Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229613033287/qs3029sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229613033287/qs3029Isup2.hkl | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229613033287/qs3029Isup6.cml | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229613033287/qs3029IIsup3.hkl | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229613033287/qs3029IIsup7.cml | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229613033287/qs3029IIIsup4.hkl | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229613033287/qs3029IIIsup8.cml | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229613033287/qs3029IVsup5.hkl |
CCDC references: 973869; 973870; 973871; 973872
For all compounds, data collection: Nicolet R3m software; cell refinement: Nicolet R3m software; data reduction: Nicolet R3m software; program(s) used to solve structure: SHELXS83 (Sheldrick, 1983); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).
C2HN3O2S3 | F(000) = 784 |
Mr = 195.24 | Dx = 1.962 Mg m−3 |
Orthorhombic, Pbca | Melting point: 359 K |
Hall symbol: -P 2ac 2ab | Cu Kα radiation, λ = 1.54178 Å |
a = 8.794 (9) Å | Cell parameters from 10 reflections |
b = 11.696 (7) Å | µ = 9.81 mm−1 |
c = 12.854 (8) Å | T = 293 K |
V = 1322.1 (18) Å3 | Plate, yellow |
Z = 8 | 0.40 × 0.10 × 0.01 mm |
Nicolet R3m diffractometer | 629 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 56.7°, θmin = 6.9° |
Scintillation counter scans | h = 0→9 |
Absorption correction: analytical (SHELXS83; Sheldrick, 1983) | k = 0→12 |
Tmin = 0.880, Tmax = 0.990 | l = 0→13 |
881 measured reflections | 2 standard reflections every 50 reflections |
881 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.158 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.1072P)2] where P = (Fo2 + 2Fc2)/3 |
881 reflections | (Δ/σ)max < 0.001 |
91 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
Experimental. Face indexed crystal |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.0663 (2) | −0.09035 (14) | 0.13731 (14) | 0.0470 (6) | |
N2 | −0.2319 (7) | −0.0443 (5) | 0.1062 (5) | 0.0495 (15) | |
S3 | −0.30395 (19) | 0.07568 (16) | 0.08169 (15) | 0.0526 (6) | |
N4 | −0.2099 (6) | 0.1884 (5) | 0.0867 (4) | 0.0494 (16) | |
S5 | −0.0436 (2) | 0.23629 (14) | 0.10978 (14) | 0.0458 (6) | |
C6 | 0.0799 (7) | 0.1264 (6) | 0.1373 (5) | 0.0378 (16) | |
C7 | 0.0689 (7) | 0.0101 (6) | 0.1464 (5) | 0.0406 (16) | |
H7 | 0.1628 | −0.0223 | 0.1619 | 0.049* | |
N8 | 0.2318 (6) | 0.1727 (5) | 0.1537 (4) | 0.0459 (14) | |
O9 | 0.2402 (6) | 0.2788 (5) | 0.1543 (4) | 0.0641 (15) | |
O10 | 0.3411 (6) | 0.1105 (5) | 0.1663 (4) | 0.0639 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0423 (11) | 0.0352 (9) | 0.0635 (12) | −0.0024 (8) | −0.0019 (8) | 0.0024 (7) |
N2 | 0.035 (3) | 0.038 (3) | 0.075 (4) | −0.004 (3) | 0.003 (3) | −0.004 (3) |
S3 | 0.0297 (9) | 0.0560 (11) | 0.0719 (14) | 0.0017 (8) | −0.0037 (8) | −0.0007 (9) |
N4 | 0.035 (3) | 0.042 (3) | 0.071 (4) | 0.008 (3) | −0.004 (3) | 0.010 (3) |
S5 | 0.0387 (10) | 0.0357 (9) | 0.0629 (12) | 0.0022 (8) | −0.0006 (8) | 0.0029 (8) |
C6 | 0.030 (3) | 0.041 (4) | 0.042 (4) | −0.004 (3) | −0.002 (3) | 0.000 (3) |
C7 | 0.030 (3) | 0.045 (4) | 0.048 (4) | 0.006 (3) | 0.003 (3) | −0.004 (3) |
N8 | 0.038 (3) | 0.046 (3) | 0.054 (3) | −0.004 (3) | 0.002 (3) | −0.001 (3) |
O9 | 0.051 (3) | 0.056 (3) | 0.085 (4) | −0.022 (3) | −0.001 (3) | 0.001 (3) |
O10 | 0.034 (3) | 0.067 (3) | 0.091 (4) | 0.004 (3) | −0.006 (3) | −0.005 (3) |
S1—N2 | 1.603 (6) | C6—C7 | 1.369 (9) |
S1—C7 | 1.676 (7) | C6—N8 | 1.457 (8) |
N2—S3 | 1.572 (6) | C7—H7 | 0.9300 |
S3—N4 | 1.557 (6) | N8—O10 | 1.217 (7) |
N4—S5 | 1.594 (6) | N8—O9 | 1.242 (7) |
S5—C6 | 1.719 (7) | ||
N2—S1—C7 | 115.3 (3) | N8—C6—S5 | 109.3 (5) |
S3—N2—S1 | 135.7 (4) | C6—C7—S1 | 137.8 (5) |
N4—S3—N2 | 122.2 (3) | C6—C7—H7 | 111.1 |
S3—N4—S5 | 142.4 (4) | S1—C7—H7 | 111.1 |
N4—S5—C6 | 110.8 (3) | O10—N8—O9 | 123.3 (6) |
C7—C6—N8 | 115.0 (6) | O10—N8—C6 | 121.4 (6) |
C7—C6—S5 | 135.7 (5) | O9—N8—C6 | 115.3 (6) |
C7—S1—N2—S3 | −0.5 (7) | S5—C6—C7—S1 | −0.6 (13) |
S1—N2—S3—N4 | −1.4 (8) | N2—S1—C7—C6 | 2.3 (9) |
N2—S3—N4—S5 | 0.7 (8) | C7—C6—N8—O10 | 5.4 (9) |
S3—N4—S5—C6 | 1.4 (8) | S5—C6—N8—O10 | −174.2 (5) |
N4—S5—C6—C7 | −1.9 (8) | C7—C6—N8—O9 | −174.2 (6) |
N4—S5—C6—N8 | 177.6 (4) | S5—C6—N8—O9 | 6.2 (7) |
N8—C6—C7—S1 | 179.9 (5) |
C2N4O4S3 | F(000) = 480 |
Mr = 240.24 | Dx = 1.965 Mg m−3 |
Monoclinic, I2/a | Melting point: 336 K |
Hall symbol: -I 2ya | Cu Kα radiation, λ = 1.54178 Å |
a = 11.182 (2) Å | Cell parameters from 11 reflections |
b = 8.436 (2) Å | µ = 8.38 mm−1 |
c = 8.609 (2) Å | T = 293 K |
β = 91.36 (2)° | Block, yellow |
V = 811.9 (3) Å3 | 0.15 × 0.10 × 0.10 mm |
Z = 4 |
Nicolet R3m diffractometer | 511 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.020 |
Graphite monochromator | θmax = 57.0°, θmin = 6.6° |
Scintillation counter scans | h = −12→12 |
Absorption correction: analytical (SHELXS83; Sheldrick, 1983) | k = −9→0 |
Tmin = 0.380, Tmax = 0.470 | l = 0→9 |
581 measured reflections | 2 standard reflections every 50 reflections |
543 independent reflections | intensity decay: 10% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 |
[1.00000 + 0.00000exp(0.00(sinθ/λ)2)]/
[σ2(Fo2) + 0.0000 + 0.7454*P + (0.0347P)2 + 1.0000sinθ/λ]
where P = 0.33333Fo2 + 0.66667Fc2 |
wR(F2) = 0.066 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 0.23 e Å−3 |
543 reflections | Δρmin = −0.16 e Å−3 |
61 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0022 (2) |
Experimental. Face indexed crystal |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.10938 (6) | 0.64585 (8) | 0.36973 (8) | 0.0492 (3) | |
N2 | 0.1492 (2) | 0.4698 (3) | 0.4119 (3) | 0.0599 (7) | |
S3 | 0.2500 | 0.37959 (11) | 0.5000 | 0.0660 (4) | |
C7 | 0.1998 (2) | 0.7874 (3) | 0.4541 (2) | 0.0357 (6) | |
N8 | 0.14231 (16) | 0.9410 (2) | 0.4163 (2) | 0.0433 (5) | |
O9 | 0.10665 (18) | 0.9583 (2) | 0.2816 (2) | 0.0673 (6) | |
O10 | 0.12905 (16) | 1.0365 (2) | 0.5196 (2) | 0.0551 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0408 (4) | 0.0517 (5) | 0.0547 (5) | −0.0108 (3) | −0.0089 (3) | −0.0057 (3) |
N2 | 0.0622 (15) | 0.0451 (13) | 0.0722 (16) | −0.0152 (11) | 0.0006 (12) | −0.0088 (11) |
S3 | 0.0765 (8) | 0.0367 (6) | 0.0850 (8) | 0.000 | 0.0084 (6) | 0.000 |
C7 | 0.0298 (11) | 0.0384 (13) | 0.0387 (12) | −0.0015 (10) | −0.0003 (9) | 0.0007 (10) |
N8 | 0.0276 (11) | 0.0470 (12) | 0.0550 (13) | 0.0019 (9) | −0.0029 (9) | 0.0073 (11) |
O9 | 0.0602 (13) | 0.0791 (15) | 0.0618 (13) | 0.0192 (10) | −0.0139 (9) | 0.0180 (10) |
O10 | 0.0441 (11) | 0.0437 (11) | 0.0773 (13) | 0.0072 (8) | −0.0007 (9) | −0.0072 (10) |
S1—N2 | 1.590 (2) | C7—C7i | 1.359 (4) |
S1—C7 | 1.715 (2) | C7—N8 | 1.479 (3) |
N2—S3 | 1.544 (3) | N8—O10 | 1.212 (3) |
S3—N2i | 1.544 (3) | N8—O9 | 1.226 (3) |
N2—S1—C7 | 113.24 (12) | N8—C7—S1 | 105.59 (15) |
S3—N2—S1 | 140.36 (16) | O10—N8—O9 | 124.9 (2) |
N2i—S3—N2 | 120.91 (17) | O10—N8—C7 | 118.76 (19) |
C7i—C7—N8 | 118.47 (11) | O9—N8—C7 | 116.2 (2) |
C7i—C7—S1 | 135.85 (8) | ||
C7—S1—N2—S3 | −4.5 (3) | C7i—C7—N8—O10 | −45.2 (3) |
S1—N2—S3—N2i | 3.01 (19) | S1—C7—N8—O10 | 131.85 (18) |
N2—S1—C7—C7i | 2.2 (4) | C7i—C7—N8—O9 | 138.0 (3) |
N2—S1—C7—N8 | −174.10 (15) | S1—C7—N8—O9 | −44.9 (2) |
Symmetry code: (i) −x+1/2, y, −z+1. |
C4N4S3 | F(000) = 400 |
Mr = 200.26 | Dx = 1.853 Mg m−3 |
Orthorhombic, Pbcn | Melting point: 413 K |
Hall symbol: -P 2n 2ab | Cu Kα radiation, λ = 1.54178 Å |
a = 3.897 (1) Å | Cell parameters from 9 reflections |
b = 16.881 (9) Å | µ = 8.90 mm−1 |
c = 10.910 (4) Å | T = 293 K |
V = 717.7 (5) Å3 | Needle, orange |
Z = 4 | 0.16 × 0.06 × 0.04 mm |
Nicolet R3m diffractometer | 338 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 56.9°, θmin = 5.2° |
scintillation counter scans | h = 0→4 |
Absorption correction: analytical (SHELXS83; Sheldrick, 1983) | k = 0→18 |
Tmin = 0.560, Tmax = 0.740 | l = −11→0 |
489 measured reflections | 2 standard reflections every 50 reflections |
489 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | w = 1/[σ2(Fo2) + (0.0464P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.094 | (Δ/σ)max < 0.001 |
S = 0.96 | Δρmax = 0.28 e Å−3 |
489 reflections | Δρmin = −0.30 e Å−3 |
52 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0002 (3) |
Experimental. Face indexed crystal |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.2674 (4) | 0.34164 (7) | 0.90311 (10) | 0.0403 (5) | |
N2 | 0.3388 (12) | 0.2532 (2) | 0.8586 (4) | 0.0442 (14) | |
S3 | 0.5000 | 0.20707 (10) | 0.7500 | 0.0481 (7) | |
C7 | 0.4141 (14) | 0.4138 (3) | 0.8051 (4) | 0.0340 (13) | |
C8 | 0.3196 (14) | 0.4895 (3) | 0.8555 (4) | 0.0368 (14) | |
N9 | 0.2370 (15) | 0.5483 (3) | 0.8960 (4) | 0.0557 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0560 (9) | 0.0319 (7) | 0.0329 (7) | 0.0010 (8) | 0.0069 (8) | 0.0016 (6) |
N2 | 0.064 (4) | 0.028 (2) | 0.041 (2) | −0.001 (2) | 0.007 (3) | 0.0015 (19) |
S3 | 0.0704 (16) | 0.0270 (9) | 0.0469 (11) | 0.000 | 0.0076 (13) | 0.000 |
C7 | 0.045 (3) | 0.030 (2) | 0.028 (2) | 0.000 (3) | −0.009 (3) | −0.002 (2) |
C8 | 0.049 (4) | 0.033 (3) | 0.029 (3) | 0.001 (3) | −0.004 (3) | 0.002 (2) |
N9 | 0.079 (4) | 0.042 (3) | 0.046 (3) | 0.020 (3) | −0.006 (3) | −0.002 (2) |
S1—N2 | 1.594 (4) | C7—C7i | 1.376 (9) |
S1—C7 | 1.718 (5) | C7—C8 | 1.439 (7) |
N2—S3 | 1.551 (4) | C8—N9 | 1.133 (6) |
S3—N2i | 1.551 (4) | ||
N2—S1—C7 | 114.6 (2) | C7i—C7—S1 | 134.87 (16) |
S3—N2—S1 | 140.7 (3) | C8—C7—S1 | 107.8 (3) |
N2—S3—N2i | 119.7 (3) | N9—C8—C7 | 178.2 (7) |
C7i—C7—C8 | 117.3 (3) | ||
C7—S1—N2—S3 | −1.2 (6) | N2—S1—C7—C7i | −0.8 (9) |
S1—N2—S3—N2i | 1.0 (4) | N2—S1—C7—C8 | 177.9 (3) |
Symmetry code: (i) −x+1, y, −z+3/2. |
C3H3N3OS3 | F(000) = 392 |
Mr = 193.26 | Dx = 1.766 Mg m−3 |
Monoclinic, P21/c | Melting point: 325 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54178 Å |
a = 8.647 (3) Å | Cell parameters from 12 reflections |
b = 5.862 (1) Å | µ = 8.81 mm−1 |
c = 14.674 (4) Å | T = 293 K |
β = 102.21 (3)° | Block, yellow |
V = 727.0 (3) Å3 | 0.20 × 0.15 × 0.15 mm |
Z = 4 |
Nicolet R3m diffractometer | 743 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.107 |
Graphite monochromator | θmax = 50.0°, θmin = 5.2° |
scintillation counter scans | h = 0→8 |
Absorption correction: analytical (SHELXS83; Sheldrick, 1983) | k = 0→5 |
Tmin = 0.170, Tmax = 0.340 | l = −14→14 |
812 measured reflections | 2 standard reflections every 50 reflections |
756 independent reflections | intensity decay: 7% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H-atom parameters constrained |
wR(F2) = 0.107 | w = 1/[σ2(Fo2) + (0.0697P)2 + 0.6145P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max = 0.007 |
756 reflections | Δρmax = 0.25 e Å−3 |
93 parameters | Δρmin = −0.42 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.074 (5) |
Experimental. Face indexed crystal |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.19281 (12) | 0.66362 (19) | 0.69467 (7) | 0.0459 (6) | |
N2 | 0.0113 (5) | 0.7256 (6) | 0.6931 (3) | 0.0464 (10) | |
S3 | −0.15819 (12) | 0.63759 (18) | 0.65274 (8) | 0.0465 (6) | |
N4 | −0.1829 (4) | 0.4174 (6) | 0.5923 (2) | 0.0448 (10) | |
S5 | −0.06689 (12) | 0.23333 (17) | 0.56068 (7) | 0.0437 (6) | |
N6 | 0.1163 (4) | 0.2709 (5) | 0.5892 (2) | 0.0404 (9) | |
C7 | 0.2172 (4) | 0.4166 (7) | 0.6348 (3) | 0.0377 (10) | |
C8 | 0.3897 (5) | 0.3801 (8) | 0.6374 (3) | 0.0497 (12) | |
C9 | 0.4370 (5) | 0.1692 (9) | 0.5945 (4) | 0.0621 (14) | |
H9A | 0.5504 | 0.1592 | 0.6068 | 0.093* | |
H9B | 0.3963 | 0.1731 | 0.5284 | 0.093* | |
H9C | 0.3951 | 0.0387 | 0.6206 | 0.093* | |
O10 | 0.4841 (4) | 0.5238 (7) | 0.6742 (3) | 0.0762 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0418 (9) | 0.0408 (9) | 0.0533 (9) | −0.0069 (5) | 0.0063 (6) | −0.0117 (5) |
N2 | 0.047 (2) | 0.035 (2) | 0.057 (2) | −0.0019 (15) | 0.0114 (16) | −0.0052 (17) |
S3 | 0.0410 (8) | 0.0420 (9) | 0.0559 (9) | 0.0037 (5) | 0.0091 (5) | −0.0005 (5) |
N4 | 0.0357 (19) | 0.048 (2) | 0.049 (2) | −0.0015 (16) | 0.0052 (15) | 0.0040 (17) |
S5 | 0.0404 (8) | 0.0370 (9) | 0.0512 (9) | −0.0070 (4) | 0.0040 (5) | −0.0053 (4) |
N6 | 0.040 (2) | 0.035 (2) | 0.0465 (19) | 0.0006 (16) | 0.0106 (16) | −0.0023 (16) |
C7 | 0.039 (2) | 0.033 (2) | 0.040 (2) | −0.0025 (19) | 0.0054 (18) | −0.0021 (18) |
C8 | 0.040 (3) | 0.053 (3) | 0.056 (3) | −0.001 (2) | 0.010 (2) | −0.003 (2) |
C9 | 0.044 (3) | 0.062 (3) | 0.079 (3) | 0.011 (2) | 0.010 (2) | −0.011 (3) |
O10 | 0.0414 (19) | 0.074 (3) | 0.113 (3) | −0.0149 (18) | 0.0159 (18) | −0.031 (2) |
S1—N2 | 1.606 (4) | C7—C8 | 1.499 (6) |
S1—C7 | 1.729 (4) | C8—O10 | 1.217 (5) |
N2—S3 | 1.548 (4) | C8—C9 | 1.483 (7) |
S3—N4 | 1.555 (4) | C9—H9A | 0.9600 |
N4—S5 | 1.607 (4) | C9—H9B | 0.9600 |
S5—N6 | 1.566 (4) | C9—H9C | 0.9600 |
N6—C7 | 1.301 (5) | ||
N2—S1—C7 | 113.93 (18) | O10—C8—C9 | 123.1 (4) |
S3—N2—S1 | 140.7 (2) | O10—C8—C7 | 118.8 (4) |
N2—S3—N4 | 119.95 (19) | C9—C8—C7 | 118.1 (4) |
S3—N4—S5 | 134.7 (2) | C8—C9—H9A | 109.5 |
N6—S5—N4 | 119.12 (18) | C8—C9—H9B | 109.5 |
C7—N6—S5 | 139.5 (3) | H9A—C9—H9B | 109.5 |
N6—C7—C8 | 118.3 (4) | C8—C9—H9C | 109.5 |
N6—C7—S1 | 132.1 (3) | H9A—C9—H9C | 109.5 |
C8—C7—S1 | 109.6 (3) | H9B—C9—H9C | 109.5 |
C7—S1—N2—S3 | −1.5 (5) | N2—S1—C7—N6 | −0.4 (5) |
S1—N2—S3—N4 | 0.3 (5) | N2—S1—C7—C8 | 177.7 (3) |
N2—S3—N4—S5 | 3.1 (4) | N6—C7—C8—O10 | 174.9 (4) |
S3—N4—S5—N6 | −3.4 (4) | S1—C7—C8—O10 | −3.5 (5) |
N4—S5—N6—C7 | 0.1 (5) | N6—C7—C8—C9 | −5.1 (6) |
S5—N6—C7—C8 | −176.2 (3) | S1—C7—C8—C9 | 176.5 (3) |
S5—N6—C7—S1 | 1.8 (7) |
Compound | S1—N2 | N2—S3 | S3—N4 | N4—S5 | S5—C/N6a | C/N6a—C7 | C7—S1 |
Trithiadiazepine (Jones et al., 1985; Jones, 1988) | 1.599 (5) | 1.542 (5) | 1.559 (5) | 1.599 (5) | 1.694 (7) | 1.346 (9) | 1.684 (6) |
6-Nitrotrithiadiazepine, (1) (Jones, 1988) | 1.603 (6) | 1.572 (6) | 1.557 (6) | 1.594 (6) | 1.719 (7) | 1.369 (9) | 1.676 (7) |
6,7-Dinitrotrithiadiazepine, (2) (Jones, 1988) | 1.590 (2) | 1.544 (3) | 1.544 (3) | 1.590 (2) | 1.715 (2) | 1.359 (4) | 1.715 (2) |
Trithiadiazepine-6,7-dicarbonitrile, (3) (Jones, 1988) | 1.594 (4) | 1.551 (4) | 1.551 (4) | 1.594 (4) | 1.718 (5) | 1.376 (9) | 1.718 (5) |
7-Acetyltrithiatriazepine, (3) (Jones, 1988) | 1.606 (4) | 1.548 (4) | 1.555 (4) | 1.607 (4) | 1.566 (4) | 1.301 (5) | 1.729 (4) |
6-Aminotrithiadiazepine, A (Jones, 1988; Plater et al., 1990) | 1.623 (4) | 1.551 (4) | 1.567 (4) | 1.601 (4) | 1.720 (4) | 1.367 (6) | 1.690 (4) |
6-Aminotrithiadiazepine, B (Jones, 1988; Plater et al., 1990) | 1.616 (4) | 1.548 (4) | 1.556 (4) | 1.617 (4) | 1.721 (4) | 1.356 (6) | 1.687 (5) |
6-(Dimethylamino)trithiadiazepine (Jones, 1988; Plater et al., 1990) | 1.605 (4) | 1.554 (4) | 1.564 (4) | 1.604 (4) | 1.705 (3) | 1.356 (4) | 1.701 (3) |
6-Morpholinotrithiadiazepine (Plater et al., 1990) | 1.601 (4) | 1.559 (4) | 1.572 (5) | 1.609 (5) | 1.708 (4) | 1.350 (6) | 1.695 (5) |
Compound | Ring overlap packing | Other packing features |
6-Nitrotrithiadiazepine, (1) (Jones, 1988) | Yes - Isolated `head-to-tail' parallel ring overlap pairs – see Fig. 3 | Infinite sheet of nearest neighbour contacts with O···H—C(aryl) (O···H = 2.48 Å, 0.24 Å below VdW) and (non-apical) S···N(aryl) (S···N = 3.24 Å, 0.11 Å below VdW) |
6,7-Dinitrotrithiadiazepine, (2) (Jones, 1988) | No - Infinite `head-to-tail' equally spaced parallel rings without overlap; nitro-group O atom from nearest neighbours on each side approximately centred over/under the aryl ring | Infinite sheet of nearest neighbour contacts, with O···S (apical) (3.20 Å, 0.12 Å below VdW) and O···S (non-apical) (3.14 Å, 0.18 Å below VdW). see Fig. 5 |
Trithiadiazepine-6,7-dicarbonitrile, (3) (Jones, 1988) | Yes - Infinite `head-to-head' equally spaced parallel ring overlap stacks | (Apical)S···N(cyano) contacts (S···N = 3.25 Å, 0.10 Å below VdW) link molecules in sheet structure |
7-Acetyltrithiatriazepine, (4) (Jones, 1988) | Yes - Isolated `head-to-tail' parallel ring overlap pairs | None identified |
Trithiadiazepine (Jones et al., 1985; Jones, 1988) | Yes - Isolated `head-to-tail' parallel ring overlap pairs | None identified |
6-Amino-trithiadiazepine, A (Jones, 1988; Plater et al., 1990) | Yes - Infinite `pseudo-ortho' equally spaced parallel ring overlap stacks | Molecule A amino group receives hydrogen bond from molecule B amino group, i.e. N—H···N (H···N = 2.22 Å, 0.53 Å below VdW); molecule A amino group has contact to aryl N atom of neighbouring molecule A, i.e. N—H···N (N···H = 2.52 Å, 0.23 Å below VdW) |
6-Amino-trithiadiazepine, B (Jones, 1988; Plater et al., 1990) | Yes - Infinite `head-to-tail' equally spaced parallel ring overlap stacks | Molecule A amino group receives weak hydrogen bond from molecule B amino group, i.e. N—H···N (H···N = 2.22 Å, 0.53 Å below VdW); molecule B (aryl) C—H has contact to centrosymmetrically related molecule B amino group, i.e. C—H···N (N···H = 2.53 Å, 0.22 Å below VdW) |
6-(Dimethylamino)trithiadiazepine (Jones, 1988; Plater et al., 1990) | Yes - Infinite `head-to-tail' equally spaced parallel ring overlap stacks | Aryl–aryl N···H—C contacts between nearest neighbours (N···H = 2.60 Å, 0.15 Å below VdW) |
6-Morpholinotrithiadiazepine (Plater et al., 1990) | Yes - Infinite `head-to-tail' equally spaced parallel ring overlap stacks | O···H—C(aryl) contacts between nearest centrosymmetrically related neighbours (O···H = 2.48 Å, 0.25 Å below VdW) |
6,7-Dihydro-trithiadiazepine (Jones et al., 1985; Jones, 1988) | Yes - Infinite `head-to-tail' equally spaced parallel ring overlap stacks | None identified. |
6,7-Benzotrithiadiazepine (Jones et al., 1985) | Yes - Infinite `head-to-tail' equally spaced parallel ring overlap stacks | None identified from the information available |
Tetrafluorobenzotrithiadiazepine (Bagryanskaya et al., 1997) | Yes - Infinite `head-to-head' equally spaced parallel ring overlap stacks | F···F contacts link nearest neighbour stacks (F···F = 2.75 Å, 0.15 Å below VdW) |
Dimethyl 1,3,5,2,4-trithiadiazepine-6,7-dicarboxylate (Daley et al., 1984) | No - Herringbone packing of parallel but non-overlapping rings | None identified from the information available |
Methyl 1,3,5,2,4,6-trithiatriazepine-7-carboxylate (Daley et al., 1984) | Yes - Infinite `head-to-head' equally spaced parallel ring overlap stacks | Inter-stack (apical) S···N contacts (3.25 Å, 0.10 Å below VdW) form chains of coplanar rings |
6-Nitro-1,3,5,2,4-trithiadiazepine, (1) | |||
S1—N2 | 1.603 (6) | S5—C6 | 1.719 (7) |
S1—C7 | 1.676 (7) | C6—C7 | 1.369 (9) |
N2—S3 | 1.572 (6) | C6—N8 | 1.457 (8) |
S3—N4 | 1.557 (6) | N8—O10 | 1.217 (7) |
N4—S5 | 1.594 (6) | N8—O9 | 1.242 (7) |
N2—S1—C7 | 115.3 (3) | C7—C6—S5 | 135.7 (5) |
S3—N2—S1 | 135.7 (4) | N8—C6—S5 | 109.3 (5) |
N4—S3—N2 | 122.2 (3) | C6—C7—S1 | 137.8 (5) |
S3—N4—S5 | 142.4 (4) | O10—N8—O9 | 123.3 (6) |
N4—S5—C6 | 110.8 (3) | O10—N8—C6 | 121.4 (6) |
C7—C6—N8 | 115.0 (6) | O9—N8—C6 | 115.3 (6) |
C7—S1—N2—S3 | -0.5 (7) | S5—C6—C7—S1 | -0.6 (13) |
S1—N2—S3—N4 | -1.4 (8) | N2—S1—C7—C6 | 2.3 (9) |
N2—S3—N4—S5 | 0.7 (8) | C7—C6—N8—O10 | 5.4 (9) |
S3—N4—S5—C6 | 1.4 (8) | S5—C6—N8—O10 | -174.2 (5) |
N4—S5—C6—C7 | -1.9 (8) | C7—C6—N8—O9 | -174.2 (6) |
N4—S5—C6—N8 | 177.6 (4) | S5—C6—N8—O9 | 6.2 (7) |
N8—C6—C7—S1 | 179.9 (5) | ||
6,7-Dinitro-1,3,5,2,4-trithiadiazepine, (2) | |||
S1—N2 | 1.590 (2) | C7—C7i | 1.359 (4) |
S1—C7 | 1.715 (2) | C7—N8 | 1.479 (3) |
N2—S3 | 1.544 (3) | N8—O10 | 1.212 (3) |
S3—N2i | 1.544 (3) | N8—O9 | 1.226 (3) |
N2—S1—C7 | 113.24 (12) | N8—C7—S1 | 105.59 (15) |
S3—N2—S1 | 140.36 (16) | O10—N8—O9 | 124.9 (2) |
N2i—S3—N2 | 120.91 (17) | O10—N8—C7 | 118.76 (19) |
C7i—C7—N8 | 118.47 (11) | O9—N8—C7 | 116.2 (2) |
C7i—C7—S1 | 135.85 (8) | ||
C7—S1—N2—S3 | -4.5 (3) | C7i—C7—N8—O10 | -45.2 (3) |
S1—N2—S3—N2i | 3.01 (19) | S1—C7—N8—O10 | 131.85 (18) |
N2—S1—C7—C7i | 2.2 (4) | C7i—C7—N8—O9 | 138.0 (3) |
N2—S1—C7—N8 | -174.10 (15) | S1—C7—N8—O9 | -44.9 (2) |
1,3,5,2,4-Trithiadiazepine-6,7-dicarbonitrile, (3) | |||
S1—N2 | 1.594 (4) | C7—C7ii | 1.376 (9) |
S1—C7 | 1.718 (5) | C7—C8 | 1.439 (7) |
N2—S3 | 1.551 (4) | C8—N9 | 1.133 (6) |
S3—N2ii | 1.551 (4) | ||
N2—S1—C7 | 114.6 (2) | C7ii—C7—S1 | 134.87 (16) |
S3—N2—S1 | 140.7 (3) | C8—C7—S1 | 107.8 (3) |
N2ii—S3—N2 | 119.7 (3) | N9—C8—C7 | 178.2 (6) |
C7ii—C7—C8 | 117.3 (3) | ||
C7—S1—N2—S3 | 1.2 (6) | N2—S1—C7—C7ii | 0.8 (9) |
S1—N2—S3—N2ii | -1.0 (4) | N2—S1—C7—C8 | -177.9 (3) |
7-Acetyl-1,3,5,2,4,6-trithiatriazepine, (4) | |||
S1—N2 | 1.606 (4) | S5—N6 | 1.566 (4) |
S1—C7 | 1.729 (4) | N6—C7 | 1.301 (5) |
N2—S3 | 1.548 (4) | C7—C8 | 1.499 (6) |
S3—N4 | 1.555 (4) | C8—O10 | 1.217 (5) |
N4—S5 | 1.607 (4) | C8—C9 | 1.483 (7) |
N2—S1—C7 | 113.93 (18) | N6—C7—C8 | 118.3 (4) |
S3—N2—S1 | 140.7 (2) | N6—C7—S1 | 132.1 (3) |
N2—S3—N4 | 119.95 (19) | C8—C7—S1 | 109.6 (3) |
S3—N4—S5 | 134.7 (2) | O10—C8—C9 | 123.1 (4) |
N6—S5—N4 | 119.12 (18) | O10—C8—C7 | 118.8 (4) |
C7—N6—S5 | 139.5 (3) | C9—C8—C7 | 118.1 (4) |
C7—S1—N2—S3 | -1.5 (5) | N2—S1—C7—N6 | -0.4 (5) |
S1—N2—S3—N4 | 0.3 (5) | N2—S1—C7—C8 | 177.7 (3) |
N2—S3—N4—S5 | 3.1 (4) | N6—C7—C8—O10 | 174.9 (4) |
S3—N4—S5—N6 | -3.4 (4) | S1—C7—C8—O10 | -3.5 (5) |
N4—S5—N6—C7 | 0.1 (5) | N6—C7—C8—C9 | -5.1 (6) |
S5—N6—C7—C8 | -176.2 (3) | S1—C7—C8—C9 | 176.5 (3) |
S5—N6—C7—S1 | 1.8 (7) |
Symmetry code: (i) -x+1/2, y, -z+1; (ii) -x+1, -y+3/2, z. |