Download citation
Download citation
link to html
Bis(5-amino-1,2,4-triazol-3-yl)methane (BATZM, C5H8N8) was synthesized and its crystal structure characterized by single-crystal X-ray diffraction; it belongs to the space group Fdd2 (ortho­rhom­bic) with Z = 8. The structure of BATZM can be described as a V-shaped mol­ecule with reasonable chemical geometry and no disorder. The specific molar heat capacity (Cp,m) of BATZM was determined using the continuous Cp mode of a microcalorimeter and theoretical calculations, and the Cp,m value is 211.19 J K−1 mol−1 at 298.15 K. The relative deviations between the theoretical and experimental values of Cp,m, HTH298.15K and STS298.15K of BATZM are almost equivalent at each temperature. The detonation velocity (D) and detonation pressure (P) of BATZM were estimated using the nitro­gen equivalent equation according to the experimental density; BATZM has a higher detonation velocity (7954.87 ± 3.29 m s−1) and detonation pressure (25.72 ± 0.03 GPa) than TNT.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229619016231/qs3089sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229619016231/qs3089Isup2.hkl
Contains datablock I

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229619016231/qs3089Isup3.cml
Supplementary material

CCDC reference: 1060496

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Bis(5-amino-1,2,4-triazol-3-yl)methane top
Crystal data top
C5H8N8Dx = 1.496 Mg m3
Mr = 180.19Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 918 reflections
a = 18.632 (3) Åθ = 3.0–25.9°
b = 19.933 (3) ŵ = 0.11 mm1
c = 4.3095 (6) ÅT = 296 K
V = 1600.6 (4) Å3Acicular, colourless
Z = 80.38 × 0.28 × 0.14 mm
F(000) = 752
Data collection top
Bruker APEXII CCD
diffractometer
757 reflections with I > 2σ(I)
φ and ω scansRint = 0.016
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 28.0°, θmin = 3.0°
Tmin = 0.960, Tmax = 0.985h = 2423
1858 measured reflectionsk = 924
816 independent reflectionsl = 54
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.6778P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.068(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.12 e Å3
816 reflectionsΔρmin = 0.13 e Å3
73 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraintsExtinction coefficient: 0.0044 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 253 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 1.0 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.08768 (7)0.07813 (8)0.1174 (4)0.0339 (4)
C30.0000000.0000000.3477 (7)0.0320 (6)
C10.01192 (9)0.14092 (9)0.1546 (4)0.0266 (4)
N30.02808 (7)0.09508 (7)0.0117 (4)0.0268 (4)
C20.02091 (9)0.05860 (8)0.1521 (4)0.0261 (4)
N10.08068 (7)0.13222 (8)0.0808 (4)0.0341 (4)
N40.01377 (9)0.19194 (8)0.3320 (4)0.0358 (5)
H30.0419 (9)0.0126 (10)0.478 (5)0.043*
H4A0.0565 (7)0.1859 (10)0.403 (6)0.043*
H4B0.0172 (9)0.2130 (10)0.448 (5)0.043*
H10.1188 (8)0.1486 (9)0.160 (5)0.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0245 (7)0.0391 (8)0.0380 (10)0.0006 (6)0.0033 (8)0.0040 (8)
C30.0329 (13)0.0359 (14)0.0271 (16)0.0005 (11)0.0000.000
C10.0222 (8)0.0302 (9)0.0272 (11)0.0002 (7)0.0004 (8)0.0060 (8)
N30.0203 (7)0.0297 (8)0.0303 (9)0.0003 (6)0.0006 (7)0.0022 (6)
C20.0233 (8)0.0304 (9)0.0246 (10)0.0004 (7)0.0011 (8)0.0056 (8)
N10.0199 (7)0.0411 (9)0.0412 (10)0.0047 (7)0.0016 (7)0.0058 (8)
N40.0311 (8)0.0363 (9)0.0398 (12)0.0032 (7)0.0040 (9)0.0069 (8)
Geometric parameters (Å, º) top
N2—C21.312 (2)C1—N11.332 (2)
N2—N11.382 (2)C1—N41.359 (2)
C3—C21.492 (2)N3—C21.364 (2)
C3—C2i1.492 (2)N1—H10.853 (12)
C3—H30.993 (16)N4—H4A0.861 (12)
C3—H3i0.993 (16)N4—H4B0.871 (12)
C1—N31.330 (2)
C2—N2—N1102.28 (14)C1—N3—C2103.35 (14)
C2—C3—C2i111.2 (2)N2—C2—N3114.66 (16)
C2—C3—H3108.1 (12)N2—C2—C3122.98 (14)
C2i—C3—H3109.1 (12)N3—C2—C3122.34 (14)
C2—C3—H3i109.1 (12)C1—N1—N2109.88 (15)
C2i—C3—H3i108.1 (12)C1—N1—H1130.9 (15)
H3—C3—H3i111 (3)N2—N1—H1117.9 (14)
N3—C1—N1109.83 (16)C1—N4—H4A114.9 (15)
N3—C1—N4125.24 (15)C1—N4—H4B116.7 (14)
N1—C1—N4124.79 (16)H4A—N4—H4B118 (2)
N1—C1—N3—C20.1 (2)C2i—C3—C2—N2106.21 (19)
N4—C1—N3—C2175.64 (18)C2i—C3—C2—N372.01 (15)
N1—N2—C2—N31.0 (2)N3—C1—N1—N20.5 (2)
N1—N2—C2—C3179.38 (17)N4—C1—N1—N2176.29 (17)
C1—N3—C2—N20.8 (2)C2—N2—N1—C10.92 (19)
C1—N3—C2—C3179.12 (18)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3ii0.85 (1)1.98 (1)2.782 (2)157 (2)
N4—H4B···N4iii0.87 (1)2.52 (2)3.204 (2)136 (2)
N4—H4A···N2iv0.86 (1)2.22 (1)3.082 (2)174 (2)
Symmetry codes: (ii) x+1/4, y+1/4, z+1/4; (iii) x, y+1/2, z+1/2; (iv) x1/4, y+1/4, z+3/4.
Thermodynamic properties of BATZM at pressure 101.3 kPa top
T (K)Cp,m (J K-1 mol-1)RDHTH298.15K (kJ mol-1)RDSTS298.15K (J K-1 mol-1)RD
ExpCalcExpCalcExpCalc
288.15204.66182.5810.79-2.08-1.8510.83-7.09-6.3310.82
293.15207.93185.4410.81-1.05-0.9310.85-3.54-3.1610.83
298.15211.19188.2910.84
303.15214.46191.1310.881.060.9510.883.543.1510.86
308.15217.73193.9610.922.141.9110.907.076.3010.88
313.15220.99196.7710.963.242.8910.9210.619.4510.90
318.15224.26199.5811.014.353.8810.9314.1312.5910.92
323.15227.53202.3711.065.484.8810.9517.6515.7210.94
328.15230.79205.1511.116.635.9010.9621.1718.8510.96
333.15234.06207.9211.177.796.9410.9824.6921.9710.99
338.15237.32210.6711.238.977.9810.9928.2025.0911.01
343.15240.59213.4211.2910.179.0511.0131.7128.2111.04
348.15243.86216.1511.3611.3810.1211.0235.2131.3111.07
Notes: Exp is the result of an experimental determination; Calc is the result of a theoretical calculation; RD = 102(XExp - XCalc)/XExp; HTH298.15K is the enthalpy change of taking 298.15 K as the benchmark; ST - S298.15K is the entropy change of taking 298.15 K as the benchmark.
Nitrogen equivalents of different detonation products top
Detonation productCH2N2COCO2
Nitrogen equivalent index0.150.2910.781.35
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds