)
H41A0.50000.32450.95500.036*
H41B0.39330.26130.89410.036*
C50.50000.4181 (3)0.8085 (5)0.0219 (13)
H50.50000.44070.87370.026*
C60.50000.4626 (3)0.7236 (5)0.0239 (14)
H60.50000.51530.73090.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0177 (4)0.0132 (4)0.0137 (4)0.0000.0000.0004 (4)
Br10.0261 (2)0.0223 (2)0.0249 (2)0.00582 (19)0.00608 (19)0.00143 (19)
N10.018 (2)0.019 (3)0.013 (3)0.0000.0000.000 (2)
C20.024 (3)0.015 (3)0.015 (3)0.0000.0000.008 (2)
C30.019 (3)0.018 (3)0.015 (3)0.0000.0000.002 (3)
C310.047 (4)0.018 (3)0.015 (3)0.0000.0000.000 (3)
C40.017 (3)0.020 (3)0.017 (3)0.0000.0000.005 (3)
C410.035 (4)0.020 (3)0.018 (3)0.0000.0000.001 (3)
C50.030 (3)0.021 (3)0.015 (3)0.0000.0000.007 (3)
C60.034 (4)0.015 (3)0.023 (4)0.0000.0000.000 (3)
Geometric parameters (Å, º) top
Ge1—N12.101 (5)C3—C311.501 (8)
Ge1—N1i2.101 (5)C31—H31A0.9800
Ge1—Br1ii2.4392 (5)C31—H31B0.9800
Ge1—Br1i2.4392 (5)C4—C51.384 (8)
Ge1—Br12.4392 (5)C4—C411.504 (8)
Ge1—Br1iii2.4392 (5)C41—H41A0.9799
N1—C21.341 (7)C41—H41B0.9801
N1—C61.354 (8)C5—C61.376 (9)
C2—C31.383 (8)C5—H50.9500
C2—H20.9500C6—H60.9500
C3—C41.419 (8)
N1—Ge1—N1i180.0C3—C2—H2118.2
N1—Ge1—Br1ii89.76 (9)C2—C3—C4117.7 (5)
N1i—Ge1—Br1ii90.24 (9)C2—C3—C31120.8 (5)
N1—Ge1—Br1i89.76 (9)C4—C3—C31121.5 (5)
N1i—Ge1—Br1i90.24 (9)C3—C31—H31A110.0
Br1ii—Ge1—Br1i90.63 (3)C3—C31—H31B109.4
N1—Ge1—Br190.24 (9)H31A—C31—H31B109.4
N1i—Ge1—Br189.76 (9)C5—C4—C3117.7 (5)
Br1ii—Ge1—Br189.37 (3)C5—C4—C41121.0 (6)
Br1i—Ge1—Br1180.0C3—C4—C41121.3 (5)
N1—Ge1—Br1iii90.24 (9)C4—C41—H41A109.7
N1i—Ge1—Br1iii89.76 (9)C4—C41—H41B109.4
Br1ii—Ge1—Br1iii180.0H41A—C41—H41B109.7
Br1i—Ge1—Br1iii89.37 (3)C6—C5—C4121.3 (6)
Br1—Ge1—Br1iii90.63 (3)C6—C5—H5119.3
C2—N1—C6119.0 (5)C4—C5—H5119.3
C2—N1—Ge1120.3 (4)N1—C6—C5120.7 (6)
C6—N1—Ge1120.7 (4)N1—C6—H6119.6
N1—C2—C3123.5 (5)C5—C6—H6119.6
N1—C2—H2118.2
N1i—Ge1—N1—C21 (100)N1—C2—C3—C40.000 (2)
Br1ii—Ge1—N1—C2134.686 (13)N1—C2—C3—C31180.000 (2)
Br1i—Ge1—N1—C2134.686 (13)C2—C3—C4—C50.000 (2)
Br1—Ge1—N1—C245.314 (13)C31—C3—C4—C5180.000 (2)
Br1iii—Ge1—N1—C245.313 (13)C2—C3—C4—C41180.000 (2)
N1i—Ge1—N1—C6179 (100)C31—C3—C4—C410.000 (2)
Br1ii—Ge1—N1—C645.314 (13)C3—C4—C5—C60.000 (3)
Br1i—Ge1—N1—C645.314 (13)C41—C4—C5—C6180.000 (2)
Br1—Ge1—N1—C6134.686 (13)C2—N1—C6—C50.000 (3)
Br1iii—Ge1—N1—C6134.687 (13)Ge1—N1—C6—C5180.000 (2)
C6—N1—C2—C30.000 (2)C4—C5—C6—N10.000 (3)
Ge1—N1—C2—C3180.000 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds