Download citation
Download citation
link to html
Controlling the optical activity of halide perovskite materials through modulation of the coordination configurations of the metal ions is important. Herein, a novel manganese-based halide, specifically di­aqua­tetra­kis­(methyl­diphenyl­phosphine oxide)manganese(II) tetra­chlorido­manganate(II), [Mn(C13H13OP)4(H2O)2][MnCl4] or [Mn(MDPPO)4(H2O)2][MnCl4] (MDPPO is methyl­di­phenyl­phosphine oxide), was synthesized through the solvothermal reaction of MnCl2 with the neutral mol­ecule MDPPO. In this com­pound, [Mn(MDPPO)4(H2O)2]2+ acts as the cation, while [MnCl4]2− serves as the anion, enabling the co-existence of tetra­hedral and octa­hedral structures within the same system. Remarkably, the com­pound exhibits efficient red-light emission at 662 nm, distinct from the green-light emission typically observed in MnX4-based halides. Theoretical calculations show that the red emission comes from the charge transfer from the MDPPO to the Mn2+ of [MnCl4]2−. This work provides a new perspective for the design and synthesis of red-light-emitting manganese-based halides with unique structures.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229624006405/qf3064sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229624006405/qf3064Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229624006405/qf3064sup3.pdf
PXRD patterns and hydrogen-bond details

CCDC reference: 2345887

Computing details top

Diaquatetrakis(methyldiphenylphosphine oxide)manganese(II) tetrachloridomanganate(II) top
Crystal data top
[Mn(C13H13OP)4(H2O)2][MnCl4]Dx = 1.424 Mg m3
Mr = 1152.52Ga Kα radiation, λ = 1.34135 Å
Tetragonal, I41/aCell parameters from 5007 reflections
a = 21.0944 (3) Åθ = 3.7–55.9°
c = 12.0785 (2) ŵ = 4.84 mm1
V = 5374.62 (18) Å3T = 100 K
Z = 4Block, colourless
F(000) = 23760.15 × 0.12 × 0.08 mm
Data collection top
Rigaku XtaLAB Synergy Custom system with a HyPix detector
diffractometer
2619 independent reflections
Radiation source: micro-focus metaljet2311 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.032
Detector resolution: 10.0000 pixels mm-1θmax = 56.0°, θmin = 3.7°
ω scansh = 1524
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2023)
k = 2625
Tmin = 0.673, Tmax = 1.000l = 714
7472 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0433P)2 + 4.6502P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2619 reflectionsΔρmax = 0.39 e Å3
158 parametersΔρmin = 0.41 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The single-crystal data for the compound were obtained using a Synergy Custom ROD system with a HyPix diffractometer and Ga Kα radiation (λ = 1.34050 Å) at 100 K. The structures were solved and refined using full matrixcs methods against F2 with the SHELXL2014 software package and OLEX2 (Dolomanov et al., 2003). Anisotropic thermal parameters refined all non-hydrogen atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn11.00000.75000.12500.01375 (15)
Cl10.97709 (2)0.66074 (2)0.01258 (4)0.02123 (14)
Mn21.00000.75000.37500.01049 (14)
P10.87598 (2)0.64948 (2)0.32708 (4)0.01330 (13)
O10.94307 (6)0.66565 (6)0.35768 (10)0.0152 (3)
O21.00000.75000.19301 (15)0.0214 (4)
H2A1.01370.78070.15130.032*0.5
H2B1.00480.71610.15280.032*0.5
C10.82315 (9)0.65755 (8)0.44271 (15)0.0149 (4)
C20.75770 (10)0.66511 (9)0.43074 (17)0.0204 (4)
H20.73950.66690.35890.025*
C30.71928 (10)0.67008 (10)0.52348 (17)0.0223 (4)
H30.67480.67500.51520.027*
C40.74589 (10)0.66784 (10)0.62839 (16)0.0221 (5)
H40.71960.67190.69180.027*
C50.81060 (10)0.65974 (10)0.64114 (16)0.0214 (4)
H50.82850.65760.71320.026*
C60.84932 (9)0.65476 (9)0.54862 (16)0.0186 (4)
H60.89370.64940.55750.022*
C70.87123 (9)0.56818 (9)0.28307 (14)0.0144 (4)
C80.92077 (9)0.54419 (9)0.21885 (15)0.0176 (4)
H80.95570.57050.20020.021*
C90.91883 (9)0.48181 (9)0.18227 (16)0.0192 (4)
H90.95260.46550.13860.023*
C100.86775 (10)0.44320 (9)0.20923 (16)0.0202 (4)
H100.86660.40050.18420.024*
C110.81839 (10)0.46693 (10)0.27270 (16)0.0210 (4)
H110.78340.44050.29090.025*
C120.82000 (10)0.52918 (9)0.30968 (15)0.0186 (4)
H120.78610.54530.35320.022*
C130.84538 (10)0.69750 (9)0.21683 (15)0.0190 (4)
H13A0.84420.74190.24040.028*
H13B0.80240.68350.19810.028*
H13C0.87280.69330.15170.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0161 (2)0.0161 (2)0.0091 (3)0.0000.0000.000
Cl10.0304 (3)0.0183 (2)0.0150 (2)0.00579 (19)0.00100 (19)0.00150 (17)
Mn20.01206 (19)0.01206 (19)0.0073 (3)0.0000.0000.000
P10.0147 (2)0.0139 (2)0.0112 (2)0.00171 (17)0.00010 (17)0.00011 (17)
O10.0145 (7)0.0163 (7)0.0148 (6)0.0026 (5)0.0004 (5)0.0003 (5)
O20.0363 (12)0.0187 (10)0.0093 (9)0.0092 (9)0.0000.000
C10.0162 (9)0.0121 (9)0.0165 (9)0.0031 (7)0.0018 (7)0.0002 (7)
C20.0207 (10)0.0212 (10)0.0194 (10)0.0019 (8)0.0016 (8)0.0012 (8)
C30.0168 (10)0.0218 (10)0.0282 (11)0.0030 (8)0.0039 (8)0.0021 (8)
C40.0247 (11)0.0199 (10)0.0217 (11)0.0026 (9)0.0104 (8)0.0001 (8)
C50.0273 (11)0.0221 (11)0.0147 (10)0.0017 (9)0.0019 (8)0.0018 (8)
C60.0184 (10)0.0196 (10)0.0177 (10)0.0006 (8)0.0014 (8)0.0005 (8)
C70.0164 (9)0.0165 (9)0.0103 (8)0.0007 (7)0.0031 (7)0.0003 (7)
C80.0171 (10)0.0203 (10)0.0154 (9)0.0034 (8)0.0021 (7)0.0008 (7)
C90.0190 (10)0.0223 (10)0.0164 (9)0.0037 (8)0.0041 (8)0.0040 (8)
C100.0284 (11)0.0162 (10)0.0161 (10)0.0007 (8)0.0062 (8)0.0008 (8)
C110.0263 (11)0.0196 (10)0.0171 (10)0.0076 (8)0.0004 (8)0.0015 (8)
C120.0223 (10)0.0198 (10)0.0139 (9)0.0014 (8)0.0028 (8)0.0006 (8)
C130.0231 (10)0.0179 (10)0.0159 (9)0.0014 (8)0.0024 (8)0.0019 (8)
Geometric parameters (Å, º) top
Mn1—Cl12.3712 (4)C3—C41.387 (3)
Mn1—Cl1i2.3712 (4)C4—H40.9500
Mn1—Cl1ii2.3712 (4)C4—C51.384 (3)
Mn1—Cl1iii2.3712 (4)C5—H50.9500
Mn2—O1i2.1568 (13)C5—C61.388 (3)
Mn2—O1iv2.1568 (13)C6—H60.9500
Mn2—O1v2.1568 (13)C7—C81.396 (3)
Mn2—O12.1568 (13)C7—C121.396 (3)
Mn2—O22.1982 (18)C8—H80.9500
Mn2—O2iv2.1982 (18)C8—C91.389 (3)
P1—O11.5019 (14)C9—H90.9500
P1—C11.7950 (19)C9—C101.390 (3)
P1—C71.7981 (19)C10—H100.9500
P1—C131.7934 (19)C10—C111.387 (3)
O2—H2A0.8702C11—H110.9500
O2—H2B0.8698C11—C121.387 (3)
C1—C21.397 (3)C12—H120.9500
C1—C61.394 (3)C13—H13A0.9800
C2—H20.9500C13—H13B0.9800
C2—C31.387 (3)C13—H13C0.9800
C3—H30.9500
Cl1—Mn1—Cl1i110.13 (2)C2—C3—H3120.0
Cl1—Mn1—Cl1ii109.144 (11)C2—C3—C4119.94 (19)
Cl1i—Mn1—Cl1ii109.143 (11)C4—C3—H3120.0
Cl1—Mn1—Cl1iii109.144 (11)C3—C4—H4119.8
Cl1i—Mn1—Cl1iii109.143 (11)C5—C4—C3120.33 (18)
Cl1ii—Mn1—Cl1iii110.13 (2)C5—C4—H4119.8
O1—Mn2—O1i168.87 (7)C4—C5—H5120.0
O1v—Mn2—O1iv168.87 (7)C4—C5—C6120.00 (19)
O1i—Mn2—O1v90.539 (7)C6—C5—H5120.0
O1—Mn2—O1v90.539 (6)C1—C6—H6119.9
O1i—Mn2—O1iv90.539 (7)C5—C6—C1120.16 (19)
O1—Mn2—O1iv90.539 (7)C5—C6—H6119.9
O1—Mn2—O284.43 (3)C8—C7—P1117.92 (14)
O1i—Mn2—O284.43 (3)C12—C7—P1122.50 (15)
O1iv—Mn2—O2iv84.43 (3)C12—C7—C8119.58 (17)
O1iv—Mn2—O295.57 (3)C7—C8—H8120.1
O1i—Mn2—O2iv95.57 (3)C9—C8—C7119.88 (18)
O1v—Mn2—O295.57 (3)C9—C8—H8120.1
O1v—Mn2—O2iv84.43 (3)C8—C9—H9119.9
O1—Mn2—O2iv95.57 (3)C8—C9—C10120.25 (18)
O2—Mn2—O2iv180.0C10—C9—H9119.9
O1—P1—C1111.84 (8)C9—C10—H10120.0
O1—P1—C7109.99 (8)C11—C10—C9120.02 (18)
O1—P1—C13113.18 (9)C11—C10—H10120.0
C1—P1—C7106.61 (8)C10—C11—H11120.0
C13—P1—C1107.50 (9)C10—C11—C12120.09 (19)
C13—P1—C7107.40 (9)C12—C11—H11120.0
P1—O1—Mn2137.38 (8)C7—C12—H12119.9
Mn2—O2—H2A125.4C11—C12—C7120.19 (18)
Mn2—O2—H2B123.9C11—C12—H12119.9
H2A—O2—H2B104.5P1—C13—H13A109.5
C2—C1—P1122.94 (15)P1—C13—H13B109.5
C6—C1—P1117.64 (15)P1—C13—H13C109.5
C6—C1—C2119.40 (18)H13A—C13—H13B109.5
C1—C2—H2119.9H13A—C13—H13C109.5
C3—C2—C1120.16 (19)H13B—C13—H13C109.5
C3—C2—H2119.9
P1—C1—C2—C3178.97 (15)C6—C1—C2—C30.3 (3)
P1—C1—C6—C5179.01 (15)C7—P1—O1—Mn2159.22 (10)
P1—C7—C8—C9179.48 (14)C7—P1—C1—C280.54 (17)
P1—C7—C12—C11179.37 (15)C7—P1—C1—C698.16 (16)
O1—P1—C1—C2159.20 (15)C7—C8—C9—C100.1 (3)
O1—P1—C1—C622.10 (17)C8—C7—C12—C110.1 (3)
O1—P1—C7—C838.91 (16)C8—C9—C10—C110.1 (3)
O1—P1—C7—C12141.83 (15)C9—C10—C11—C120.2 (3)
C1—P1—O1—Mn282.52 (13)C10—C11—C12—C70.1 (3)
C1—P1—C7—C8160.35 (14)C12—C7—C8—C90.2 (3)
C1—P1—C7—C1220.38 (18)C13—P1—O1—Mn239.08 (14)
C1—C2—C3—C40.3 (3)C13—P1—C1—C234.38 (18)
C2—C1—C6—C50.3 (3)C13—P1—C1—C6146.92 (15)
C2—C3—C4—C50.9 (3)C13—P1—C7—C884.67 (16)
C3—C4—C5—C60.9 (3)C13—P1—C7—C1294.60 (17)
C4—C5—C6—C10.4 (3)
Symmetry codes: (i) x+2, y+3/2, z; (ii) y+1/4, x+7/4, z1/4; (iii) y+7/4, x1/4, z1/4; (iv) y+1/4, x+7/4, z+3/4; (v) y+7/4, x1/4, z+3/4.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds