Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614005762/qs3037sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614005762/qs30371sup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614005762/qs30372sup3.hkl |
CCDC references: 919642; 918217
In the past few decades, functional coordination compounds have attracted much attention due to their potential applications in the fields of catalysis, ion exchange, proton conductivity, intercalation chemistry, photochemistry, gas sorption, selective separation, magnetism, electronics, nonlinear optics and materials chemistry (Yaghi et al., 2003; Kitagawa et al., 2004; Zhao et al., 2001). According to their space group, we can divide coordination compounds into two categories, viz. centrosymmetric or noncentrosymmetric (NCS) compounds. NCS compounds are of great interest because of their potential applications in many areas, such as pyroelectricity, ferroelectricity, and especially second-order nonlinear optics (NLO) (Evans & Lin, 2002; Jayanty et al., 2002; Prakash & Radhakrishnan, 2006). A search of the Cambridge Structural Database (Version 5.34; Allen, 2002) shows that the proportion of NCS compounds is very small [Please check rephrasing. How small is the proportion, e.g. as a percentage?]. NCS structures are difficult to obtain because inorganic–organic hybrid systems tend to arrange in opposing directions, thus forming a centrosymmetric structure. Chiral or asymmetric ligands are a good choice to obtain NCS structures (Li et al., 2010; Du et al., 2010). Thus, we have focused on reduced Schiff base ligands which have a chiral C atom. We can obtain reduced Schiff base ligands of this type by reacting amino acids, having a chiral C atom, with 4-carboxybenzaldehyde to obtain the Schiff bases and then reducing the C═N bond. Up to now, to the best of our knowledge, there are still only a few NCS compounds based on reduced Schiff base ligands of this type (Yang et al., 2011; Ying, 2012; Ying & Huang, 2013). In order to study the form of the NCS compounds which are induced by reduced Schiff base ligands of this type, we have synthesized a chiral reduced Schiff base ligand formed by 4-carboxybenzaldehyde with L-phenylalanine, namely 4-{[(1-carboxy-2-phenylethyl)amino]methyl}benzoic acid (H2L), and two NCS compounds have been obtained, namely poly[(µ5-4-{[(1-carboxylato-2-phenylethyl)amino]methyl}benzoato)zinc(II)], (1), and poly[(µ5-4-{[(1-carboxylato-2-phenylethyl)amino]methyl}benzoato)cobalt(II)], (2). Herein, we report their syntheses, characterization and crystal structures.
H2L was synthesized according to the previously described procedure (Das & Bharadwaj, 2009, 2010). A mixture of KOH (50 mmol, 2.80 g) and L-phenylalanine (50 mmol, 8.25 g) in CH3OH (50 ml) was stirred for 30 min at room temperature. A mixture of 4-carboxybenzaldehyde (50 mmol, 7.50 g) and KOH (50 mmol, 2.80 g) in CH3OH (50 ml) was also stirred for 30 min at room temperature, and then the latter was added slowly to the former. The resulting solution was refluxed for 6 h then cooled in an ice bath, and excess NaBH4 was added. After 30 min, the solution was acidified with concentrated HCl to a pH of 5.0. The resulting solid was filtered off, washed with water and ethanol, and recrystallized from water–ethanol (1:1 v/v) (yield 80%). ESI–MS (methanol) m/z: 299.9 [M + H]+.
A mixture of Zn(NO3)2.6H2O (0.060 g, 0.2 mmol), H2L (0.060 g, 0.1 mmol), dimethylformamide (1 ml), EtOH (4 ml) and deionized water (4 ml) was sealed in a steel bomb equipped with a Teflon liner (15 ml) and then heated at 383 K for 3 d. White [Colourless in CIF tables - please clarify] block-shaped crystals of compound (1) were recovered in ca 30% yield based on the H2L ligand. Elemental analysis found for (1), C17H15NO4Zn: C 56.15, H 4.04, N 3.83%; calculated: C 56.25, H 4.14, N 3.86%. Spectroscopic analysis: IR (KBr, ν, cm-1): 3314 (m), 2939 (m), 1630 (s), 1606 (s), 1556 (s), 1398 (s), 1323 (m), 1251 (m), 1207 (m), 1175 (m), 1107 (m), 1083 (m), 1017 (m), 950(m), 891 (m), 858 (s), 828 (m), 799 (m).
The synthesis of (2) was similar to (1), but using Co(NO3)2.6H2O (0.059 g, 0.2 mmol) in place of Zn(NO3)2.6H2O. Pink block-shaped crystals of compound (2) were recovered in ca 25% yield based on the H2L ligand. Elemental analysis found for (2), C17H15CoNO4: C 57.19, H 4.25, N 3.88%; calculated: C 57.27, H 4.21, N 3.93%. Spectroscopic analysis: IR (KBr, ν, cm-1): 3308 (m), 2939 (m), 1627 (s), 1601 (s), 1555 (s), 1401 (s), 1324 (m), 1252 (m), 1208 (m), 1176 (m), 1105 (m), 1083 (m), 1018 (m), 950 (m), 894 (m), 859 (s), 828 (m), 799 (m).
Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were generated geometrically, with C—H = 0.93–0.98 Å, O—H = 0.82 Å and N—H = 0.91 Å, and refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(C), 1.5Ueq(O) and 1.2 Ueq(N).
Compounds (1) and (2) are isostructural. The structure of (1) will be discussed in detail as an example. As shown in Fig. 1, (1) contains one ZnII cation and an L anion in its asymmetric unit. The ZnII cations are six-coordinated by five O atoms and one N atom from five L anions in a distorted octahedral geometry. The Zn—O distances range from 2.052 (3) to 2.229 (4) Å and the Zn—N distance is 2.208 (4) Å (Table 2). The reduced Schiff base ligand is pentadentate. The four O atoms in the two COO- groups of the reduced Schiff base ligand bridge five ZnII anions, while one of these COO- O atoms and an N atom chelate a ZnII cation. By the bridging of the Schiff base ligands, a three-dimensional framework structure with a one-dimensional channel is formed (Fig. 2). There are two kinds of one-dimensional channel in the three-dimensional framework and these are occupied by the benzyl groups.
The simulated and experimental powder X-ray diffraction (PXRD) patterns of (1) and (2) are in good agreement with each other (Fig. 3), indicating the phase purity of the products. The thermal behaviour of (1) and (2) was studied to reveal their thermal stability. The thermogravimetric analysis (TGA) curves of (1) and (2) are similar (Fig. 4). Both compounds are stable to 673 K. The solid-state photoluminescent spectra of compound (1) at room temperature are depicted in Fig. 5. Compound (1) exhibits an emission peak at 415 nm upon excitation at 313 nm. These bands are probably generated from intra-ligand luminescent transitions (Yam & Lo, 1999), and suggest that these types of compound would be good candidates as potential photoactive materials.
For both compounds, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
[Zn(C17H15NO4)] | Z = 4 |
Mr = 362.67 | F(000) = 744 |
Orthorhombic, P212121 | Dx = 1.564 Mg m−3 |
Hall symbol: P 2ac 2ab | Mo Kα radiation, λ = 0.71073 Å |
a = 5.6649 (11) Å | µ = 1.61 mm−1 |
b = 14.196 (3) Å | T = 123 K |
c = 19.148 (4) Å | Prism, colourless |
V = 1539.9 (5) Å3 | 0.10 × 0.09 × 0.08 mm |
Bruker APEX CCD area-detector diffractometer | 2901 independent reflections |
Radiation source: fine-focus sealed tube | 2069 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.081 |
ω scans | θmax = 26.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −6→6 |
Tmin = 0.855, Tmax = 0.882 | k = −16→17 |
5970 measured reflections | l = −23→8 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.078 | w = 1/[σ2(Fo2) + (0.0124P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.84 | (Δ/σ)max = 0.019 |
2901 reflections | Δρmax = 0.87 e Å−3 |
208 parameters | Δρmin = −0.69 e Å−3 |
0 restraints | Absolute structure: Flack (1983), with 1184 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.01 (2) |
[Zn(C17H15NO4)] | V = 1539.9 (5) Å3 |
Mr = 362.67 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.6649 (11) Å | µ = 1.61 mm−1 |
b = 14.196 (3) Å | T = 123 K |
c = 19.148 (4) Å | 0.10 × 0.09 × 0.08 mm |
Bruker APEX CCD area-detector diffractometer | 2901 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2069 reflections with I > 2σ(I) |
Tmin = 0.855, Tmax = 0.882 | Rint = 0.081 |
5970 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.078 | Δρmax = 0.87 e Å−3 |
S = 0.84 | Δρmin = −0.69 e Å−3 |
2901 reflections | Absolute structure: Flack (1983), with 1184 Friedel pairs |
208 parameters | Absolute structure parameter: −0.01 (2) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.93840 (11) | 0.81450 (4) | 0.97733 (3) | 0.01628 (16) | |
O4 | 1.1600 (6) | 1.2257 (2) | 0.6025 (2) | 0.0198 (10) | |
O3 | 1.4335 (7) | 1.1202 (2) | 0.56522 (18) | 0.0192 (9) | |
O2 | 1.6289 (6) | 0.8897 (2) | 0.9778 (2) | 0.0199 (9) | |
O1 | 1.3224 (6) | 0.7936 (2) | 0.95729 (19) | 0.0173 (10) | |
N1 | 1.0484 (8) | 0.9269 (2) | 0.9046 (2) | 0.0152 (10) | |
H1AA | 0.9506 | 0.9772 | 0.9101 | 0.018* | |
C14 | 1.2162 (9) | 1.0872 (3) | 0.6676 (3) | 0.0162 (13) | |
C5 | 1.0150 (9) | 1.1805 (3) | 0.9464 (3) | 0.0286 (15) | |
H5A | 0.9099 | 1.1581 | 0.9799 | 0.034* | |
C13 | 1.3652 (10) | 1.0127 (3) | 0.6847 (3) | 0.0206 (15) | |
H13A | 1.5043 | 1.0035 | 0.6599 | 0.025* | |
C7 | 1.2846 (9) | 1.0430 (3) | 0.9722 (3) | 0.0224 (14) | |
H7A | 1.1683 | 1.0329 | 1.0086 | 0.027* | |
H7B | 1.4372 | 1.0507 | 0.9944 | 0.027* | |
C9 | 1.4238 (11) | 0.8738 (3) | 0.9563 (3) | 0.0169 (13) | |
C4 | 1.2241 (10) | 1.1320 (3) | 0.9331 (3) | 0.0205 (14) | |
C15 | 1.0134 (9) | 1.0996 (3) | 0.7055 (3) | 0.0210 (15) | |
H15A | 0.9134 | 1.1495 | 0.6949 | 0.025* | |
C12 | 1.3064 (10) | 0.9525 (4) | 0.7386 (3) | 0.0220 (14) | |
H12A | 1.4084 | 0.9036 | 0.7501 | 0.026* | |
C10 | 1.0321 (10) | 0.8937 (3) | 0.8318 (3) | 0.0219 (14) | |
H10A | 0.8714 | 0.8731 | 0.8234 | 0.026* | |
H10B | 1.1335 | 0.8391 | 0.8268 | 0.026* | |
C16 | 0.9548 (11) | 1.0382 (3) | 0.7598 (3) | 0.0227 (13) | |
H16A | 0.8170 | 1.0482 | 0.7851 | 0.027* | |
C17 | 1.2740 (10) | 1.1505 (4) | 0.6065 (3) | 0.0194 (14) | |
C11 | 1.0973 (11) | 0.9636 (3) | 0.7762 (3) | 0.0183 (13) | |
C8 | 1.2920 (9) | 0.9553 (3) | 0.9244 (3) | 0.0167 (13) | |
H8A | 1.3749 | 0.9732 | 0.8815 | 0.020* | |
C6 | 0.9639 (12) | 1.2631 (4) | 0.9092 (3) | 0.0367 (17) | |
H6A | 0.8237 | 1.2951 | 0.9178 | 0.044* | |
C2 | 1.3243 (12) | 1.2491 (4) | 0.8479 (4) | 0.046 (2) | |
H2A | 1.4302 | 1.2718 | 0.8149 | 0.056* | |
C3 | 1.3751 (10) | 1.1679 (3) | 0.8838 (3) | 0.0339 (17) | |
H3A | 1.5156 | 1.1365 | 0.8745 | 0.041* | |
C1 | 1.1186 (12) | 1.2968 (4) | 0.8605 (4) | 0.046 (2) | |
H1A | 1.0844 | 1.3517 | 0.8360 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0173 (3) | 0.0173 (3) | 0.0142 (3) | −0.0011 (3) | 0.0001 (4) | 0.0005 (3) |
O4 | 0.030 (2) | 0.0121 (18) | 0.017 (3) | 0.0023 (17) | 0.004 (2) | −0.0006 (17) |
O3 | 0.017 (2) | 0.0186 (17) | 0.022 (2) | 0.003 (2) | 0.002 (2) | 0.0034 (16) |
O2 | 0.019 (2) | 0.0233 (18) | 0.018 (2) | −0.0038 (15) | −0.002 (2) | 0.001 (2) |
O1 | 0.020 (2) | 0.0134 (19) | 0.018 (3) | −0.0028 (16) | 0.0000 (18) | −0.0004 (15) |
N1 | 0.020 (3) | 0.014 (2) | 0.012 (3) | 0.003 (2) | −0.002 (2) | 0.0010 (18) |
C14 | 0.015 (3) | 0.017 (3) | 0.016 (4) | 0.001 (2) | 0.000 (3) | 0.001 (3) |
C5 | 0.027 (4) | 0.026 (3) | 0.032 (4) | 0.000 (3) | −0.001 (3) | −0.006 (3) |
C13 | 0.027 (4) | 0.022 (3) | 0.013 (4) | −0.001 (3) | 0.009 (3) | 0.003 (3) |
C7 | 0.025 (3) | 0.016 (3) | 0.026 (4) | 0.001 (2) | −0.008 (3) | −0.001 (3) |
C9 | 0.022 (3) | 0.021 (3) | 0.007 (3) | 0.007 (3) | 0.009 (3) | 0.003 (2) |
C4 | 0.023 (4) | 0.012 (3) | 0.026 (4) | −0.003 (3) | 0.000 (3) | 0.001 (3) |
C15 | 0.017 (4) | 0.019 (3) | 0.026 (4) | 0.006 (2) | −0.001 (3) | 0.007 (3) |
C12 | 0.024 (3) | 0.021 (3) | 0.021 (4) | 0.002 (3) | −0.001 (3) | 0.004 (3) |
C10 | 0.027 (4) | 0.022 (3) | 0.017 (3) | −0.005 (3) | −0.001 (3) | −0.003 (2) |
C16 | 0.017 (3) | 0.027 (3) | 0.023 (4) | 0.002 (3) | 0.001 (3) | 0.004 (3) |
C17 | 0.028 (4) | 0.014 (3) | 0.016 (4) | −0.009 (3) | 0.000 (3) | 0.000 (3) |
C11 | 0.022 (4) | 0.017 (3) | 0.016 (3) | −0.005 (3) | 0.000 (3) | 0.003 (2) |
C8 | 0.021 (3) | 0.015 (3) | 0.015 (4) | −0.005 (2) | −0.001 (3) | 0.001 (3) |
C6 | 0.036 (4) | 0.027 (3) | 0.046 (5) | 0.016 (3) | −0.010 (4) | −0.007 (3) |
C2 | 0.047 (5) | 0.034 (4) | 0.058 (6) | 0.001 (4) | 0.012 (4) | 0.018 (4) |
C3 | 0.026 (4) | 0.025 (3) | 0.050 (5) | −0.005 (3) | 0.000 (3) | 0.003 (3) |
C1 | 0.060 (5) | 0.035 (4) | 0.042 (5) | −0.004 (4) | −0.017 (4) | 0.013 (3) |
Zn1—O3i | 2.054 (3) | C13—H13A | 0.9300 |
Zn1—O4ii | 2.058 (4) | C7—C4 | 1.508 (7) |
Zn1—O2iii | 2.053 (3) | C7—C8 | 1.545 (7) |
Zn1—O1iv | 2.086 (3) | C7—H7A | 0.9700 |
Zn1—N1 | 2.208 (4) | C7—H7B | 0.9700 |
Zn1—O1 | 2.229 (4) | C9—C8 | 1.506 (6) |
O4—C17 | 1.251 (6) | C4—C3 | 1.372 (7) |
O4—Zn1v | 2.058 (4) | C15—C16 | 1.396 (6) |
O3—C17 | 1.275 (6) | C15—H15A | 0.9300 |
O3—Zn1vi | 2.054 (3) | C12—C11 | 1.395 (7) |
O2—C9 | 1.253 (6) | C12—H12A | 0.9300 |
O2—Zn1vii | 2.053 (3) | C10—C11 | 1.501 (7) |
O1—C9 | 1.275 (6) | C10—H10A | 0.9700 |
O1—Zn1viii | 2.086 (3) | C10—H10B | 0.9700 |
N1—C10 | 1.474 (6) | C16—C11 | 1.369 (6) |
N1—C8 | 1.487 (6) | C16—H16A | 0.9300 |
N1—H1AA | 0.9100 | C8—H8A | 0.9800 |
C14—C15 | 1.370 (7) | C6—C1 | 1.367 (8) |
C14—C13 | 1.392 (6) | C6—H6A | 0.9300 |
C14—C17 | 1.511 (7) | C2—C1 | 1.369 (8) |
C5—C4 | 1.393 (6) | C2—C3 | 1.372 (7) |
C5—C6 | 1.402 (7) | C2—H2A | 0.9300 |
C5—H5A | 0.9300 | C3—H3A | 0.9300 |
C13—C12 | 1.380 (7) | C1—H1A | 0.9300 |
O3i—Zn1—O4ii | 168.70 (13) | O1—C9—C8 | 118.0 (5) |
O3i—Zn1—O2iii | 93.64 (15) | C3—C4—C5 | 118.2 (5) |
O4ii—Zn1—O2iii | 95.20 (15) | C3—C4—C7 | 120.8 (5) |
O3i—Zn1—O1iv | 87.21 (14) | C5—C4—C7 | 121.0 (5) |
O4ii—Zn1—O1iv | 84.83 (13) | C14—C15—C16 | 120.9 (5) |
O2iii—Zn1—O1iv | 96.34 (14) | C14—C15—H15A | 119.6 |
O3i—Zn1—N1 | 95.23 (14) | C16—C15—H15A | 119.6 |
O4ii—Zn1—N1 | 92.91 (15) | C13—C12—C11 | 121.4 (5) |
O2iii—Zn1—N1 | 82.44 (15) | C13—C12—H12A | 119.3 |
O1iv—Zn1—N1 | 177.33 (16) | C11—C12—H12A | 119.3 |
O3i—Zn1—O1 | 81.74 (14) | N1—C10—C11 | 116.3 (4) |
O4ii—Zn1—O1 | 93.14 (15) | N1—C10—H10A | 108.2 |
O2iii—Zn1—O1 | 154.67 (13) | C11—C10—H10A | 108.2 |
O1iv—Zn1—O1 | 108.22 (11) | N1—C10—H10B | 108.2 |
N1—Zn1—O1 | 73.28 (15) | C11—C10—H10B | 108.2 |
C17—O4—Zn1v | 135.1 (4) | H10A—C10—H10B | 107.4 |
C17—O3—Zn1vi | 127.4 (3) | C11—C16—C15 | 120.9 (5) |
C9—O2—Zn1vii | 134.1 (3) | C11—C16—H16A | 119.5 |
C9—O1—Zn1viii | 121.6 (4) | C15—C16—H16A | 119.5 |
C9—O1—Zn1 | 108.9 (3) | O4—C17—O3 | 128.0 (5) |
Zn1viii—O1—Zn1 | 107.59 (15) | O4—C17—C14 | 116.3 (5) |
C10—N1—C8 | 112.7 (4) | O3—C17—C14 | 115.7 (5) |
C10—N1—Zn1 | 110.3 (3) | C16—C11—C12 | 118.0 (5) |
C8—N1—Zn1 | 107.3 (3) | C16—C11—C10 | 122.0 (5) |
C10—N1—H1AA | 108.8 | C12—C11—C10 | 120.0 (5) |
C8—N1—H1AA | 108.8 | N1—C8—C9 | 110.8 (4) |
Zn1—N1—H1AA | 108.8 | N1—C8—C7 | 110.1 (4) |
C15—C14—C13 | 118.8 (5) | C9—C8—C7 | 113.1 (4) |
C15—C14—C17 | 121.0 (5) | N1—C8—H8A | 107.5 |
C13—C14—C17 | 120.2 (5) | C9—C8—H8A | 107.5 |
C4—C5—C6 | 119.7 (6) | C7—C8—H8A | 107.5 |
C4—C5—H5A | 120.1 | C1—C6—C5 | 120.5 (6) |
C6—C5—H5A | 120.2 | C1—C6—H6A | 119.8 |
C12—C13—C14 | 120.0 (5) | C5—C6—H6A | 119.8 |
C12—C13—H13A | 120.0 | C1—C2—C3 | 120.4 (7) |
C14—C13—H13A | 120.0 | C1—C2—H2A | 119.8 |
C4—C7—C8 | 112.8 (5) | C3—C2—H2A | 119.8 |
C4—C7—H7A | 109.0 | C4—C3—C2 | 121.7 (6) |
C8—C7—H7A | 109.0 | C4—C3—H3A | 119.1 |
C4—C7—H7B | 109.0 | C2—C3—H3A | 119.1 |
C8—C7—H7B | 109.0 | C6—C1—C2 | 119.5 (6) |
H7A—C7—H7B | 107.8 | C6—C1—H1A | 120.2 |
O2—C9—O1 | 125.0 (5) | C2—C1—H1A | 120.2 |
O2—C9—C8 | 117.0 (4) |
Symmetry codes: (i) −x+5/2, −y+2, z+1/2; (ii) −x+2, y−1/2, −z+3/2; (iii) x−1, y, z; (iv) x−1/2, −y+3/2, −z+2; (v) −x+2, y+1/2, −z+3/2; (vi) −x+5/2, −y+2, z−1/2; (vii) x+1, y, z; (viii) x+1/2, −y+3/2, −z+2. |
[Co(C17H15NO4)] | Z = 4 |
Mr = 356.23 | F(000) = 732 |
Orthorhombic, P212121 | Dx = 1.535 Mg m−3 |
Hall symbol: P 2ac 2ab | Mo Kα radiation, λ = 0.71073 Å |
a = 5.6619 (15) Å | µ = 1.13 mm−1 |
b = 14.198 (4) Å | T = 123 K |
c = 19.180 (5) Å | Prism, pink |
V = 1541.8 (7) Å3 | 0.07 × 0.06 × 0.05 mm |
Bruker APEX CCD area-detector diffractometer | 3211 independent reflections |
Radiation source: fine-focus sealed tube | 2678 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.093 |
ω scans | θmax = 27.0°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −5→7 |
Tmin = 0.925, Tmax = 0.946 | k = −18→17 |
7783 measured reflections | l = −24→22 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.077 | H-atom parameters constrained |
wR(F2) = 0.174 | w = 1/[σ2(Fo2) + (0.0468P)2 + 7.5189P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
3211 reflections | Δρmax = 0.64 e Å−3 |
208 parameters | Δρmin = −1.13 e Å−3 |
0 restraints | Absolute structure: Flack (1983), with 1294 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.06 (5) |
[Co(C17H15NO4)] | V = 1541.8 (7) Å3 |
Mr = 356.23 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 5.6619 (15) Å | µ = 1.13 mm−1 |
b = 14.198 (4) Å | T = 123 K |
c = 19.180 (5) Å | 0.07 × 0.06 × 0.05 mm |
Bruker APEX CCD area-detector diffractometer | 3211 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2678 reflections with I > 2σ(I) |
Tmin = 0.925, Tmax = 0.946 | Rint = 0.093 |
7783 measured reflections |
R[F2 > 2σ(F2)] = 0.077 | H-atom parameters constrained |
wR(F2) = 0.174 | Δρmax = 0.64 e Å−3 |
S = 1.08 | Δρmin = −1.13 e Å−3 |
3211 reflections | Absolute structure: Flack (1983), with 1294 Friedel pairs |
208 parameters | Absolute structure parameter: 0.06 (5) |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.94051 (19) | 0.81432 (7) | 0.97654 (5) | 0.0124 (2) | |
O4 | 1.1627 (11) | 1.2274 (4) | 0.6035 (3) | 0.0183 (13) | |
O3 | 1.4322 (12) | 1.1209 (3) | 0.5653 (2) | 0.0189 (12) | |
O2 | 1.6246 (9) | 0.8885 (4) | 0.9791 (3) | 0.0205 (12) | |
O1 | 1.3182 (10) | 0.7941 (3) | 0.9578 (2) | 0.0127 (12) | |
N1 | 1.0482 (14) | 0.9270 (4) | 0.9047 (3) | 0.0178 (14) | |
H1AA | 0.9505 | 0.9773 | 0.9103 | 0.021* | |
C14 | 1.2189 (14) | 1.0874 (5) | 0.6690 (4) | 0.0130 (16) | |
C5 | 1.0161 (15) | 1.1799 (6) | 0.9469 (4) | 0.0246 (19) | |
H5A | 0.9107 | 1.1574 | 0.9801 | 0.029* | |
C13 | 1.3724 (16) | 1.0125 (5) | 0.6851 (4) | 0.0203 (19) | |
H13A | 1.5118 | 1.0037 | 0.6603 | 0.024* | |
C7 | 1.2852 (15) | 1.0425 (5) | 0.9722 (4) | 0.0214 (17) | |
H7A | 1.1713 | 1.0320 | 1.0092 | 0.026* | |
H7B | 1.4391 | 1.0505 | 0.9936 | 0.026* | |
C9 | 1.4232 (15) | 0.8735 (5) | 0.9570 (3) | 0.0135 (16) | |
C4 | 1.2212 (15) | 1.1313 (5) | 0.9340 (4) | 0.0183 (17) | |
C15 | 1.0147 (15) | 1.1005 (6) | 0.7066 (4) | 0.0194 (19) | |
H15A | 0.9153 | 1.1507 | 0.6961 | 0.023* | |
C12 | 1.3103 (16) | 0.9522 (6) | 0.7388 (4) | 0.0198 (18) | |
H12A | 1.4108 | 0.9026 | 0.7499 | 0.024* | |
C10 | 1.0310 (16) | 0.8931 (5) | 0.8319 (4) | 0.0186 (17) | |
H10A | 0.8684 | 0.8752 | 0.8229 | 0.022* | |
H10B | 1.1267 | 0.8367 | 0.8275 | 0.022* | |
C16 | 0.9566 (17) | 1.0392 (5) | 0.7600 (4) | 0.0218 (17) | |
H16A | 0.8184 | 1.0482 | 0.7854 | 0.026* | |
C17 | 1.2791 (14) | 1.1512 (5) | 0.6076 (4) | 0.0150 (16) | |
C11 | 1.1080 (15) | 0.9630 (6) | 0.7757 (4) | 0.0155 (17) | |
C8 | 1.2915 (14) | 0.9546 (5) | 0.9243 (4) | 0.0133 (15) | |
H8A | 1.3751 | 0.9721 | 0.8815 | 0.016* | |
C6 | 0.9636 (19) | 1.2630 (6) | 0.9105 (5) | 0.030 (2) | |
H6A | 0.8240 | 1.2952 | 0.9196 | 0.037* | |
C2 | 1.324 (2) | 1.2500 (7) | 0.8476 (6) | 0.041 (3) | |
H2A | 1.4278 | 1.2733 | 0.8142 | 0.050* | |
C3 | 1.3786 (15) | 1.1671 (6) | 0.8837 (5) | 0.027 (2) | |
H3A | 1.5191 | 1.1356 | 0.8744 | 0.032* | |
C1 | 1.1190 (19) | 1.2964 (6) | 0.8616 (5) | 0.038 (3) | |
H1A | 1.0837 | 1.3515 | 0.8375 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0142 (5) | 0.0110 (4) | 0.0120 (4) | −0.0006 (5) | −0.0003 (4) | 0.0008 (4) |
O4 | 0.027 (4) | 0.011 (3) | 0.018 (3) | 0.007 (2) | 0.000 (2) | −0.007 (2) |
O3 | 0.024 (3) | 0.013 (2) | 0.020 (3) | 0.004 (3) | 0.004 (3) | 0.001 (2) |
O2 | 0.016 (3) | 0.019 (3) | 0.026 (3) | −0.002 (2) | −0.003 (3) | −0.002 (3) |
O1 | 0.014 (3) | 0.013 (3) | 0.011 (2) | −0.004 (2) | −0.0016 (19) | −0.0016 (18) |
N1 | 0.020 (4) | 0.013 (3) | 0.021 (3) | −0.001 (3) | −0.006 (3) | 0.004 (2) |
C14 | 0.015 (4) | 0.009 (3) | 0.015 (4) | −0.004 (3) | 0.000 (3) | 0.003 (3) |
C5 | 0.021 (5) | 0.026 (4) | 0.027 (4) | 0.002 (4) | 0.002 (3) | 0.001 (4) |
C13 | 0.023 (5) | 0.014 (4) | 0.024 (4) | −0.004 (3) | 0.001 (3) | 0.001 (3) |
C7 | 0.029 (5) | 0.016 (4) | 0.019 (4) | −0.003 (3) | −0.002 (4) | 0.004 (4) |
C9 | 0.016 (4) | 0.012 (3) | 0.013 (3) | −0.007 (3) | −0.005 (3) | −0.005 (3) |
C4 | 0.022 (5) | 0.007 (4) | 0.026 (4) | −0.005 (3) | −0.008 (3) | 0.003 (3) |
C15 | 0.016 (5) | 0.023 (4) | 0.020 (4) | 0.003 (3) | 0.000 (3) | 0.006 (3) |
C12 | 0.025 (5) | 0.015 (4) | 0.019 (4) | 0.003 (4) | −0.003 (3) | 0.002 (3) |
C10 | 0.019 (5) | 0.015 (4) | 0.022 (4) | −0.003 (3) | 0.002 (3) | 0.000 (3) |
C16 | 0.020 (5) | 0.024 (4) | 0.022 (4) | 0.003 (4) | 0.005 (4) | 0.004 (3) |
C17 | 0.013 (4) | 0.014 (4) | 0.018 (4) | 0.005 (3) | −0.004 (3) | −0.001 (3) |
C11 | 0.012 (5) | 0.022 (4) | 0.012 (3) | −0.005 (3) | −0.001 (3) | 0.003 (3) |
C8 | 0.012 (4) | 0.012 (4) | 0.016 (3) | 0.003 (3) | −0.001 (3) | 0.003 (3) |
C6 | 0.026 (5) | 0.026 (4) | 0.039 (5) | 0.012 (4) | −0.006 (4) | 0.002 (4) |
C2 | 0.039 (7) | 0.032 (5) | 0.054 (6) | −0.005 (5) | 0.000 (5) | 0.020 (5) |
C3 | 0.012 (5) | 0.027 (5) | 0.042 (5) | −0.007 (4) | 0.003 (3) | 0.012 (4) |
C1 | 0.045 (7) | 0.021 (5) | 0.047 (6) | 0.001 (4) | −0.012 (5) | 0.009 (4) |
Co1—O3i | 2.065 (5) | C13—H13A | 0.9300 |
Co1—O2ii | 2.076 (5) | C7—C4 | 1.502 (10) |
Co1—O4iii | 2.055 (5) | C7—C8 | 1.550 (10) |
Co1—O1iv | 2.106 (5) | C7—H7A | 0.9700 |
Co1—N1 | 2.198 (6) | C7—H7B | 0.9700 |
Co1—O1 | 2.187 (6) | C9—C8 | 1.509 (10) |
O4—C17 | 1.269 (9) | C4—C3 | 1.408 (11) |
O4—Co1v | 2.055 (5) | C15—C16 | 1.383 (10) |
O3—C17 | 1.262 (9) | C15—H15A | 0.9300 |
O3—Co1vi | 2.065 (5) | C12—C11 | 1.356 (12) |
O2—C9 | 1.235 (9) | C12—H12A | 0.9300 |
O2—Co1vii | 2.076 (5) | C10—C11 | 1.529 (10) |
O1—C9 | 1.274 (8) | C10—H10A | 0.9700 |
O1—Co1viii | 2.106 (5) | C10—H10B | 0.9700 |
N1—C10 | 1.480 (9) | C16—C11 | 1.413 (11) |
N1—C8 | 1.481 (11) | C16—H16A | 0.9300 |
N1—H1AA | 0.9100 | C8—H8A | 0.9800 |
C14—C15 | 1.376 (11) | C6—C1 | 1.372 (14) |
C14—C13 | 1.408 (11) | C6—H6A | 0.9300 |
C14—C17 | 1.524 (10) | C2—C1 | 1.362 (15) |
C5—C4 | 1.373 (11) | C2—C3 | 1.399 (12) |
C5—C6 | 1.402 (11) | C2—H2A | 0.9300 |
C5—H5A | 0.9300 | C3—H3A | 0.9300 |
C13—C12 | 1.384 (11) | C1—H1A | 0.9300 |
O3i—Co1—O2ii | 93.2 (2) | O1—C9—C8 | 116.7 (7) |
O3i—Co1—O4iii | 169.4 (2) | C3—C4—C5 | 118.5 (7) |
O2ii—Co1—O4iii | 94.4 (2) | C3—C4—C7 | 118.9 (8) |
O3i—Co1—O1iv | 87.0 (2) | C5—C4—C7 | 122.6 (8) |
O2ii—Co1—O1iv | 94.2 (2) | C14—C15—C16 | 120.2 (8) |
O4iii—Co1—O1iv | 85.1 (2) | C14—C15—H15A | 119.9 |
O3i—Co1—N1 | 95.5 (2) | C16—C15—H15A | 119.9 |
O2ii—Co1—N1 | 83.4 (3) | C13—C12—C11 | 122.2 (8) |
O4iii—Co1—N1 | 92.7 (2) | C13—C12—H12A | 118.9 |
O1iv—Co1—N1 | 176.6 (3) | C11—C12—H12A | 118.9 |
O3i—Co1—O1 | 81.5 (2) | N1—C10—C11 | 115.7 (6) |
O2ii—Co1—O1 | 155.9 (2) | N1—C10—H10A | 108.3 |
O4iii—Co1—O1 | 94.4 (2) | C11—C10—H10A | 108.3 |
O1iv—Co1—O1 | 108.89 (17) | N1—C10—H10B | 108.3 |
N1—Co1—O1 | 73.8 (2) | C11—C10—H10B | 108.3 |
C17—O4—Co1v | 134.8 (5) | H10A—C10—H10B | 107.4 |
C17—O3—Co1vi | 128.1 (5) | C11—C16—C15 | 119.7 (8) |
C9—O2—Co1vii | 134.4 (5) | C11—C16—H16A | 120.1 |
C9—O1—Co1viii | 120.0 (5) | C15—C16—H16A | 120.1 |
C9—O1—Co1 | 110.0 (5) | O4—C17—O3 | 127.4 (7) |
Co1viii—O1—Co1 | 108.6 (2) | O4—C17—C14 | 115.9 (7) |
C10—N1—C8 | 112.8 (7) | O3—C17—C14 | 116.6 (6) |
C10—N1—Co1 | 109.6 (4) | C16—C11—C12 | 119.2 (7) |
C8—N1—Co1 | 106.9 (4) | C16—C11—C10 | 118.4 (7) |
C10—N1—H1AA | 109.1 | C12—C11—C10 | 122.4 (7) |
C8—N1—H1AA | 109.1 | N1—C8—C9 | 111.3 (6) |
Co1—N1—H1AA | 109.1 | N1—C8—C7 | 110.0 (6) |
C15—C14—C13 | 120.4 (7) | C9—C8—C7 | 112.3 (6) |
C15—C14—C17 | 120.9 (7) | N1—C8—H8A | 107.7 |
C13—C14—C17 | 118.7 (7) | C9—C8—H8A | 107.7 |
C4—C5—C6 | 120.9 (8) | C7—C8—H8A | 107.7 |
C4—C5—H5A | 119.6 | C1—C6—C5 | 119.7 (9) |
C6—C5—H5A | 119.6 | C1—C6—H6A | 120.2 |
C12—C13—C14 | 118.3 (8) | C5—C6—H6A | 120.2 |
C12—C13—H13A | 120.9 | C1—C2—C3 | 119.8 (9) |
C14—C13—H13A | 120.9 | C1—C2—H2A | 120.1 |
C4—C7—C8 | 113.1 (7) | C3—C2—H2A | 120.1 |
C4—C7—H7A | 109.0 | C4—C3—C2 | 120.2 (8) |
C8—C7—H7A | 109.0 | C4—C3—H3A | 119.9 |
C4—C7—H7B | 109.0 | C2—C3—H3A | 119.9 |
C8—C7—H7B | 109.0 | C6—C1—C2 | 120.9 (9) |
H7A—C7—H7B | 107.8 | C6—C1—H1A | 119.5 |
O2—C9—O1 | 125.4 (7) | C2—C1—H1A | 119.5 |
O2—C9—C8 | 117.8 (6) |
Symmetry codes: (i) −x+5/2, −y+2, z+1/2; (ii) x−1, y, z; (iii) −x+2, y−1/2, −z+3/2; (iv) x−1/2, −y+3/2, −z+2; (v) −x+2, y+1/2, −z+3/2; (vi) −x+5/2, −y+2, z−1/2; (vii) x+1, y, z; (viii) x+1/2, −y+3/2, −z+2. |
Experimental details
(1) | (2) | |
Crystal data | ||
Chemical formula | [Zn(C17H15NO4)] | [Co(C17H15NO4)] |
Mr | 362.67 | 356.23 |
Crystal system, space group | Orthorhombic, P212121 | Orthorhombic, P212121 |
Temperature (K) | 123 | 123 |
a, b, c (Å) | 5.6649 (11), 14.196 (3), 19.148 (4) | 5.6619 (15), 14.198 (4), 19.180 (5) |
V (Å3) | 1539.9 (5) | 1541.8 (7) |
Z | 4 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 1.61 | 1.13 |
Crystal size (mm) | 0.10 × 0.09 × 0.08 | 0.07 × 0.06 × 0.05 |
Data collection | ||
Diffractometer | Bruker APEX CCD area-detector diffractometer | Bruker APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.855, 0.882 | 0.925, 0.946 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5970, 2901, 2069 | 7783, 3211, 2678 |
Rint | 0.081 | 0.093 |
(sin θ/λ)max (Å−1) | 0.617 | 0.639 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.078, 0.84 | 0.077, 0.174, 1.08 |
No. of reflections | 2901 | 3211 |
No. of parameters | 208 | 208 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.87, −0.69 | 0.64, −1.13 |
Absolute structure | Flack (1983), with 1184 Friedel pairs | Flack (1983), with 1294 Friedel pairs |
Absolute structure parameter | −0.01 (2) | 0.06 (5) |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).