Download citation
Download citation
link to html
The structures of 6-nitro-1,3[lambda]4[delta]2,5,2,4-tri­thia­diazepine [C2HN3O2S3, (1)], 6,7-di­nitro-1,3[lambda]4[delta]2,5,2,4-tri­thia­diazepine [C2N4O4S3, (2)], 1,3[lambda]4[delta]2,5,2,4-tri­thia­diazepine-6,7-dicarbo­nitrile [C4N4S3, (3)] and 7-acetyl-1,3[lambda]4[delta]2,5,2,4,6-tri­thia­triazepine [C3H3N3OS3, (4)] presented here include the most precise determinations of these seven-membered 10 [pi]-electron aromatic ring systems published to date. Both (2) and (3) are sited around crystallographic twofold axes with half a mol­ecule per asymmetric unit. Comparison with other published derivatives of these rings reveals the effect of substituents on bonding, conformations and inter­molecular inter­actions, including [pi]-stacking. The deformation density analysis of (2) is consistent with the expected bonding electron density from other theoretical and experimental studies.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229613033287/qs3029sup1.cif
Contains datablocks I, II, III, IV, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229613033287/qs3029Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229613033287/qs3029Isup6.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229613033287/qs3029IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229613033287/qs3029IIsup7.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229613033287/qs3029IIIsup4.hkl
Contains datablock 3-publication

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229613033287/qs3029IIIsup8.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229613033287/qs3029IVsup5.hkl
Contains datablock IV

CCDC references: 973869; 973870; 973871; 973872

Computing details top

For all compounds, data collection: Nicolet R3m software; cell refinement: Nicolet R3m software; data reduction: Nicolet R3m software; program(s) used to solve structure: SHELXS83 (Sheldrick, 1983); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).

(I) 6-Nitro-1,3,5,2,4-trithiadiazepine top
Crystal data top
C2HN3O2S3F(000) = 784
Mr = 195.24Dx = 1.962 Mg m3
Orthorhombic, PbcaMelting point: 359 K
Hall symbol: -P 2ac 2abCu Kα radiation, λ = 1.54178 Å
a = 8.794 (9) ÅCell parameters from 10 reflections
b = 11.696 (7) ŵ = 9.81 mm1
c = 12.854 (8) ÅT = 293 K
V = 1322.1 (18) Å3Plate, yellow
Z = 80.40 × 0.10 × 0.01 mm
Data collection top
Nicolet R3m
diffractometer
629 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 56.7°, θmin = 6.9°
Scintillation counter scansh = 09
Absorption correction: analytical
(SHELXS83; Sheldrick, 1983)
k = 012
Tmin = 0.880, Tmax = 0.990l = 013
881 measured reflections2 standard reflections every 50 reflections
881 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1072P)2]
where P = (Fo2 + 2Fc2)/3
881 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.48 e Å3
Special details top

Experimental. Face indexed crystal

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.0663 (2)0.09035 (14)0.13731 (14)0.0470 (6)
N20.2319 (7)0.0443 (5)0.1062 (5)0.0495 (15)
S30.30395 (19)0.07568 (16)0.08169 (15)0.0526 (6)
N40.2099 (6)0.1884 (5)0.0867 (4)0.0494 (16)
S50.0436 (2)0.23629 (14)0.10978 (14)0.0458 (6)
C60.0799 (7)0.1264 (6)0.1373 (5)0.0378 (16)
C70.0689 (7)0.0101 (6)0.1464 (5)0.0406 (16)
H70.16280.02230.16190.049*
N80.2318 (6)0.1727 (5)0.1537 (4)0.0459 (14)
O90.2402 (6)0.2788 (5)0.1543 (4)0.0641 (15)
O100.3411 (6)0.1105 (5)0.1663 (4)0.0639 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0423 (11)0.0352 (9)0.0635 (12)0.0024 (8)0.0019 (8)0.0024 (7)
N20.035 (3)0.038 (3)0.075 (4)0.004 (3)0.003 (3)0.004 (3)
S30.0297 (9)0.0560 (11)0.0719 (14)0.0017 (8)0.0037 (8)0.0007 (9)
N40.035 (3)0.042 (3)0.071 (4)0.008 (3)0.004 (3)0.010 (3)
S50.0387 (10)0.0357 (9)0.0629 (12)0.0022 (8)0.0006 (8)0.0029 (8)
C60.030 (3)0.041 (4)0.042 (4)0.004 (3)0.002 (3)0.000 (3)
C70.030 (3)0.045 (4)0.048 (4)0.006 (3)0.003 (3)0.004 (3)
N80.038 (3)0.046 (3)0.054 (3)0.004 (3)0.002 (3)0.001 (3)
O90.051 (3)0.056 (3)0.085 (4)0.022 (3)0.001 (3)0.001 (3)
O100.034 (3)0.067 (3)0.091 (4)0.004 (3)0.006 (3)0.005 (3)
Geometric parameters (Å, º) top
S1—N21.603 (6)C6—C71.369 (9)
S1—C71.676 (7)C6—N81.457 (8)
N2—S31.572 (6)C7—H70.9300
S3—N41.557 (6)N8—O101.217 (7)
N4—S51.594 (6)N8—O91.242 (7)
S5—C61.719 (7)
N2—S1—C7115.3 (3)N8—C6—S5109.3 (5)
S3—N2—S1135.7 (4)C6—C7—S1137.8 (5)
N4—S3—N2122.2 (3)C6—C7—H7111.1
S3—N4—S5142.4 (4)S1—C7—H7111.1
N4—S5—C6110.8 (3)O10—N8—O9123.3 (6)
C7—C6—N8115.0 (6)O10—N8—C6121.4 (6)
C7—C6—S5135.7 (5)O9—N8—C6115.3 (6)
C7—S1—N2—S30.5 (7)S5—C6—C7—S10.6 (13)
S1—N2—S3—N41.4 (8)N2—S1—C7—C62.3 (9)
N2—S3—N4—S50.7 (8)C7—C6—N8—O105.4 (9)
S3—N4—S5—C61.4 (8)S5—C6—N8—O10174.2 (5)
N4—S5—C6—C71.9 (8)C7—C6—N8—O9174.2 (6)
N4—S5—C6—N8177.6 (4)S5—C6—N8—O96.2 (7)
N8—C6—C7—S1179.9 (5)
(II) 6,7-Dinitro-1,3,5,2,4-trithiadiazepine top
Crystal data top
C2N4O4S3F(000) = 480
Mr = 240.24Dx = 1.965 Mg m3
Monoclinic, I2/aMelting point: 336 K
Hall symbol: -I 2yaCu Kα radiation, λ = 1.54178 Å
a = 11.182 (2) ÅCell parameters from 11 reflections
b = 8.436 (2) ŵ = 8.38 mm1
c = 8.609 (2) ÅT = 293 K
β = 91.36 (2)°Block, yellow
V = 811.9 (3) Å30.15 × 0.10 × 0.10 mm
Z = 4
Data collection top
Nicolet R3m
diffractometer
511 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 57.0°, θmin = 6.6°
Scintillation counter scansh = 1212
Absorption correction: analytical
(SHELXS83; Sheldrick, 1983)
k = 90
Tmin = 0.380, Tmax = 0.470l = 09
581 measured reflections2 standard reflections every 50 reflections
543 independent reflections intensity decay: 10%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 [1.00000 + 0.00000exp(0.00(sinθ/λ)2)]/ [σ2(Fo2) + 0.0000 + 0.7454*P + (0.0347P)2 + 1.0000sinθ/λ]
where P = 0.33333Fo2 + 0.66667Fc2
wR(F2) = 0.066(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.23 e Å3
543 reflectionsΔρmin = 0.16 e Å3
61 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0022 (2)
Special details top

Experimental. Face indexed crystal

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10938 (6)0.64585 (8)0.36973 (8)0.0492 (3)
N20.1492 (2)0.4698 (3)0.4119 (3)0.0599 (7)
S30.25000.37959 (11)0.50000.0660 (4)
C70.1998 (2)0.7874 (3)0.4541 (2)0.0357 (6)
N80.14231 (16)0.9410 (2)0.4163 (2)0.0433 (5)
O90.10665 (18)0.9583 (2)0.2816 (2)0.0673 (6)
O100.12905 (16)1.0365 (2)0.5196 (2)0.0551 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0408 (4)0.0517 (5)0.0547 (5)0.0108 (3)0.0089 (3)0.0057 (3)
N20.0622 (15)0.0451 (13)0.0722 (16)0.0152 (11)0.0006 (12)0.0088 (11)
S30.0765 (8)0.0367 (6)0.0850 (8)0.0000.0084 (6)0.000
C70.0298 (11)0.0384 (13)0.0387 (12)0.0015 (10)0.0003 (9)0.0007 (10)
N80.0276 (11)0.0470 (12)0.0550 (13)0.0019 (9)0.0029 (9)0.0073 (11)
O90.0602 (13)0.0791 (15)0.0618 (13)0.0192 (10)0.0139 (9)0.0180 (10)
O100.0441 (11)0.0437 (11)0.0773 (13)0.0072 (8)0.0007 (9)0.0072 (10)
Geometric parameters (Å, º) top
S1—N21.590 (2)C7—C7i1.359 (4)
S1—C71.715 (2)C7—N81.479 (3)
N2—S31.544 (3)N8—O101.212 (3)
S3—N2i1.544 (3)N8—O91.226 (3)
N2—S1—C7113.24 (12)N8—C7—S1105.59 (15)
S3—N2—S1140.36 (16)O10—N8—O9124.9 (2)
N2i—S3—N2120.91 (17)O10—N8—C7118.76 (19)
C7i—C7—N8118.47 (11)O9—N8—C7116.2 (2)
C7i—C7—S1135.85 (8)
C7—S1—N2—S34.5 (3)C7i—C7—N8—O1045.2 (3)
S1—N2—S3—N2i3.01 (19)S1—C7—N8—O10131.85 (18)
N2—S1—C7—C7i2.2 (4)C7i—C7—N8—O9138.0 (3)
N2—S1—C7—N8174.10 (15)S1—C7—N8—O944.9 (2)
Symmetry code: (i) x+1/2, y, z+1.
(III) 1,3,5,2,4-Trithiadiazepine-6,7-dicarbonitrile top
Crystal data top
C4N4S3F(000) = 400
Mr = 200.26Dx = 1.853 Mg m3
Orthorhombic, PbcnMelting point: 413 K
Hall symbol: -P 2n 2abCu Kα radiation, λ = 1.54178 Å
a = 3.897 (1) ÅCell parameters from 9 reflections
b = 16.881 (9) ŵ = 8.90 mm1
c = 10.910 (4) ÅT = 293 K
V = 717.7 (5) Å3Needle, orange
Z = 40.16 × 0.06 × 0.04 mm
Data collection top
Nicolet R3m
diffractometer
338 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 56.9°, θmin = 5.2°
scintillation counter scansh = 04
Absorption correction: analytical
(SHELXS83; Sheldrick, 1983)
k = 018
Tmin = 0.560, Tmax = 0.740l = 110
489 measured reflections2 standard reflections every 50 reflections
489 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0464P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 0.96Δρmax = 0.28 e Å3
489 reflectionsΔρmin = 0.30 e Å3
52 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0002 (3)
Special details top

Experimental. Face indexed crystal

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.2674 (4)0.34164 (7)0.90311 (10)0.0403 (5)
N20.3388 (12)0.2532 (2)0.8586 (4)0.0442 (14)
S30.50000.20707 (10)0.75000.0481 (7)
C70.4141 (14)0.4138 (3)0.8051 (4)0.0340 (13)
C80.3196 (14)0.4895 (3)0.8555 (4)0.0368 (14)
N90.2370 (15)0.5483 (3)0.8960 (4)0.0557 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0560 (9)0.0319 (7)0.0329 (7)0.0010 (8)0.0069 (8)0.0016 (6)
N20.064 (4)0.028 (2)0.041 (2)0.001 (2)0.007 (3)0.0015 (19)
S30.0704 (16)0.0270 (9)0.0469 (11)0.0000.0076 (13)0.000
C70.045 (3)0.030 (2)0.028 (2)0.000 (3)0.009 (3)0.002 (2)
C80.049 (4)0.033 (3)0.029 (3)0.001 (3)0.004 (3)0.002 (2)
N90.079 (4)0.042 (3)0.046 (3)0.020 (3)0.006 (3)0.002 (2)
Geometric parameters (Å, º) top
S1—N21.594 (4)C7—C7i1.376 (9)
S1—C71.718 (5)C7—C81.439 (7)
N2—S31.551 (4)C8—N91.133 (6)
S3—N2i1.551 (4)
N2—S1—C7114.6 (2)C7i—C7—S1134.87 (16)
S3—N2—S1140.7 (3)C8—C7—S1107.8 (3)
N2—S3—N2i119.7 (3)N9—C8—C7178.2 (7)
C7i—C7—C8117.3 (3)
C7—S1—N2—S31.2 (6)N2—S1—C7—C7i0.8 (9)
S1—N2—S3—N2i1.0 (4)N2—S1—C7—C8177.9 (3)
Symmetry code: (i) x+1, y, z+3/2.
(IV) 7-Acetyl-1,3,5,2,4,6-trithiatriazene top
Crystal data top
C3H3N3OS3F(000) = 392
Mr = 193.26Dx = 1.766 Mg m3
Monoclinic, P21/cMelting point: 325 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 8.647 (3) ÅCell parameters from 12 reflections
b = 5.862 (1) ŵ = 8.81 mm1
c = 14.674 (4) ÅT = 293 K
β = 102.21 (3)°Block, yellow
V = 727.0 (3) Å30.20 × 0.15 × 0.15 mm
Z = 4
Data collection top
Nicolet R3m
diffractometer
743 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.107
Graphite monochromatorθmax = 50.0°, θmin = 5.2°
scintillation counter scansh = 08
Absorption correction: analytical
(SHELXS83; Sheldrick, 1983)
k = 05
Tmin = 0.170, Tmax = 0.340l = 1414
812 measured reflections2 standard reflections every 50 reflections
756 independent reflections intensity decay: 7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0697P)2 + 0.6145P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max = 0.007
756 reflectionsΔρmax = 0.25 e Å3
93 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.074 (5)
Special details top

Experimental. Face indexed crystal

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19281 (12)0.66362 (19)0.69467 (7)0.0459 (6)
N20.0113 (5)0.7256 (6)0.6931 (3)0.0464 (10)
S30.15819 (12)0.63759 (18)0.65274 (8)0.0465 (6)
N40.1829 (4)0.4174 (6)0.5923 (2)0.0448 (10)
S50.06689 (12)0.23333 (17)0.56068 (7)0.0437 (6)
N60.1163 (4)0.2709 (5)0.5892 (2)0.0404 (9)
C70.2172 (4)0.4166 (7)0.6348 (3)0.0377 (10)
C80.3897 (5)0.3801 (8)0.6374 (3)0.0497 (12)
C90.4370 (5)0.1692 (9)0.5945 (4)0.0621 (14)
H9A0.55040.15920.60680.093*
H9B0.39630.17310.52840.093*
H9C0.39510.03870.62060.093*
O100.4841 (4)0.5238 (7)0.6742 (3)0.0762 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0418 (9)0.0408 (9)0.0533 (9)0.0069 (5)0.0063 (6)0.0117 (5)
N20.047 (2)0.035 (2)0.057 (2)0.0019 (15)0.0114 (16)0.0052 (17)
S30.0410 (8)0.0420 (9)0.0559 (9)0.0037 (5)0.0091 (5)0.0005 (5)
N40.0357 (19)0.048 (2)0.049 (2)0.0015 (16)0.0052 (15)0.0040 (17)
S50.0404 (8)0.0370 (9)0.0512 (9)0.0070 (4)0.0040 (5)0.0053 (4)
N60.040 (2)0.035 (2)0.0465 (19)0.0006 (16)0.0106 (16)0.0023 (16)
C70.039 (2)0.033 (2)0.040 (2)0.0025 (19)0.0054 (18)0.0021 (18)
C80.040 (3)0.053 (3)0.056 (3)0.001 (2)0.010 (2)0.003 (2)
C90.044 (3)0.062 (3)0.079 (3)0.011 (2)0.010 (2)0.011 (3)
O100.0414 (19)0.074 (3)0.113 (3)0.0149 (18)0.0159 (18)0.031 (2)
Geometric parameters (Å, º) top
S1—N21.606 (4)C7—C81.499 (6)
S1—C71.729 (4)C8—O101.217 (5)
N2—S31.548 (4)C8—C91.483 (7)
S3—N41.555 (4)C9—H9A0.9600
N4—S51.607 (4)C9—H9B0.9600
S5—N61.566 (4)C9—H9C0.9600
N6—C71.301 (5)
N2—S1—C7113.93 (18)O10—C8—C9123.1 (4)
S3—N2—S1140.7 (2)O10—C8—C7118.8 (4)
N2—S3—N4119.95 (19)C9—C8—C7118.1 (4)
S3—N4—S5134.7 (2)C8—C9—H9A109.5
N6—S5—N4119.12 (18)C8—C9—H9B109.5
C7—N6—S5139.5 (3)H9A—C9—H9B109.5
N6—C7—C8118.3 (4)C8—C9—H9C109.5
N6—C7—S1132.1 (3)H9A—C9—H9C109.5
C8—C7—S1109.6 (3)H9B—C9—H9C109.5
C7—S1—N2—S31.5 (5)N2—S1—C7—N60.4 (5)
S1—N2—S3—N40.3 (5)N2—S1—C7—C8177.7 (3)
N2—S3—N4—S53.1 (4)N6—C7—C8—O10174.9 (4)
S3—N4—S5—N63.4 (4)S1—C7—C8—O103.5 (5)
N4—S5—N6—C70.1 (5)N6—C7—C8—C95.1 (6)
S5—N6—C7—C8176.2 (3)S1—C7—C8—C9176.5 (3)
S5—N6—C7—S11.8 (7)
Ring bond lengths (in Å) for 1,3,5,2,4-trithiadiazepine, (1) to (4), and selected other derivatives (with atomic numbering in accord with that shown in Fig. 1, in all cases, irrespective of the crystallographic numbering actually used) top
CompoundS1—N2N2—S3S3—N4N4—S5S5—C/N6aC/N6a—C7C7—S1
Trithiadiazepine (Jones et al., 1985; Jones, 1988)1.599 (5)1.542 (5)1.559 (5)1.599 (5)1.694 (7)1.346 (9)1.684 (6)
6-Nitrotrithiadiazepine, (1) (Jones, 1988)1.603 (6)1.572 (6)1.557 (6)1.594 (6)1.719 (7)1.369 (9)1.676 (7)
6,7-Dinitrotrithiadiazepine, (2) (Jones, 1988)1.590 (2)1.544 (3)1.544 (3)1.590 (2)1.715 (2)1.359 (4)1.715 (2)
Trithiadiazepine-6,7-dicarbonitrile, (3) (Jones, 1988)1.594 (4)1.551 (4)1.551 (4)1.594 (4)1.718 (5)1.376 (9)1.718 (5)
7-Acetyltrithiatriazepine, (3) (Jones, 1988)1.606 (4)1.548 (4)1.555 (4)1.607 (4)1.566 (4)1.301 (5)1.729 (4)
6-Aminotrithiadiazepine, A (Jones, 1988; Plater et al., 1990)1.623 (4)1.551 (4)1.567 (4)1.601 (4)1.720 (4)1.367 (6)1.690 (4)
6-Aminotrithiadiazepine, B (Jones, 1988; Plater et al., 1990)1.616 (4)1.548 (4)1.556 (4)1.617 (4)1.721 (4)1.356 (6)1.687 (5)
6-(Dimethylamino)trithiadiazepine (Jones, 1988; Plater et al., 1990)1.605 (4)1.554 (4)1.564 (4)1.604 (4)1.705 (3)1.356 (4)1.701 (3)
6-Morpholinotrithiadiazepine (Plater et al., 1990)1.601 (4)1.559 (4)1.572 (5)1.609 (5)1.708 (4)1.350 (6)1.695 (5)
Packing properties top
CompoundRing overlap packingOther packing features
6-Nitrotrithiadiazepine, (1) (Jones, 1988)Yes - Isolated `head-to-tail' parallel ring overlap pairs – see Fig. 3Infinite sheet of nearest neighbour contacts with O···H—C(aryl) (O···H = 2.48 Å, 0.24 Å below VdW) and (non-apical) S···N(aryl) (S···N = 3.24 Å, 0.11 Å below VdW)
6,7-Dinitrotrithiadiazepine, (2) (Jones, 1988)No - Infinite `head-to-tail' equally spaced parallel rings without overlap; nitro-group O atom from nearest neighbours on each side approximately centred over/under the aryl ringInfinite sheet of nearest neighbour contacts, with O···S (apical) (3.20 Å, 0.12 Å below VdW) and O···S (non-apical) (3.14 Å, 0.18 Å below VdW). see Fig. 5
Trithiadiazepine-6,7-dicarbonitrile, (3) (Jones, 1988)Yes - Infinite `head-to-head' equally spaced parallel ring overlap stacks(Apical)S···N(cyano) contacts (S···N = 3.25 Å, 0.10 Å below VdW) link molecules in sheet structure
7-Acetyltrithiatriazepine, (4) (Jones, 1988)Yes - Isolated `head-to-tail' parallel ring overlap pairsNone identified
Trithiadiazepine (Jones et al., 1985; Jones, 1988)Yes - Isolated `head-to-tail' parallel ring overlap pairsNone identified
6-Amino-trithiadiazepine, A (Jones, 1988; Plater et al., 1990)Yes - Infinite `pseudo-ortho' equally spaced parallel ring overlap stacksMolecule A amino group receives hydrogen bond from molecule B amino group, i.e. N—H···N (H···N = 2.22 Å, 0.53 Å below VdW); molecule A amino group has contact to aryl N atom of neighbouring molecule A, i.e. N—H···N (N···H = 2.52 Å, 0.23 Å below VdW)
6-Amino-trithiadiazepine, B (Jones, 1988; Plater et al., 1990)Yes - Infinite `head-to-tail' equally spaced parallel ring overlap stacksMolecule A amino group receives weak hydrogen bond from molecule B amino group, i.e. N—H···N (H···N = 2.22 Å, 0.53 Å below VdW); molecule B (aryl) C—H has contact to centrosymmetrically related molecule B amino group, i.e. C—H···N (N···H = 2.53 Å, 0.22 Å below VdW)
6-(Dimethylamino)trithiadiazepine (Jones, 1988; Plater et al., 1990)Yes - Infinite `head-to-tail' equally spaced parallel ring overlap stacksAryl–aryl N···H—C contacts between nearest neighbours (N···H = 2.60 Å, 0.15 Å below VdW)
6-Morpholinotrithiadiazepine (Plater et al., 1990)Yes - Infinite `head-to-tail' equally spaced parallel ring overlap stacksO···H—C(aryl) contacts between nearest centrosymmetrically related neighbours (O···H = 2.48 Å, 0.25 Å below VdW)
6,7-Dihydro-trithiadiazepine (Jones et al., 1985; Jones, 1988)Yes - Infinite `head-to-tail' equally spaced parallel ring overlap stacksNone identified.
6,7-Benzotrithiadiazepine (Jones et al., 1985)Yes - Infinite `head-to-tail' equally spaced parallel ring overlap stacksNone identified from the information available
Tetrafluorobenzotrithiadiazepine (Bagryanskaya et al., 1997)Yes - Infinite `head-to-head' equally spaced parallel ring overlap stacksF···F contacts link nearest neighbour stacks (F···F = 2.75 Å, 0.15 Å below VdW)
Dimethyl 1,3,5,2,4-trithiadiazepine-6,7-dicarboxylate (Daley et al., 1984)No - Herringbone packing of parallel but non-overlapping ringsNone identified from the information available
Methyl 1,3,5,2,4,6-trithiatriazepine-7-carboxylate (Daley et al., 1984)Yes - Infinite `head-to-head' equally spaced parallel ring overlap stacksInter-stack (apical) S···N contacts (3.25 Å, 0.10 Å below VdW) form chains of coplanar rings
Selected geometric parameters (Å, °) top
6-Nitro-1,3,5,2,4-trithiadiazepine, (1)
S1—N21.603 (6)S5—C61.719 (7)
S1—C71.676 (7)C6—C71.369 (9)
N2—S31.572 (6)C6—N81.457 (8)
S3—N41.557 (6)N8—O101.217 (7)
N4—S51.594 (6)N8—O91.242 (7)
N2—S1—C7115.3 (3)C7—C6—S5135.7 (5)
S3—N2—S1135.7 (4)N8—C6—S5109.3 (5)
N4—S3—N2122.2 (3)C6—C7—S1137.8 (5)
S3—N4—S5142.4 (4)O10—N8—O9123.3 (6)
N4—S5—C6110.8 (3)O10—N8—C6121.4 (6)
C7—C6—N8115.0 (6)O9—N8—C6115.3 (6)
C7—S1—N2—S3-0.5 (7)S5—C6—C7—S1-0.6 (13)
S1—N2—S3—N4-1.4 (8)N2—S1—C7—C62.3 (9)
N2—S3—N4—S50.7 (8)C7—C6—N8—O105.4 (9)
S3—N4—S5—C61.4 (8)S5—C6—N8—O10-174.2 (5)
N4—S5—C6—C7-1.9 (8)C7—C6—N8—O9-174.2 (6)
N4—S5—C6—N8177.6 (4)S5—C6—N8—O96.2 (7)
N8—C6—C7—S1179.9 (5)
6,7-Dinitro-1,3,5,2,4-trithiadiazepine, (2)
S1—N21.590 (2)C7—C7i1.359 (4)
S1—C71.715 (2)C7—N81.479 (3)
N2—S31.544 (3)N8—O101.212 (3)
S3—N2i1.544 (3)N8—O91.226 (3)
N2—S1—C7113.24 (12)N8—C7—S1105.59 (15)
S3—N2—S1140.36 (16)O10—N8—O9124.9 (2)
N2i—S3—N2120.91 (17)O10—N8—C7118.76 (19)
C7i—C7—N8118.47 (11)O9—N8—C7116.2 (2)
C7i—C7—S1135.85 (8)
C7—S1—N2—S3-4.5 (3)C7i—C7—N8—O10-45.2 (3)
S1—N2—S3—N2i3.01 (19)S1—C7—N8—O10131.85 (18)
N2—S1—C7—C7i2.2 (4)C7i—C7—N8—O9138.0 (3)
N2—S1—C7—N8-174.10 (15)S1—C7—N8—O9-44.9 (2)
1,3,5,2,4-Trithiadiazepine-6,7-dicarbonitrile, (3)
S1—N21.594 (4)C7—C7ii1.376 (9)
S1—C71.718 (5)C7—C81.439 (7)
N2—S31.551 (4)C8—N91.133 (6)
S3—N2ii1.551 (4)
N2—S1—C7114.6 (2)C7ii—C7—S1134.87 (16)
S3—N2—S1140.7 (3)C8—C7—S1107.8 (3)
N2ii—S3—N2119.7 (3)N9—C8—C7178.2 (6)
C7ii—C7—C8117.3 (3)
C7—S1—N2—S31.2 (6)N2—S1—C7—C7ii0.8 (9)
S1—N2—S3—N2ii-1.0 (4)N2—S1—C7—C8-177.9 (3)
7-Acetyl-1,3,5,2,4,6-trithiatriazepine, (4)
S1—N21.606 (4)S5—N61.566 (4)
S1—C71.729 (4)N6—C71.301 (5)
N2—S31.548 (4)C7—C81.499 (6)
S3—N41.555 (4)C8—O101.217 (5)
N4—S51.607 (4)C8—C91.483 (7)
N2—S1—C7113.93 (18)N6—C7—C8118.3 (4)
S3—N2—S1140.7 (2)N6—C7—S1132.1 (3)
N2—S3—N4119.95 (19)C8—C7—S1109.6 (3)
S3—N4—S5134.7 (2)O10—C8—C9123.1 (4)
N6—S5—N4119.12 (18)O10—C8—C7118.8 (4)
C7—N6—S5139.5 (3)C9—C8—C7118.1 (4)
C7—S1—N2—S3-1.5 (5)N2—S1—C7—N6-0.4 (5)
S1—N2—S3—N40.3 (5)N2—S1—C7—C8177.7 (3)
N2—S3—N4—S53.1 (4)N6—C7—C8—O10174.9 (4)
S3—N4—S5—N6-3.4 (4)S1—C7—C8—O10-3.5 (5)
N4—S5—N6—C70.1 (5)N6—C7—C8—C9-5.1 (6)
S5—N6—C7—C8-176.2 (3)S1—C7—C8—C9176.5 (3)
S5—N6—C7—S11.8 (7)
Symmetry code: (i) -x+1/2, y, -z+1; (ii) -x+1, -y+3/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds