The title compound [systematic name: 3β-lup-20(29)-en-3-ol], C
30H
50O, was isolated from the leaves of
Garcinia brasiliensis (common name: bacupari; a member of the Guttiferae family) and has been shown to have many useful medicinal and biological properties. The lupeol molecule consists of four six-membered rings (adopting chair conformations) and one five-membered ring (with an envelope conformation), all fused in
trans fashion. Lupeol is isomorphic with the pentacyclic triterpene 3β,30-dihydroxylup-20(29)-ene, which differs from lupeol due to the presence of an additional hydroxy group. The crystal packing is stabilized by van der Waals interactions and intermolecular O—H
O hydrogen bonds, giving rise to an infinite helical chain along the
c axis.
Supporting information
CCDC reference: 649177
The leaves of G. brasiliensis were collected in Viçosa, Minas Gerais
state, Brazil, in 2006. A voucher specimen (VIC26240) is deposited at
herbarium of Universidade Federal de Viçosa. The leaves were dried and
submitted to a dichloromethane extraction. The solvent was removed in vacuum
and the dichloromethane extract (10 g) was submitted to column chromatography
using silica gel. This extract was eluted in increasing amounts of hexane,
hexane/ethyl acetate, ethyl acetate and ethyl acetate/ethanol, obtaining 95
fractions. From fraction 26 (hexane/ethyl acetate 9:1 v/v), a white
solid was obtained by recrystallization with methanol, yielding lupeol (525 mg). Single crystals were obtained after one week by slow evaporation from a
chloroform and methanol (2:1 v/v) solution at 283 K.
H atoms bound to C atoms were located from an electron-density difference
synthesis and refined as riding on their parent atoms, with Uiso(H)
values of 1.5Ueq(C) for methyl H atoms or 1.2Ueq(C) for the
remaining H atoms. The hydroxy H atom was located by difference Fourier
synthesis and was refined isotropically. In the absence of significant
anomalous scattering, the Friedel pair reflections were merged before final
refinement.
Data collection: Collect (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
3
β-lup-20 (29)-en-3-ol
top
Crystal data top
C30H50O | Dx = 1.077 Mg m−3 |
Mr = 426.7 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P43 | Cell parameters from 8982 reflections |
Hall symbol: P 4cw | θ = 2.9–25.7° |
a = 19.1006 (14) Å | µ = 0.06 mm−1 |
c = 7.2128 (4) Å | T = 298 K |
V = 2631.5 (3) Å3 | Needle, colourless |
Z = 4 | 0.40 × 0.06 × 0.04 mm |
F(000) = 952 | |
Data collection top
Nonius KappaCCD diffractometer | 1943 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.080 |
Horizonally mounted graphite crystal monochromator | θmax = 25.7°, θmin = 3.2° |
Detector resolution: 9 pixels mm-1 | h = −23→18 |
ϕ scans and ω scans winth κ offsets | k = −23→20 |
7896 measured reflections | l = −8→7 |
2655 independent reflections | |
Refinement top
Refinement on F2 | 1 restraint |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.045 | w = 1/[σ2(Fo2) + (0.0606P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.113 | (Δ/σ)max < 0.001 |
S = 1.03 | Δρmax = 0.1 e Å−3 |
2655 reflections | Δρmin = −0.10 e Å−3 |
284 parameters | |
Crystal data top
C30H50O | Z = 4 |
Mr = 426.7 | Mo Kα radiation |
Tetragonal, P43 | µ = 0.06 mm−1 |
a = 19.1006 (14) Å | T = 298 K |
c = 7.2128 (4) Å | 0.40 × 0.06 × 0.04 mm |
V = 2631.5 (3) Å3 | |
Data collection top
Nonius KappaCCD diffractometer | 1943 reflections with I > 2σ(I) |
7896 measured reflections | Rint = 0.080 |
2655 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.045 | 1 restraint |
wR(F2) = 0.113 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | Δρmax = 0.1 e Å−3 |
2655 reflections | Δρmin = −0.10 e Å−3 |
284 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.42390 (11) | 0.48740 (11) | 0.7438 (3) | 0.0655 (5) | |
C1 | 0.26606 (14) | 0.39431 (15) | 0.9341 (4) | 0.0584 (7) | |
H1A | 0.2528 | 0.3853 | 1.0617 | 0.07* | |
H1B | 0.2733 | 0.3494 | 0.8741 | 0.07* | |
C2 | 0.33495 (14) | 0.43490 (16) | 0.9326 (4) | 0.0606 (7) | |
H2A | 0.3294 | 0.478 | 1.0022 | 0.073* | |
H2B | 0.371 | 0.4072 | 0.9926 | 0.073* | |
C3 | 0.35750 (13) | 0.45196 (14) | 0.7372 (4) | 0.0559 (7) | |
H3 | 0.3646 | 0.4076 | 0.6718 | 0.067* | |
C4 | 0.30280 (14) | 0.49429 (14) | 0.6280 (4) | 0.0542 (6) | |
C5 | 0.23229 (13) | 0.45354 (13) | 0.6396 (3) | 0.0486 (6) | |
H5 | 0.2421 | 0.4087 | 0.5787 | 0.058* | |
C6 | 0.17303 (14) | 0.48551 (14) | 0.5247 (4) | 0.0568 (7) | |
H6A | 0.1542 | 0.526 | 0.5889 | 0.068* | |
H6B | 0.1913 | 0.5011 | 0.4062 | 0.068* | |
C7 | 0.11475 (14) | 0.43232 (14) | 0.4926 (4) | 0.0532 (6) | |
H7A | 0.1333 | 0.3936 | 0.4208 | 0.064* | |
H7B | 0.078 | 0.4542 | 0.4201 | 0.064* | |
C8 | 0.08270 (13) | 0.40340 (12) | 0.6742 (3) | 0.0467 (6) | |
C9 | 0.14331 (13) | 0.37950 (13) | 0.8053 (3) | 0.0470 (6) | |
H9 | 0.1648 | 0.3396 | 0.7414 | 0.056* | |
C10 | 0.20527 (13) | 0.43256 (13) | 0.8362 (3) | 0.0490 (6) | |
C11 | 0.11373 (14) | 0.34848 (14) | 0.9858 (4) | 0.0565 (7) | |
H11A | 0.1521 | 0.3318 | 1.062 | 0.068* | |
H11B | 0.0896 | 0.3849 | 1.0541 | 0.068* | |
C12 | 0.06315 (14) | 0.28812 (15) | 0.9494 (4) | 0.0555 (7) | |
H12A | 0.0886 | 0.2492 | 0.8954 | 0.067* | |
H12B | 0.0433 | 0.2725 | 1.0661 | 0.067* | |
C13 | 0.00426 (13) | 0.30984 (14) | 0.8190 (4) | 0.0517 (6) | |
H13 | −0.0199 | 0.3492 | 0.8784 | 0.062* | |
C14 | 0.03361 (13) | 0.33778 (13) | 0.6315 (3) | 0.0489 (6) | |
C15 | −0.02787 (14) | 0.35906 (14) | 0.5015 (4) | 0.0618 (7) | |
H15A | −0.0475 | 0.4028 | 0.5461 | 0.074* | |
H15B | −0.0091 | 0.3677 | 0.3786 | 0.074* | |
C16 | −0.08757 (15) | 0.30504 (15) | 0.4849 (4) | 0.0667 (8) | |
H16A | −0.1257 | 0.3253 | 0.4142 | 0.08* | |
H16B | −0.0707 | 0.2643 | 0.4181 | 0.08* | |
C17 | −0.11480 (14) | 0.28221 (15) | 0.6751 (5) | 0.0641 (8) | |
C18 | −0.05153 (14) | 0.25305 (13) | 0.7842 (4) | 0.0537 (7) | |
H18 | −0.0295 | 0.2181 | 0.7036 | 0.064* | |
C19 | −0.08340 (15) | 0.21241 (15) | 0.9469 (5) | 0.0633 (7) | |
H19 | −0.0894 | 0.2447 | 1.0513 | 0.076* | |
C20 | −0.04282 (17) | 0.14889 (15) | 1.0145 (5) | 0.0671 (8) | |
C21 | −0.15751 (16) | 0.19062 (18) | 0.8756 (5) | 0.0767 (9) | |
H21A | −0.1627 | 0.1401 | 0.8778 | 0.092* | |
H21B | −0.1938 | 0.2112 | 0.9523 | 0.092* | |
C22 | −0.16245 (16) | 0.21806 (17) | 0.6776 (5) | 0.0756 (9) | |
H22A | −0.2102 | 0.2309 | 0.6473 | 0.091* | |
H22B | −0.1464 | 0.1831 | 0.5897 | 0.091* | |
C23 | 0.29855 (16) | 0.57027 (14) | 0.6948 (5) | 0.0697 (8) | |
H23A | 0.2927 | 0.5711 | 0.8269 | 0.105* | |
H23B | 0.2594 | 0.593 | 0.637 | 0.105* | |
H23C | 0.3409 | 0.5944 | 0.6622 | 0.105* | |
C24 | 0.32698 (17) | 0.49550 (18) | 0.4236 (4) | 0.0727 (9) | |
H24A | 0.2994 | 0.5288 | 0.3556 | 0.109* | |
H24B | 0.3211 | 0.4498 | 0.3703 | 0.109* | |
H24C | 0.3754 | 0.5087 | 0.4179 | 0.109* | |
C25 | 0.18454 (16) | 0.49564 (15) | 0.9588 (4) | 0.0608 (7) | |
H25A | 0.1531 | 0.4803 | 1.0543 | 0.091* | |
H25B | 0.1619 | 0.5305 | 0.8838 | 0.091* | |
H25C | 0.2258 | 0.5153 | 1.0142 | 0.091* | |
C26 | 0.03930 (14) | 0.46306 (13) | 0.7617 (5) | 0.0598 (7) | |
H26A | 0.0669 | 0.5051 | 0.7653 | 0.09* | |
H26B | 0.026 | 0.4502 | 0.8854 | 0.09* | |
H26C | −0.002 | 0.471 | 0.6886 | 0.09* | |
C27 | 0.07381 (15) | 0.27927 (14) | 0.5296 (4) | 0.0589 (7) | |
H27A | 0.1102 | 0.2616 | 0.6084 | 0.088* | |
H27B | 0.0941 | 0.2978 | 0.4181 | 0.088* | |
H27C | 0.0421 | 0.242 | 0.4989 | 0.088* | |
C28 | −0.15228 (16) | 0.34300 (17) | 0.7735 (6) | 0.0827 (10) | |
H28A | −0.1936 | 0.3554 | 0.7054 | 0.124* | |
H28B | −0.1215 | 0.3827 | 0.7798 | 0.124* | |
H28C | −0.1651 | 0.3289 | 0.8966 | 0.124* | |
C29 | 0.00880 (17) | 0.11831 (17) | 0.9239 (5) | 0.0787 (9) | |
H29A | 0.0296 | 0.0782 | 0.972 | 0.094* | |
H29B | 0.0244 | 0.1368 | 0.8121 | 0.094* | |
C30 | −0.0681 (2) | 0.1188 (2) | 1.1962 (6) | 0.1070 (13) | |
H30A | −0.0424 | 0.0768 | 1.2237 | 0.161* | |
H30B | −0.1171 | 0.1081 | 1.1871 | 0.161* | |
H30C | −0.0608 | 0.1524 | 1.2934 | 0.161* | |
H1 | 0.4509 (19) | 0.465 (2) | 0.677 (6) | 0.099 (14)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0531 (12) | 0.0744 (14) | 0.0691 (13) | −0.0050 (10) | 0.0029 (10) | −0.0179 (11) |
C1 | 0.0580 (16) | 0.0668 (17) | 0.0504 (15) | −0.0008 (13) | −0.0096 (13) | 0.0085 (13) |
C2 | 0.0560 (16) | 0.0702 (18) | 0.0557 (17) | 0.0033 (14) | −0.0093 (13) | 0.0024 (13) |
C3 | 0.0520 (15) | 0.0589 (16) | 0.0569 (17) | −0.0049 (12) | 0.0026 (12) | −0.0088 (13) |
C4 | 0.0576 (15) | 0.0560 (15) | 0.0491 (15) | −0.0039 (13) | −0.0027 (12) | 0.0018 (12) |
C5 | 0.0570 (15) | 0.0471 (14) | 0.0417 (13) | 0.0016 (11) | −0.0029 (12) | −0.0013 (11) |
C6 | 0.0663 (17) | 0.0529 (15) | 0.0513 (16) | −0.0004 (13) | −0.0055 (13) | 0.0064 (12) |
C7 | 0.0587 (16) | 0.0573 (16) | 0.0437 (13) | 0.0024 (12) | −0.0104 (12) | 0.0053 (12) |
C8 | 0.0508 (14) | 0.0441 (13) | 0.0451 (14) | 0.0062 (11) | −0.0031 (11) | −0.0018 (11) |
C9 | 0.0532 (14) | 0.0489 (14) | 0.0390 (14) | 0.0038 (11) | −0.0026 (11) | −0.0010 (11) |
C10 | 0.0516 (14) | 0.0517 (15) | 0.0437 (14) | 0.0019 (11) | −0.0027 (11) | −0.0018 (11) |
C11 | 0.0615 (16) | 0.0643 (17) | 0.0436 (15) | −0.0069 (13) | −0.0065 (13) | 0.0034 (12) |
C12 | 0.0585 (16) | 0.0622 (16) | 0.0459 (15) | −0.0060 (13) | −0.0062 (12) | 0.0040 (12) |
C13 | 0.0546 (15) | 0.0486 (14) | 0.0517 (15) | 0.0031 (11) | −0.0014 (12) | −0.0052 (11) |
C14 | 0.0516 (14) | 0.0482 (13) | 0.0469 (15) | 0.0049 (11) | −0.0064 (12) | −0.0029 (11) |
C15 | 0.0636 (17) | 0.0612 (16) | 0.0607 (17) | 0.0017 (13) | −0.0158 (14) | 0.0029 (14) |
C16 | 0.0663 (18) | 0.0642 (18) | 0.0694 (19) | 0.0025 (14) | −0.0224 (15) | −0.0006 (15) |
C17 | 0.0546 (16) | 0.0594 (17) | 0.078 (2) | 0.0044 (13) | −0.0111 (14) | −0.0054 (15) |
C18 | 0.0535 (15) | 0.0500 (14) | 0.0576 (16) | 0.0012 (12) | −0.0026 (12) | −0.0062 (13) |
C19 | 0.0633 (17) | 0.0621 (17) | 0.0647 (18) | −0.0066 (14) | 0.0038 (14) | −0.0064 (14) |
C20 | 0.0720 (19) | 0.0592 (17) | 0.0702 (19) | −0.0146 (15) | −0.0089 (16) | 0.0047 (15) |
C21 | 0.0585 (18) | 0.080 (2) | 0.092 (2) | −0.0091 (16) | 0.0011 (17) | −0.0035 (19) |
C22 | 0.0604 (18) | 0.073 (2) | 0.093 (2) | −0.0054 (16) | −0.0135 (17) | −0.0027 (18) |
C23 | 0.0685 (18) | 0.0536 (17) | 0.087 (2) | −0.0050 (13) | −0.0068 (16) | −0.0025 (15) |
C24 | 0.074 (2) | 0.090 (2) | 0.0539 (17) | −0.0155 (17) | 0.0027 (15) | 0.0075 (16) |
C25 | 0.0658 (17) | 0.0668 (18) | 0.0498 (16) | −0.0051 (14) | 0.0005 (13) | −0.0140 (13) |
C26 | 0.0623 (16) | 0.0522 (15) | 0.0648 (18) | 0.0074 (12) | −0.0032 (14) | −0.0075 (13) |
C27 | 0.0687 (17) | 0.0538 (15) | 0.0543 (16) | 0.0005 (13) | −0.0011 (14) | −0.0090 (12) |
C28 | 0.0627 (18) | 0.073 (2) | 0.113 (3) | 0.0144 (15) | −0.0037 (19) | −0.013 (2) |
C29 | 0.075 (2) | 0.0648 (19) | 0.096 (2) | 0.0025 (17) | −0.0115 (19) | 0.0140 (18) |
C30 | 0.142 (4) | 0.090 (3) | 0.089 (3) | −0.015 (3) | 0.009 (3) | 0.017 (2) |
Geometric parameters (Å, º) top
O1—C3 | 1.438 (3) | C15—H15B | 0.97 |
O1—H1 | 0.82 (4) | C16—C17 | 1.531 (5) |
C1—C2 | 1.527 (4) | C16—H16A | 0.97 |
C1—C10 | 1.543 (3) | C16—H16B | 0.97 |
C1—H1A | 0.97 | C17—C22 | 1.527 (4) |
C1—H1B | 0.97 | C17—C28 | 1.537 (4) |
C2—C3 | 1.509 (4) | C17—C18 | 1.546 (4) |
C2—H2A | 0.97 | C18—C19 | 1.533 (4) |
C2—H2B | 0.97 | C18—H18 | 0.98 |
C3—C4 | 1.538 (4) | C19—C20 | 1.520 (4) |
C3—H3 | 0.98 | C19—C21 | 1.563 (4) |
C4—C23 | 1.531 (4) | C19—H19 | 0.98 |
C4—C24 | 1.545 (4) | C20—C29 | 1.319 (5) |
C4—C5 | 1.558 (4) | C20—C30 | 1.510 (5) |
C5—C6 | 1.530 (4) | C21—C22 | 1.524 (5) |
C5—C10 | 1.561 (3) | C21—H21A | 0.97 |
C5—H5 | 0.98 | C21—H21B | 0.97 |
C6—C7 | 1.525 (4) | C22—H22A | 0.97 |
C6—H6A | 0.97 | C22—H22B | 0.97 |
C6—H6B | 0.97 | C23—H23A | 0.96 |
C7—C8 | 1.548 (4) | C23—H23B | 0.96 |
C7—H7A | 0.97 | C23—H23C | 0.96 |
C7—H7B | 0.97 | C24—H24A | 0.96 |
C8—C26 | 1.544 (3) | C24—H24B | 0.96 |
C8—C9 | 1.563 (3) | C24—H24C | 0.96 |
C8—C14 | 1.595 (3) | C25—H25A | 0.96 |
C9—C11 | 1.538 (4) | C25—H25B | 0.96 |
C9—C10 | 1.574 (3) | C25—H25C | 0.96 |
C9—H9 | 0.98 | C26—H26A | 0.96 |
C10—C25 | 1.546 (4) | C26—H26B | 0.96 |
C11—C12 | 1.527 (4) | C26—H26C | 0.96 |
C11—H11A | 0.97 | C27—H27A | 0.96 |
C11—H11B | 0.97 | C27—H27B | 0.96 |
C12—C13 | 1.524 (4) | C27—H27C | 0.96 |
C12—H12A | 0.97 | C28—H28A | 0.96 |
C12—H12B | 0.97 | C28—H28B | 0.96 |
C13—C18 | 1.541 (4) | C28—H28C | 0.96 |
C13—C14 | 1.558 (4) | C29—H29A | 0.93 |
C13—H13 | 0.98 | C29—H29B | 0.93 |
C14—C27 | 1.543 (4) | C30—H30A | 0.96 |
C14—C15 | 1.557 (3) | C30—H30B | 0.96 |
C15—C16 | 1.542 (4) | C30—H30C | 0.96 |
C15—H15A | 0.97 | | |
| | | |
C3—O1—H1 | 107 (2) | C16—C15—H15B | 108.4 |
C2—C1—C10 | 113.9 (2) | C14—C15—H15B | 108.4 |
C2—C1—H1A | 108.8 | H15A—C15—H15B | 107.5 |
C10—C1—H1A | 108.8 | C17—C16—C15 | 111.9 (2) |
C2—C1—H1B | 108.8 | C17—C16—H16A | 109.2 |
C10—C1—H1B | 108.8 | C15—C16—H16A | 109.2 |
H1A—C1—H1B | 107.7 | C17—C16—H16B | 109.2 |
C3—C2—C1 | 111.2 (2) | C15—C16—H16B | 109.2 |
C3—C2—H2A | 109.4 | H16A—C16—H16B | 107.9 |
C1—C2—H2A | 109.4 | C22—C17—C16 | 116.2 (3) |
C3—C2—H2B | 109.4 | C22—C17—C28 | 108.9 (3) |
C1—C2—H2B | 109.4 | C16—C17—C28 | 110.9 (3) |
H2A—C2—H2B | 108 | C22—C17—C18 | 99.8 (2) |
O1—C3—C2 | 108.8 (2) | C16—C17—C18 | 107.0 (2) |
O1—C3—C4 | 111.6 (2) | C28—C17—C18 | 113.7 (3) |
C2—C3—C4 | 113.4 (2) | C19—C18—C13 | 120.4 (2) |
O1—C3—H3 | 107.6 | C19—C18—C17 | 105.2 (2) |
C2—C3—H3 | 107.6 | C13—C18—C17 | 111.7 (2) |
C4—C3—H3 | 107.6 | C19—C18—H18 | 106.2 |
C23—C4—C3 | 111.9 (2) | C13—C18—H18 | 106.2 |
C23—C4—C24 | 107.6 (2) | C17—C18—H18 | 106.2 |
C3—C4—C24 | 107.1 (2) | C20—C19—C18 | 116.6 (2) |
C23—C4—C5 | 114.3 (2) | C20—C19—C21 | 110.8 (2) |
C3—C4—C5 | 107.3 (2) | C18—C19—C21 | 104.0 (2) |
C24—C4—C5 | 108.5 (2) | C20—C19—H19 | 108.4 |
C6—C5—C4 | 114.3 (2) | C18—C19—H19 | 108.4 |
C6—C5—C10 | 110.5 (2) | C21—C19—H19 | 108.4 |
C4—C5—C10 | 117.6 (2) | C29—C20—C30 | 120.0 (3) |
C6—C5—H5 | 104.3 | C29—C20—C19 | 125.1 (3) |
C4—C5—H5 | 104.3 | C30—C20—C19 | 114.8 (3) |
C10—C5—H5 | 104.3 | C22—C21—C19 | 105.8 (3) |
C7—C6—C5 | 110.9 (2) | C22—C21—H21A | 110.6 |
C7—C6—H6A | 109.5 | C19—C21—H21A | 110.6 |
C5—C6—H6A | 109.5 | C22—C21—H21B | 110.6 |
C7—C6—H6B | 109.5 | C19—C21—H21B | 110.6 |
C5—C6—H6B | 109.5 | H21A—C21—H21B | 108.7 |
H6A—C6—H6B | 108 | C21—C22—C17 | 104.5 (3) |
C6—C7—C8 | 113.4 (2) | C21—C22—H22A | 110.9 |
C6—C7—H7A | 108.9 | C17—C22—H22A | 110.9 |
C8—C7—H7A | 108.9 | C21—C22—H22B | 110.9 |
C6—C7—H7B | 108.9 | C17—C22—H22B | 110.9 |
C8—C7—H7B | 108.9 | H22A—C22—H22B | 108.9 |
H7A—C7—H7B | 107.7 | C4—C23—H23A | 109.5 |
C26—C8—C7 | 107.1 (2) | C4—C23—H23B | 109.5 |
C26—C8—C9 | 111.5 (2) | H23A—C23—H23B | 109.5 |
C7—C8—C9 | 108.86 (19) | C4—C23—H23C | 109.5 |
C26—C8—C14 | 110.06 (19) | H23A—C23—H23C | 109.5 |
C7—C8—C14 | 110.47 (19) | H23B—C23—H23C | 109.5 |
C9—C8—C14 | 108.82 (18) | C4—C24—H24A | 109.5 |
C11—C9—C8 | 110.6 (2) | C4—C24—H24B | 109.5 |
C11—C9—C10 | 113.85 (19) | H24A—C24—H24B | 109.5 |
C8—C9—C10 | 117.04 (19) | C4—C24—H24C | 109.5 |
C11—C9—H9 | 104.6 | H24A—C24—H24C | 109.5 |
C8—C9—H9 | 104.6 | H24B—C24—H24C | 109.5 |
C10—C9—H9 | 104.6 | C10—C25—H25A | 109.5 |
C1—C10—C25 | 107.5 (2) | C10—C25—H25B | 109.5 |
C1—C10—C5 | 106.8 (2) | H25A—C25—H25B | 109.5 |
C25—C10—C5 | 113.8 (2) | C10—C25—H25C | 109.5 |
C1—C10—C9 | 109.0 (2) | H25A—C25—H25C | 109.5 |
C25—C10—C9 | 113.0 (2) | H25B—C25—H25C | 109.5 |
C5—C10—C9 | 106.57 (18) | C8—C26—H26A | 109.5 |
C12—C11—C9 | 112.2 (2) | C8—C26—H26B | 109.5 |
C12—C11—H11A | 109.2 | H26A—C26—H26B | 109.5 |
C9—C11—H11A | 109.2 | C8—C26—H26C | 109.5 |
C12—C11—H11B | 109.2 | H26A—C26—H26C | 109.5 |
C9—C11—H11B | 109.2 | H26B—C26—H26C | 109.5 |
H11A—C11—H11B | 107.9 | C14—C27—H27A | 109.5 |
C13—C12—C11 | 111.6 (2) | C14—C27—H27B | 109.5 |
C13—C12—H12A | 109.3 | H27A—C27—H27B | 109.5 |
C11—C12—H12A | 109.3 | C14—C27—H27C | 109.5 |
C13—C12—H12B | 109.3 | H27A—C27—H27C | 109.5 |
C11—C12—H12B | 109.3 | H27B—C27—H27C | 109.5 |
H12A—C12—H12B | 108 | C17—C28—H28A | 109.5 |
C12—C13—C18 | 114.8 (2) | C17—C28—H28B | 109.5 |
C12—C13—C14 | 111.3 (2) | H28A—C28—H28B | 109.5 |
C18—C13—C14 | 110.4 (2) | C17—C28—H28C | 109.5 |
C12—C13—H13 | 106.6 | H28A—C28—H28C | 109.5 |
C18—C13—H13 | 106.6 | H28B—C28—H28C | 109.5 |
C14—C13—H13 | 106.6 | C20—C29—H29A | 120 |
C27—C14—C15 | 106.1 (2) | C20—C29—H29B | 120 |
C27—C14—C13 | 110.2 (2) | H29A—C29—H29B | 120 |
C15—C14—C13 | 109.9 (2) | C20—C30—H30A | 109.5 |
C27—C14—C8 | 111.6 (2) | C20—C30—H30B | 109.5 |
C15—C14—C8 | 110.76 (19) | H30A—C30—H30B | 109.5 |
C13—C14—C8 | 108.25 (19) | C20—C30—H30C | 109.5 |
C16—C15—C14 | 115.4 (2) | H30A—C30—H30C | 109.5 |
C16—C15—H15A | 108.4 | H30B—C30—H30C | 109.5 |
C14—C15—H15A | 108.4 | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1i | 0.82 (4) | 1.94 (4) | 2.756 (3) | 171 (4) |
Symmetry code: (i) −y+1, x, z−1/4. |
Experimental details
Crystal data |
Chemical formula | C30H50O |
Mr | 426.7 |
Crystal system, space group | Tetragonal, P43 |
Temperature (K) | 298 |
a, c (Å) | 19.1006 (14), 7.2128 (4) |
V (Å3) | 2631.5 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.06 |
Crystal size (mm) | 0.40 × 0.06 × 0.04 |
|
Data collection |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7896, 2655, 1943 |
Rint | 0.080 |
(sin θ/λ)max (Å−1) | 0.610 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.113, 1.03 |
No. of reflections | 2655 |
No. of parameters | 284 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.1, −0.10 |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O1i | 0.82 (4) | 1.94 (4) | 2.756 (3) | 171 (4) |
Symmetry code: (i) −y+1, x, z−1/4. |
As part of our ongoing studies on the chemical constituents of Brazilian medicinal plants (Da Cruz et al., 2008; Derogis et al., 2008; Martins et al., 2007; Doriguetto et al., 2006; Soares et al., 2006; Lemos et al., 2006; Doriguetto et al., 2001), we have studied lupeol, (I), a natural pentacyclic triterpene isolated from leaves of Garcinia brasiliensis, known popularly as bacupari (Corrêa, 1978). From Garcinia genus (Guttiferae family), biflavonoids, xanthones, proanthocyanins, poliprenilated benzophenones, sesquiterpenes and pentacyclic triterpenes (PCTT) were isolated (Derogis et al., 2008; Dos Santos et al., 2007; Delle Monache et al., 1983). In particular, (I) has shown many interesting biological properties, such as, inhibition of cardiotoxicity induced by cyclosphosphamide (Sudharsan et al., 2006), and hepatoprotective (Sahdeo et al., 2007), anticancer (Laszczyk et al., 2006) and cytotoxic activities (Gauthier et al., 2006). Previous studies have also shown that (I) is a potential anti-inflammatory agent, preventing the production of some pro-inflammatory mediators (Fernández et al., 2001). Other biological targets of (I) are microorganisms such as bacteria and fungi (Shai et al., 2008).
In spite of its biological importance, up until now (I) has been characterized only by spectroscopic and spectrometric analysis (Śliwowski & Kasprzyk, 1974; Shamma et al., 1962). Therefore, in the present paper, we report for the first time the crystal structure of (I) (Fig. 1). The anomalous scattering was not large enough to permit the determination of the enantiomer present and therefore distinguish between the enantiomorphous space groups P41 and P43 (Flack, 2003). However, P43 was chosen because this space group is consistent with the stereochemistry specified by biosynthesis (Śliwowski & Kasprzyk, 1974). Thus, the chiral atoms present the following configurations: C3(S), C5(R), C8(R), C9(S), C10(R), C13(R), C14(R), C17(R), C19(R). Interestingly, another PCTT recently determined by us, 3β,30-dihydroxy-lup-20 (29)-ene, (II) (Pimenta et al., 2006), which differs chemically from (I) by the hydroxy group present at C30, was reported in the enantiomorphous P41 (or P43) space group [a = 19.038 (1) Å and c = 7.2290 (4) Å]. It is also important to mention that space groups P43 and P41 are rare for organic and organometallic compounds. Currently, in the Cambridge Structural Data Base (Version 5.29, updated in August 2008; Allen, 2002) there are only 341 and 454 structures deposited with space groups P43 and P41, respectively. Indeed, (I) is the first PCTT determined in P43 based on X-ray diffraction analysis and biosynthesis arguments (Śliwowski & Kasprzyk, 1974).
Fig. 1 shows that (I) contains five rings, all trans-fused, where all of the six-membered rings (A, B, C and D) adopt chair conformations, while the five-membered ring, E, adopts an envelope conformation with atom C17 in the flap position. The hydroxy group is linked at atom C3 in an equatorial position. The intramolecular geometric parameters were analyzed by Mogul check (Bruno et al., 2004). All geometrical values agree with those of other reported PCTT structures (e.g. Pimenta et al., 2006; Madureira et al., 2004; Silva et al., 2002; Nakai et al., 1985).
Compound (I) contains an intermolecular hydrogen bond O—H···O (Fig. 2 and Table 1). This interaction stabilizes the packing and gives rise to an infinite helical chain along the c axis. The molecules are related by 43-fold improper symmetry. Additionally, parallel chains are linked together to form a `cogwheel' structure, connected via van der Waals interactions (Fig. 2). These interactions are probably the driving force for the growth of (I) as single crystals with a needle habit.
Comparison of (I) with (II) (Pimenta et al., 2006) by the Kabsch (1976) method showed them to be very similar in terms of intramolecular geometry, with an r.m.s. deviation between homologous atoms of 0.024 (17) Å. The largest deviation between the analogues takes place at atom C30 [the displacement is 0.09 (2) Å]. However the most surprising result highlighted by the X-ray diffraction analysis is that (I) and (II) (Pimenta et al., 2006) are isomorphs: they crystallize in an enantiomorphous space group with almost identical cell parameters and supramolecular structures. Thus, the hydroxy group linked to atom C3 in both molecules is more important in terms of the packing than the hydroxy group linked to atom C30 in (II) (Pimenta et al., 2006). Although a similar supramolecular structure is observed, the forces that stabilize the crystal packing are slightly different in (I) and (II). In Fig. 2, which gives the crystal structure of (I) projected onto the ab plane, we observe the hydrophilic head hydrogen bonded along the [001] direction through the unit-cell center, whereas the hydrophobic tails, linked by weak van der Waals forces, are stacked along the [001] direction through unit-cell corners. These characteristics could explain the difficulty in obtaining single crystals of lupeol and their fragility. In (II) (Pimenta et al., 2006), there are additionally intermolecular hydrogen bonds at the unit-cell corners, which give rise to more mechanical stability in (II) than in (I).