Download citation
Download citation
link to html
The title compound, [Cu(C24H20N4)], is a rare example of a porphyrin carrying only one substituent. Its crystal structure exhibits two molecules in the asymmetric unit. The bulky meso tert-butyl residue gives rise to a nonplanar macrocycle with significant ruf and sad distortions. As a result of the position of the substituent, the conformational effects are unsymmetric and to a significant extent localized in the affected quadrant of the macrocycle. In line with results for highly substituted nonplanar porphyrins, comparison with a free base and a nickel(II) complex shows that the conformation of the macro­cycle is modulated via additional metal effects.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111000904/dn3156sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111000904/dn3156Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270111000904/dn3156sup3.pdf
Supplementary material

CCDC reference: 817034

Comment top

Porphyrins are conformationally very flexible compounds and, depending on steric strain, packing or metal effects, can have a wide range of different macrocycle conformations (Hoard, 1973; Scheidt & Lee, 1987; Senge, 2006). Especially highly substituted porphyrins, where peripheral peri interactions give rise to nonplanar conformations, have elicited wide interest (Senge, 2006). They exhibit photophysical and chemical properties quite distinct from planar porphyrins and they have served as models for the modulation of porphyrin cofactors in vivo through apoprotein–chromophore interactions (Barkigia et al., 1988, 2004; Senge, 1992). Nevertheless, these studies have almost exclusively addressed the structure and conformation of sterically `overloaded' porphyrins, e.g. dodeca-substituted porphyrins (Barkigia et al., 1990; Senge et al., 2000) where numerous peripheral steric interactions give rise to very nonplanar tetrapyrroles.

Much less attention has been given to sterically strained porphyrins with as few substituents as possible (Senge et al., 1996; Song, Jaquinod et al., 1998). The most simple and interesting systems would be porphyrins with only one sterically demanding residue and no other meso or β substituents. The first such structure, (II), was obtained from a low-yield condensation some time ago (Song, Jentzen et al., 1998). However, a general entry into these systems has only recently become available through new synthetic developments and now allows more detailed structural comparisons (Wiehe et al., 2002; Ryppa et al., 2005). Here we describe the conformation of the related copper(II) complex, (III), which carries one tert-butyl residue in a meso position of the porphyrin ring system. Only few structures of tert-butyl porphyrins have been reported (Ema et al., 1994; Senge et al., 1995; Song et al., 1996).

The stucture of the title compound, (III), is shown below (Fig. 1). Dimensions are available in the archived CIF. The compound was prepared via standard insertion of copper(II) into the corresponding free base, (I). The porphyrin crystallized with two crystallographically independent molecules in the unit cell. Fig. 1 shows a thermal ellipsoid plot of molecule 1 in (I) [(III)?]. The two molecules form π-stacked dimers with the tert-butyl groups pointing in opposite directions (Fig. 2). This is in line with the general characteristics for the crystal packing of unsymmetrical porphyrins (Senge et al., 1993). According to the definitions given by Scheidt & Lee (1987) these aggregates are characterized by a mean-plane separation of 3.396 Å, a centre-to-centre distance of 4.969 Å and a slip angle of 134.4°, giving a lateral shift of 3.55 Å. These `dimers' in turn form slightly closer packed, edge-to-edge stacked dimers, with a mean-plane separation of the two 4 N-planes of 3.329 Å, a centre-to-centre distance of 4.461 Å, a slip angle of 43.3° and a lateral shift of 3.059 Å. Both types of dimers belong to group `I' (Scheidt & Lee, 1987). Thus, the packing is characterized by the formation of tetrameric units (Cu1···Cu2···Cu2···Cu1) through edge-to-edge contacts.

Table 1 compiles selected structural data for the three, now available, mono-tert-butylporphyrins. These include the free base, (I) (Ryppa et al., 2005), the nickel(II) complex, (II) (Song, Jentzen et al., 1998) and the copper(II) complex, (III). In addition, we include the structure of the related (5,15-di-tert-butylporphyinato)copper(II), (IV) (Song, Jaquinod et al., 1998). Visual inspection of the crystal structure reveals a `folded' macrocycle conformation with a localized influence of the tert-butyl substituents, as indicated in the skeletal deviation plot shown in Fig. 3. Clearly, the deformation is more pronounced in the two quadrants involving the substituent than the others. For example the tilt angles of individual pyrrole rings against the 24-atom plane are 17.9, 14.3, 7.6, and 8.4° for pyrrole rings with N21, N22, N23 and N24 in molecule 1, respectively. This localized effect of the bulky residue is also evidenced in the displacements of the individual meso carbon atoms from the 4 N-plane and the widening of the respective Ca—Cm—Ca angles. In (III) the substituted position is displaced by about 0.6 Å compared to 0.21–0.34 Å for the unsubstituted meso positions. The 5,15-disubstituted derivative, (IV), exhibits similar trends along the 5,15-axis, albeit in a much more symmetrical fashion.

Metal effects established for other nonplanar porphyrins are retained in this series. Thus, the core size of the free base, (I), is larger and that of the nickel(II) complex, (II), is smaller compared to (III). As expected, no significant in-plane distortion is evident from the core size elongation parameter in (III). The overall degree of nonplanarity (Δ24) is significantly larger (~0.19 Å) compared to the free base (0.14 Å) but smaller than in the nickel(II) complex (0.34 Å).

A normal-coordinate structural decomposition analysis as developed by Shelnutt and coworkers (Jentzen et al., 1997) gives further details on the mix of distortion modes present in this type of porphyrin. This method classifies the distortions in terms of equivalent displacements along the normal coordinates. As shown in Fig. 4, the main contributors to the out-of-plane distortions are ruf (B1u), dom (A2u), wav(x) (EGX) and wav(y) (Egy) and a minor contribution of sad (B2u) distortion, which differs significantly in the two independent molecules. For the in-plane distortions the main contributors are m-str (B2 g) and A1 g. The nickel(II) complex clearly shows a significantly larger ruf distortion, as a result of M—N bond shortening. For the in-plane distortions m-str is larger in the free base and the disubstituted copper(II) complex while the A1 g contribution is larger in the nickel(II) complex and in compound (IV). Thus, the central metal exerts a significant influence on the overall conformation and the mix of individual distortion modes, and can mask the steric influence of the individual meso substituent to some extent.

Related literature top

For related literature, see: Barkigia et al. (1988, 1990, 2004); Ema et al. (1994); Hoard (1973); Hope (1994); Jentzen et al. (1997); Ryppa et al. (2005); Scheidt & Lee (1987); Senge (1992, 2006); Senge et al. (1993, 1995, 1996, 2000); Song et al. (1996); Song, Jaquinod et al. (1998); Song, Jentzen et al. (1998); Wiehe et al. (2002).

Experimental top

Compound (III) was prepared via metallation of the respective free base porphyrin, (I). 5-(tert-Butyl)porphyrin (58 mg, 0.16 mmol) was dissolved in 50 ml DMF [dimethylformamide?] and heated to reflux with copper(II) acetate (10 equiv.) for 10 h. The residue was dissolved in CH2Cl2 and the mixture filtered through silica gel, eluting with CH2Cl2. Finally, the solvent was removed under reduced pressure and the product recrystallized from CH2Cl2/MeOH. Yield: 49 mg (0.11 mmol, 72%) of purple crystals. M.p. 547 K. Rf 0.73 (CH2Cl2: n-hexane = 2:1, v/v, silica gel, 6 × 3 cm). UV/vis (CH2Cl2) [λ max, nm (lg ε)]: 404 (5.44), 534 (4.00), 575 (3.65). MS (EI, 493 K, 70 eV) m/z: 427 (89%, [M]+), 412 (100%, [M –CH3]+), 397 (18%, [M – C2H6]+), 371 (69%, [C20H12N4Cu]+), 214 (6%, [M]2+). HRMS (EI): m/z = 427.0977 (427.0984 for C24H20N4Cu).

The compound was crystallized via liquid diffusion of methanol into a solution of the porphyrin in methylene chloride. Crystals were handled as described by Hope (1994).

Refinement top

Hydrogen atoms were located in difference maps and refined using a standard riding model. The largest residual electron-density peak is located in the tert-butyl residue at C25.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: XPREP (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP within SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of one of the two independent moleculues of (III) in the crystal. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the π-stacks formed in the crystal structure of (III). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A skeletal deviation plot with respect to the plane of the 24 macrocycle atoms for (III); the tert-butyl-substituted meso C atom is highlighted; the x axis is not to scale; the sequence of pyrrole rings follows the IUPAC nomenclature from left to right (N21, N22, N23, N24).
[Figure 4] Fig. 4. A graphical representation of the displacements along the lowest-frequency coordinates that best simulate the structures.
(5-tert-Butylporphyrinato)copper(II) top
Crystal data top
[Cu(C24H20N4)]F(000) = 1768
Mr = 427.98Dx = 1.518 Mg m3
Monoclinic, P21/cMelting point: 274 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.6765 (10) ÅCell parameters from 950 reflections
b = 12.4744 (8) Åθ = 2.2–20°
c = 26.024 (2) ŵ = 1.19 mm1
β = 98.892 (7)°T = 213 K
V = 3745.1 (5) Å3Block, red
Z = 80.38 × 0.27 × 0.21 mm
Data collection top
CCD area detector
diffractometer
6481 independent reflections
Radiation source: sealed tube4741 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1313
Tmin = 0.662, Tmax = 0.789k = 1414
23765 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0823P)2]
where P = (Fo2 + 2Fc2)/3
6481 reflections(Δ/σ)max = 0.001
529 parametersΔρmax = 1.82 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
[Cu(C24H20N4)]V = 3745.1 (5) Å3
Mr = 427.98Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.6765 (10) ŵ = 1.19 mm1
b = 12.4744 (8) ÅT = 213 K
c = 26.024 (2) Å0.38 × 0.27 × 0.21 mm
β = 98.892 (7)°
Data collection top
CCD area detector
diffractometer
6481 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
4741 reflections with I > 2σ(I)
Tmin = 0.662, Tmax = 0.789Rint = 0.047
23765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 0.96Δρmax = 1.82 e Å3
6481 reflectionsΔρmin = 0.66 e Å3
529 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Residual electron density located in tBu group.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.69223 (4)0.66664 (3)0.213967 (17)0.02554 (13)
N210.6227 (3)0.7697 (2)0.25808 (12)0.0276 (7)
N220.5447 (2)0.6702 (2)0.16456 (11)0.0262 (6)
N230.7622 (2)0.5672 (2)0.16781 (12)0.0300 (7)
N240.8388 (3)0.6623 (2)0.26507 (13)0.0306 (7)
C10.6851 (3)0.8313 (3)0.29663 (14)0.0304 (8)
C20.6123 (3)0.9144 (3)0.31171 (15)0.0353 (9)
H20.63550.96950.33570.042*
C30.5057 (3)0.8996 (3)0.28562 (15)0.0343 (9)
H30.44010.94150.28850.041*
C40.5097 (3)0.8074 (3)0.25213 (14)0.0286 (8)
C50.4173 (3)0.7671 (3)0.21655 (15)0.0289 (8)
C60.4400 (3)0.7154 (3)0.17111 (14)0.0272 (8)
C70.3624 (3)0.7108 (3)0.12212 (15)0.0310 (8)
H70.28590.73680.11580.037*
C80.4189 (3)0.6627 (3)0.08718 (15)0.0343 (9)
H80.39030.65030.05190.041*
C90.5314 (3)0.6340 (3)0.11410 (14)0.0291 (8)
C100.6098 (3)0.5727 (3)0.09268 (15)0.0338 (8)
H100.58910.55200.05770.041*
C110.7160 (3)0.5388 (3)0.11796 (15)0.0333 (8)
C120.7958 (4)0.4697 (3)0.09678 (18)0.0429 (10)
H120.78500.43950.06330.051*
C130.8883 (4)0.4565 (3)0.13366 (18)0.0433 (10)
H130.95400.41470.13090.052*
C140.8688 (3)0.5177 (3)0.17802 (17)0.0360 (9)
C150.9462 (3)0.5287 (3)0.22348 (17)0.0392 (9)
H151.01380.48670.22710.047*
C160.9324 (3)0.5967 (3)0.26442 (16)0.0357 (9)
C171.0169 (4)0.6145 (3)0.30945 (18)0.0440 (10)
H171.08730.57760.31850.053*
C180.9761 (3)0.6945 (3)0.33645 (17)0.0420 (10)
H181.01320.72470.36770.050*
C190.8652 (3)0.7247 (3)0.30835 (15)0.0331 (9)
C200.7961 (3)0.8075 (3)0.32096 (15)0.0362 (9)
H200.82750.85200.34880.043*
C510.2906 (3)0.7810 (3)0.22655 (16)0.0340 (9)
C520.2827 (4)0.7849 (4)0.28523 (17)0.0447 (10)
H52A0.20240.77680.29010.067*
H52B0.31220.85310.29950.067*
H52C0.32840.72710.30290.067*
C530.2265 (5)0.8809 (3)0.19857 (17)0.0570 (14)
H53A0.14350.87250.19720.085*
H53B0.24450.88630.16350.085*
H53C0.25190.94550.21780.085*
C540.2165 (3)0.6823 (3)0.20714 (18)0.0442 (10)
H54A0.25270.61800.22320.066*
H54B0.21080.67680.16970.066*
H54C0.13960.69000.21640.066*
Cu20.56849 (4)0.85815 (3)0.047195 (18)0.03169 (14)
N250.6372 (3)0.7521 (2)0.00411 (12)0.0315 (7)
N260.7146 (3)0.8497 (2)0.09758 (12)0.0364 (8)
N270.4990 (3)0.9594 (3)0.09239 (14)0.0444 (9)
N280.4222 (3)0.8612 (2)0.00326 (13)0.0361 (7)
C210.5746 (3)0.6927 (3)0.03523 (15)0.0333 (8)
C220.6483 (4)0.6125 (3)0.05204 (16)0.0403 (9)
H220.62580.55900.07700.048*
C230.7544 (4)0.6274 (3)0.02598 (17)0.0411 (10)
H230.82060.58710.02970.049*
C240.7500 (3)0.7160 (3)0.00889 (15)0.0335 (8)
C250.8428 (3)0.7556 (3)0.04508 (16)0.0366 (9)
C260.8191 (3)0.8048 (3)0.09083 (15)0.0355 (9)
C270.8977 (4)0.8087 (3)0.14043 (17)0.0455 (11)
H270.97420.78280.14700.055*
C280.8399 (4)0.8559 (3)0.17435 (18)0.0507 (13)
H280.86810.86780.20970.061*
C290.7270 (4)0.8858 (3)0.14795 (15)0.0427 (11)
C300.6491 (5)0.9494 (3)0.16828 (17)0.0509 (12)
H300.66830.96850.20350.061*
C310.5466 (5)0.9878 (3)0.14244 (19)0.0485 (12)
C320.4702 (6)1.0647 (4)0.1621 (2)0.0697 (17)
H320.48181.09630.19530.084*
C330.3789 (6)1.0827 (4)0.1238 (3)0.0685 (17)
H330.31671.12980.12530.082*
C340.3961 (4)1.0153 (3)0.0804 (2)0.0509 (12)
C350.3194 (4)1.0028 (3)0.0353 (2)0.0523 (12)
H350.25411.04780.03060.063*
C360.3292 (4)0.9298 (3)0.00386 (19)0.0443 (10)
C370.2431 (4)0.9085 (4)0.0485 (2)0.0505 (12)
H370.17310.94580.05820.061*
C380.2815 (4)0.8258 (4)0.0736 (2)0.0494 (11)
H380.24270.79290.10390.059*
C390.3933 (4)0.7961 (3)0.04576 (16)0.0385 (9)
C400.4628 (3)0.7145 (3)0.05862 (16)0.0383 (9)
H400.43100.66910.08600.046*
C2510.9699 (4)0.7450 (4)0.03403 (18)0.0462 (11)
C2520.9771 (5)0.7462 (5)0.0245 (2)0.0694 (15)
H25A1.05660.75890.02950.104*
H25B0.92790.80280.04130.104*
H25C0.95130.67770.03970.104*
C2531.0299 (4)0.6454 (4)0.0543 (3)0.091 (3)
H25D0.97840.58470.04620.136*
H25E1.05170.65110.09170.136*
H25F1.09880.63530.03830.136*
C2541.0426 (4)0.8441 (4)0.0551 (2)0.0619 (14)
H25G1.04490.84890.09250.093*
H25H1.00740.90850.03880.093*
H25I1.12080.83690.04730.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0263 (2)0.0228 (2)0.0282 (3)0.00314 (15)0.00610 (18)0.00073 (16)
N210.0312 (16)0.0249 (14)0.0267 (17)0.0044 (11)0.0049 (13)0.0017 (11)
N220.0303 (15)0.0225 (13)0.0265 (16)0.0037 (11)0.0065 (13)0.0013 (11)
N230.0283 (15)0.0283 (15)0.0346 (18)0.0012 (12)0.0091 (14)0.0005 (12)
N240.0280 (15)0.0278 (15)0.0358 (18)0.0025 (12)0.0041 (14)0.0027 (12)
C10.036 (2)0.0289 (17)0.0264 (19)0.0054 (14)0.0043 (16)0.0014 (14)
C20.046 (2)0.0294 (18)0.031 (2)0.0038 (15)0.0092 (18)0.0036 (15)
C30.041 (2)0.0314 (18)0.031 (2)0.0029 (15)0.0098 (18)0.0044 (15)
C40.0342 (19)0.0259 (16)0.0271 (19)0.0000 (14)0.0097 (16)0.0029 (14)
C50.0311 (19)0.0219 (16)0.035 (2)0.0011 (13)0.0090 (16)0.0028 (14)
C60.0276 (18)0.0236 (16)0.031 (2)0.0027 (13)0.0060 (15)0.0020 (13)
C70.0291 (18)0.0272 (17)0.036 (2)0.0019 (14)0.0017 (16)0.0001 (15)
C80.043 (2)0.0275 (18)0.030 (2)0.0060 (15)0.0007 (17)0.0024 (15)
C90.036 (2)0.0223 (16)0.029 (2)0.0078 (14)0.0062 (16)0.0006 (14)
C100.045 (2)0.0285 (18)0.030 (2)0.0054 (15)0.0128 (18)0.0026 (15)
C110.040 (2)0.0285 (17)0.035 (2)0.0070 (15)0.0147 (18)0.0057 (15)
C120.051 (3)0.037 (2)0.046 (3)0.0041 (18)0.022 (2)0.0089 (18)
C130.040 (2)0.036 (2)0.058 (3)0.0052 (17)0.022 (2)0.0046 (19)
C140.033 (2)0.0267 (18)0.050 (3)0.0006 (14)0.0123 (18)0.0002 (16)
C150.031 (2)0.0329 (19)0.055 (3)0.0033 (15)0.0114 (19)0.0024 (18)
C160.0280 (19)0.0324 (19)0.046 (2)0.0012 (14)0.0029 (18)0.0081 (16)
C170.032 (2)0.040 (2)0.057 (3)0.0000 (16)0.002 (2)0.0077 (19)
C180.035 (2)0.043 (2)0.045 (3)0.0084 (17)0.0053 (19)0.0046 (18)
C190.031 (2)0.0318 (19)0.035 (2)0.0072 (15)0.0016 (17)0.0035 (15)
C200.043 (2)0.0342 (19)0.031 (2)0.0094 (16)0.0029 (18)0.0009 (16)
C510.0275 (19)0.0316 (19)0.043 (2)0.0033 (14)0.0059 (17)0.0016 (16)
C520.043 (2)0.052 (2)0.043 (3)0.0034 (18)0.018 (2)0.0001 (19)
C530.113 (4)0.029 (2)0.034 (2)0.035 (2)0.029 (3)0.0109 (17)
C540.033 (2)0.046 (2)0.055 (3)0.0038 (17)0.010 (2)0.002 (2)
Cu20.0409 (3)0.0274 (2)0.0284 (3)0.00868 (17)0.0106 (2)0.00208 (17)
N250.0367 (17)0.0315 (15)0.0257 (17)0.0069 (12)0.0034 (14)0.0010 (12)
N260.053 (2)0.0303 (15)0.0253 (17)0.0166 (14)0.0052 (15)0.0014 (12)
N270.062 (2)0.0302 (16)0.047 (2)0.0116 (15)0.0276 (19)0.0029 (15)
N280.0373 (18)0.0329 (16)0.040 (2)0.0042 (13)0.0124 (15)0.0060 (14)
C210.040 (2)0.0321 (18)0.027 (2)0.0088 (15)0.0045 (17)0.0005 (15)
C220.050 (2)0.042 (2)0.030 (2)0.0070 (17)0.0068 (19)0.0075 (16)
C230.046 (2)0.041 (2)0.038 (2)0.0023 (17)0.011 (2)0.0035 (17)
C240.036 (2)0.0371 (19)0.028 (2)0.0066 (15)0.0080 (17)0.0019 (15)
C250.039 (2)0.0344 (19)0.035 (2)0.0110 (16)0.0006 (18)0.0043 (16)
C260.040 (2)0.0345 (19)0.031 (2)0.0122 (16)0.0025 (17)0.0033 (15)
C270.054 (3)0.043 (2)0.035 (2)0.0197 (19)0.006 (2)0.0062 (19)
C280.077 (3)0.040 (2)0.031 (2)0.031 (2)0.003 (2)0.0038 (18)
C290.073 (3)0.0310 (19)0.024 (2)0.0279 (19)0.008 (2)0.0016 (15)
C300.088 (4)0.039 (2)0.030 (2)0.031 (2)0.020 (2)0.0100 (18)
C310.074 (3)0.033 (2)0.047 (3)0.023 (2)0.034 (2)0.0129 (18)
C320.111 (5)0.042 (3)0.072 (4)0.023 (3)0.063 (4)0.018 (2)
C330.084 (4)0.039 (2)0.098 (5)0.007 (2)0.061 (4)0.013 (3)
C340.063 (3)0.031 (2)0.068 (3)0.0112 (19)0.040 (3)0.006 (2)
C350.050 (3)0.035 (2)0.079 (4)0.0002 (18)0.033 (3)0.008 (2)
C360.039 (2)0.036 (2)0.062 (3)0.0057 (17)0.020 (2)0.0121 (19)
C370.036 (2)0.049 (2)0.068 (3)0.0007 (19)0.011 (2)0.022 (2)
C380.037 (2)0.058 (3)0.053 (3)0.010 (2)0.005 (2)0.016 (2)
C390.039 (2)0.041 (2)0.036 (2)0.0100 (17)0.0056 (18)0.0109 (17)
C400.040 (2)0.043 (2)0.030 (2)0.0139 (17)0.0004 (18)0.0022 (16)
C2510.037 (2)0.056 (3)0.044 (3)0.0086 (18)0.000 (2)0.0063 (19)
C2520.047 (3)0.105 (4)0.059 (4)0.016 (3)0.020 (3)0.004 (3)
C2530.024 (2)0.046 (3)0.190 (8)0.0045 (19)0.019 (3)0.027 (3)
C2540.038 (2)0.069 (3)0.077 (4)0.019 (2)0.005 (2)0.014 (3)
Geometric parameters (Å, º) top
Cu1—N211.980 (3)Cu2—N251.983 (3)
Cu1—N221.984 (3)Cu2—N271.983 (4)
Cu1—N231.988 (3)Cu2—N261.988 (3)
Cu1—N242.000 (3)Cu2—N281.988 (3)
N21—C11.378 (4)N25—C211.379 (5)
N21—C41.387 (5)N25—C241.379 (5)
N22—C91.374 (5)N26—C291.372 (5)
N22—C61.381 (5)N26—C261.378 (5)
N23—C111.373 (5)N27—C311.381 (6)
N23—C141.378 (5)N27—C341.382 (6)
N24—C191.365 (5)N28—C391.372 (5)
N24—C161.367 (5)N28—C361.380 (5)
C1—C201.384 (5)C21—C401.380 (5)
C1—C21.433 (5)C21—C221.432 (6)
C2—C31.335 (5)C22—C231.330 (6)
C2—H20.9400C22—H220.9400
C3—C41.448 (5)C23—C241.436 (6)
C3—H30.9400C23—H230.9400
C4—C51.402 (5)C24—C251.410 (5)
C5—C61.408 (5)C25—C261.405 (6)
C5—C511.550 (5)C25—C2511.560 (6)
C6—C71.447 (5)C26—C271.465 (5)
C7—C81.344 (6)C27—C281.329 (7)
C7—H70.9400C27—H270.9400
C8—C91.435 (5)C28—C291.438 (7)
C8—H80.9400C28—H280.9400
C9—C101.376 (5)C29—C301.373 (7)
C10—C111.377 (5)C30—C311.366 (7)
C10—H100.9400C30—H300.9400
C11—C121.440 (6)C31—C321.456 (7)
C12—C131.339 (6)C32—C331.360 (8)
C12—H120.9400C32—H320.9400
C13—C141.431 (6)C33—C341.448 (7)
C13—H130.9400C33—H330.9400
C14—C151.380 (6)C34—C351.370 (7)
C15—C161.390 (6)C35—C361.385 (7)
C15—H150.9400C35—H350.9400
C16—C171.428 (6)C36—C371.440 (7)
C17—C181.349 (6)C37—C381.334 (7)
C17—H170.9400C37—H370.9400
C18—C191.436 (5)C38—C391.439 (6)
C18—H180.9400C38—H380.9400
C19—C201.381 (6)C39—C401.375 (6)
C20—H200.9400C40—H400.9400
C51—C521.545 (6)C251—C2531.483 (7)
C51—C541.545 (5)C251—C2521.539 (7)
C51—C531.573 (5)C251—C2541.551 (6)
C52—H52A0.9700C252—H25A0.9700
C52—H52B0.9700C252—H25B0.9700
C52—H52C0.9700C252—H25C0.9700
C53—H53A0.9700C253—H25D0.9700
C53—H53B0.9700C253—H25E0.9700
C53—H53C0.9700C253—H25F0.9700
C54—H54A0.9700C254—H25G0.9700
C54—H54B0.9700C254—H25H0.9700
C54—H54C0.9700C254—H25I0.9700
N21—Cu1—N2288.21 (12)N25—Cu2—N27177.60 (13)
N21—Cu1—N23177.95 (12)N25—Cu2—N2687.51 (13)
N22—Cu1—N2391.09 (12)N27—Cu2—N2691.75 (15)
N21—Cu1—N2491.00 (12)N25—Cu2—N2891.20 (13)
N22—Cu1—N24178.69 (13)N27—Cu2—N2889.48 (15)
N23—Cu1—N2489.73 (13)N26—Cu2—N28178.06 (12)
C1—N21—C4106.2 (3)C21—N25—C24106.4 (3)
C1—N21—Cu1124.5 (2)C21—N25—Cu2124.3 (3)
C4—N21—Cu1128.6 (2)C24—N25—Cu2129.1 (2)
C9—N22—C6106.3 (3)C29—N26—C26106.9 (3)
C9—N22—Cu1124.8 (2)C29—N26—Cu2124.5 (3)
C6—N22—Cu1128.7 (2)C26—N26—Cu2128.6 (3)
C11—N23—C14106.2 (3)C31—N27—C34107.0 (4)
C11—N23—Cu1126.4 (2)C31—N27—Cu2125.5 (3)
C14—N23—Cu1127.4 (3)C34—N27—Cu2127.4 (3)
C19—N24—C16105.9 (3)C39—N28—C36105.2 (3)
C19—N24—Cu1126.4 (2)C39—N28—Cu2126.9 (3)
C16—N24—Cu1127.7 (3)C36—N28—Cu2127.8 (3)
N21—C1—C20124.5 (3)N25—C21—C40125.4 (4)
N21—C1—C2109.4 (3)N25—C21—C22109.1 (3)
C20—C1—C2125.7 (3)C40—C21—C22125.2 (4)
C3—C2—C1107.8 (3)C23—C22—C21107.7 (3)
C3—C2—H2126.1C23—C22—H22126.2
C1—C2—H2126.1C21—C22—H22126.2
C2—C3—C4107.6 (3)C22—C23—C24108.0 (4)
C2—C3—H3126.2C22—C23—H23126.0
C4—C3—H3126.2C24—C23—H23126.0
N21—C4—C5125.1 (3)N25—C24—C25124.8 (4)
N21—C4—C3108.7 (3)N25—C24—C23108.7 (3)
C5—C4—C3126.1 (3)C25—C24—C23126.4 (4)
C4—C5—C6119.6 (3)C26—C25—C24119.2 (4)
C4—C5—C51120.4 (3)C26—C25—C251120.7 (3)
C6—C5—C51120.0 (3)C24—C25—C251120.1 (4)
N22—C6—C5125.2 (3)N26—C26—C25125.4 (3)
N22—C6—C7108.7 (3)N26—C26—C27108.7 (4)
C5—C6—C7125.8 (3)C25—C26—C27125.6 (4)
C8—C7—C6107.9 (3)C28—C27—C26106.6 (4)
C8—C7—H7126.0C28—C27—H27126.7
C6—C7—H7126.0C26—C27—H27126.7
C7—C8—C9106.8 (3)C27—C28—C29108.6 (4)
C7—C8—H8126.6C27—C28—H28125.7
C9—C8—H8126.6C29—C28—H28125.7
N22—C9—C10125.8 (3)N26—C29—C30125.4 (4)
N22—C9—C8110.2 (3)N26—C29—C28109.0 (4)
C10—C9—C8123.9 (3)C30—C29—C28125.3 (4)
C9—C10—C11125.7 (4)C31—C30—C29126.5 (4)
C9—C10—H10117.2C31—C30—H30116.7
C11—C10—H10117.2C29—C30—H30116.7
N23—C11—C10124.5 (4)C30—C31—N27124.6 (4)
N23—C11—C12109.4 (3)C30—C31—C32126.6 (5)
C10—C11—C12126.1 (4)N27—C31—C32108.7 (5)
C13—C12—C11107.3 (4)C33—C32—C31107.8 (5)
C13—C12—H12126.4C33—C32—H32126.1
C11—C12—H12126.4C31—C32—H32126.1
C12—C13—C14107.5 (4)C32—C33—C34106.8 (5)
C12—C13—H13126.2C32—C33—H33126.6
C14—C13—H13126.2C34—C33—H33126.6
N23—C14—C15124.9 (4)C35—C34—N27124.5 (4)
N23—C14—C13109.6 (3)C35—C34—C33125.7 (5)
C15—C14—C13125.5 (4)N27—C34—C33109.7 (5)
C14—C15—C16125.4 (4)C34—C35—C36125.9 (4)
C14—C15—H15117.3C34—C35—H35117.0
C16—C15—H15117.3C36—C35—H35117.0
N24—C16—C15124.2 (3)N28—C36—C35123.7 (4)
N24—C16—C17110.4 (4)N28—C36—C37110.2 (4)
C15—C16—C17125.2 (4)C35—C36—C37126.1 (4)
C18—C17—C16106.7 (4)C38—C37—C36106.9 (4)
C18—C17—H17126.6C38—C37—H37126.5
C16—C17—H17126.6C36—C37—H37126.5
C17—C18—C19107.0 (4)C37—C38—C39107.5 (4)
C17—C18—H18126.5C37—C38—H38126.3
C19—C18—H18126.5C39—C38—H38126.3
N24—C19—C20123.9 (3)N28—C39—C40123.6 (4)
N24—C19—C18109.9 (3)N28—C39—C38110.1 (4)
C20—C19—C18126.1 (4)C40—C39—C38126.3 (4)
C19—C20—C1126.3 (3)C39—C40—C21126.3 (4)
C19—C20—H20116.9C39—C40—H40116.8
C1—C20—H20116.9C21—C40—H40116.8
C52—C51—C54103.4 (3)C253—C251—C252105.4 (5)
C52—C51—C5112.0 (3)C253—C251—C254109.8 (4)
C54—C51—C5110.9 (3)C252—C251—C254103.4 (4)
C52—C51—C53109.6 (3)C253—C251—C25114.6 (4)
C54—C51—C53106.1 (3)C252—C251—C25112.4 (4)
C5—C51—C53114.2 (3)C254—C251—C25110.6 (4)
C51—C52—H52A109.5C251—C252—H25A109.5
C51—C52—H52B109.5C251—C252—H25B109.5
H52A—C52—H52B109.5H25A—C252—H25B109.5
C51—C52—H52C109.5C251—C252—H25C109.5
H52A—C52—H52C109.5H25A—C252—H25C109.5
H52B—C52—H52C109.5H25B—C252—H25C109.5
C51—C53—H53A109.5C251—C253—H25D109.5
C51—C53—H53B109.5C251—C253—H25E109.5
H53A—C53—H53B109.5H25D—C253—H25E109.5
C51—C53—H53C109.5C251—C253—H25F109.5
H53A—C53—H53C109.5H25D—C253—H25F109.5
H53B—C53—H53C109.5H25E—C253—H25F109.5
C51—C54—H54A109.5C251—C254—H25G109.5
C51—C54—H54B109.5C251—C254—H25H109.5
H54A—C54—H54B109.5H25G—C254—H25H109.5
C51—C54—H54C109.5C251—C254—H25I109.5
H54A—C54—H54C109.5H25G—C254—H25I109.5
H54B—C54—H54C109.5H25H—C254—H25I109.5

Experimental details

Crystal data
Chemical formula[Cu(C24H20N4)]
Mr427.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)213
a, b, c (Å)11.6765 (10), 12.4744 (8), 26.024 (2)
β (°) 98.892 (7)
V3)3745.1 (5)
Z8
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.38 × 0.27 × 0.21
Data collection
DiffractometerCCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.662, 0.789
No. of measured, independent and
observed [I > 2σ(I)] reflections
23765, 6481, 4741
Rint0.047
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.123, 0.96
No. of reflections6481
No. of parameters529
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.82, 0.66

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), XPREP (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP within SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Table 1. Selected structural parameters (Å, °) for tert-butylporphyrins. top
Compound(I)(II)(III), molecule 1(III), molecule 2(IV)
Metal2HNiIICuIICuIICuII
Ct—Na2.0521.9021.9881.9851.973
M—N211.9071.980 (3)1.983 (3)1.978
M—N221.8941.984 (3)1.983 (4)1.969
M—N231.9021.988 (3)1.988 (4)1.973
M—N241.9042.000 (3)1.988 (3)1.976
C4—C5—C6120.8119.3119.6 (3)119.2 (4)119.1
C9—C10—C11129.2123.3125.7 (4)126.5 (4)126.1
C14—C15—C16125.3122.4125.4 (4)125.9 (4)119.3
C19—C20—C1129.0122.5126.3 (4)126.3 (4)126.4
Θ (Å)b0.250.0680.0510.0730.131
Δ24 (Å)c0.140.340.1970.1950.319
δC5 (Å)d0.470.880.600.630.74
δC10 (Å)d-0.17-0.68-0.28-0.34-0.49
δC15 (Å)d0.140.630.210.260.72
δC20 (Å)d-0.23-0.67-0.30-0.33-0.55
Notes: (a)core size; (b)m core elongation parameter = difference in N···N vector lengths: [(N21—N22)+(N23—N24)] - [(N21—N24)+(N22—N23)]; (c) average deviation from the least-squares plane of the 24 macrocycle atoms; (d) displacement of the atom from the N4 plane.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds