Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199015711/ta1259sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270199015711/ta1259Isup2.hkl |
CCDC reference: 143230
2,6-Bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine (L) was prepared using the procedure of Manikandan et al. (1996). To a solution of L (0.295 g) in methanol (30 ml) was added Cu(ClO4)2·6H2O (0.37 g) followed by NH4NCS (0.076 g) with vigorous stirring. A green precipitate was formed. The mixture was allowed to stir for a further 1 h to ensure complete conversion and was then filtered. The residue was washed with cold methanol/water mixture (1:1) and recrystallized from acetonitrile. Analysis found: C 47.75, H 4.55, N 20.50%; C19H21N7S2Cu requires: C 48.03, H 4.46, N 20.64%.
Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ZORTEP (Zsolnai & Pritzkow, 1994); software used to prepare material for publication: SHELXL97.
Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids. H atoms are omitted for clarity. |
[Cu(CNS)2(C17H21N5)] | F(000) = 980 |
Mr = 475.09 | Dx = 1.478 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 11.382 (5) Å | Cell parameters from 25 reflections |
b = 12.162 (4) Å | θ = 12–15° |
c = 15.855 (7) Å | µ = 3.44 mm−1 |
β = 103.31 (3)° | T = 293 K |
V = 2135.8 (14) Å3 | Prism, dark green |
Z = 4 | 0.32 × 0.25 × 0.20 mm |
Enraf-Nonius CAD4 diffractometer | 2649 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.032 |
Graphite monochromator | θmax = 59.9°, θmin = 4.3° |
ω/2θ scans | h = 0→12 |
Absorption correction: ψ-scan (North et al., 1968) | k = 0→13 |
Tmin = 0.337, Tmax = 0.503 | l = −17→17 |
3237 measured reflections | 3 standard reflections every 60 min |
3057 independent reflections | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.047 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.135 | Calculated w = 1/[σ2(Fo2) + (0.0979P)2 + 1.322P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
3057 reflections | Δρmax = 0.56 e Å−3 |
267 parameters | Δρmin = −0.52 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0017 (3) |
[Cu(CNS)2(C17H21N5)] | V = 2135.8 (14) Å3 |
Mr = 475.09 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 11.382 (5) Å | µ = 3.44 mm−1 |
b = 12.162 (4) Å | T = 293 K |
c = 15.855 (7) Å | 0.32 × 0.25 × 0.20 mm |
β = 103.31 (3)° |
Enraf-Nonius CAD4 diffractometer | 2649 reflections with I > 2σ(I) |
Absorption correction: ψ-scan (North et al., 1968) | Rint = 0.032 |
Tmin = 0.337, Tmax = 0.503 | θmax = 59.9° |
3237 measured reflections | 3 standard reflections every 60 min |
3057 independent reflections | intensity decay: none |
R[F2 > 2σ(F2)] = 0.047 | 0 restraints |
wR(F2) = 0.135 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.56 e Å−3 |
3057 reflections | Δρmin = −0.52 e Å−3 |
267 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.22034 (4) | 0.21151 (3) | 0.94312 (3) | 0.0340 (2) | |
S1 | 0.54076 (10) | 0.27441 (9) | 0.81456 (7) | 0.0639 (3) | |
S2 | −0.13722 (11) | 0.27926 (10) | 0.71033 (8) | 0.0797 (4) | |
N1 | 0.1921 (2) | 0.3436 (2) | 1.01509 (17) | 0.0377 (6) | |
N2 | 0.2628 (2) | 0.0659 (2) | 0.89347 (16) | 0.0388 (6) | |
N3 | 0.1595 (2) | 0.1181 (2) | 1.03371 (15) | 0.0335 (6) | |
N4 | 0.0876 (2) | 0.3453 (2) | 1.04424 (17) | 0.0402 (6) | |
N5 | 0.3095 (2) | −0.0181 (2) | 0.94761 (16) | 0.0377 (6) | |
N6 | 0.0659 (3) | 0.2461 (2) | 0.8419 (2) | 0.0494 (7) | |
N7 | 0.3468 (3) | 0.2804 (2) | 0.8941 (2) | 0.0524 (8) | |
C1 | 0.0597 (3) | 0.1496 (3) | 1.0601 (2) | 0.0378 (7) | |
C2 | 0.0166 (3) | 0.0888 (3) | 1.1203 (2) | 0.0486 (9) | |
H2 | −0.0536 | 0.1100 | 1.1364 | 0.058* | |
C3 | 0.0779 (4) | −0.0025 (3) | 1.1557 (2) | 0.0586 (11) | |
H3 | 0.0501 | −0.0433 | 1.1968 | 0.070* | |
C4 | 0.1805 (4) | −0.0346 (3) | 1.1309 (2) | 0.0492 (9) | |
H4 | 0.2233 | −0.0964 | 1.1551 | 0.059* | |
C5 | 0.2187 (3) | 0.0278 (3) | 1.06890 (18) | 0.0362 (7) | |
C6 | 0.3329 (3) | 0.0003 (3) | 1.04103 (19) | 0.0404 (8) | |
H6A | 0.3901 | 0.0601 | 1.0568 | 0.048* | |
H6B | 0.3687 | −0.0653 | 1.0711 | 0.048* | |
C7 | 0.3311 (3) | −0.1072 (3) | 0.9035 (2) | 0.0445 (8) | |
C8 | 0.2976 (3) | −0.0800 (3) | 0.8175 (2) | 0.0484 (9) | |
H8 | 0.3019 | −0.1249 | 0.7708 | 0.058* | |
C9 | 0.2560 (3) | 0.0271 (3) | 0.8135 (2) | 0.0407 (8) | |
C10 | 0.3812 (5) | −0.2115 (3) | 0.9458 (3) | 0.0736 (14) | |
H10A | 0.4581 | −0.1974 | 0.9843 | 0.110* | |
H10B | 0.3912 | −0.2634 | 0.9024 | 0.110* | |
H10C | 0.3268 | −0.2411 | 0.9781 | 0.110* | |
C11 | 0.2096 (4) | 0.0941 (3) | 0.7337 (2) | 0.0575 (10) | |
H11A | 0.1248 | 0.1074 | 0.7273 | 0.086* | |
H11B | 0.2222 | 0.0548 | 0.6841 | 0.086* | |
H11C | 0.2518 | 0.1629 | 0.7387 | 0.086* | |
C12 | 0.0022 (3) | 0.2553 (3) | 1.0236 (2) | 0.0439 (8) | |
H12A | −0.0255 | 0.2488 | 0.9612 | 0.053* | |
H12B | −0.0674 | 0.2704 | 1.0474 | 0.053* | |
C13 | 0.2542 (3) | 0.4326 (3) | 1.0501 (2) | 0.0430 (8) | |
C14 | 0.1892 (4) | 0.4896 (3) | 1.0998 (2) | 0.0509 (9) | |
H14 | 0.2124 | 0.5546 | 1.1300 | 0.061* | |
C15 | 0.0853 (3) | 0.4329 (3) | 1.0965 (2) | 0.0452 (8) | |
C16 | 0.3757 (4) | 0.4604 (3) | 1.0362 (3) | 0.0612 (10) | |
H16A | 0.4287 | 0.3986 | 1.0520 | 0.092* | |
H16B | 0.4077 | 0.5226 | 1.0714 | 0.092* | |
H16C | 0.3691 | 0.4779 | 0.9763 | 0.092* | |
C17 | −0.0173 (4) | 0.4548 (3) | 1.1383 (3) | 0.0630 (11) | |
H17A | −0.0914 | 0.4574 | 1.0947 | 0.094* | |
H17B | −0.0048 | 0.5239 | 1.1683 | 0.094* | |
H17C | −0.0218 | 0.3971 | 1.1787 | 0.094* | |
C18 | 0.4273 (4) | 0.2781 (3) | 0.8602 (2) | 0.0442 (8) | |
C19 | −0.0178 (3) | 0.2614 (3) | 0.7869 (2) | 0.0387 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0339 (3) | 0.0318 (3) | 0.0364 (3) | 0.00077 (18) | 0.0084 (2) | 0.00114 (17) |
S1 | 0.0650 (7) | 0.0783 (7) | 0.0566 (6) | −0.0103 (6) | 0.0307 (5) | 0.0010 (5) |
S2 | 0.0695 (8) | 0.0763 (8) | 0.0725 (8) | 0.0029 (6) | −0.0265 (6) | 0.0169 (6) |
N1 | 0.0320 (14) | 0.0345 (14) | 0.0471 (15) | 0.0003 (12) | 0.0103 (11) | 0.0008 (12) |
N2 | 0.0444 (15) | 0.0382 (14) | 0.0346 (13) | 0.0048 (12) | 0.0110 (11) | 0.0026 (11) |
N3 | 0.0360 (14) | 0.0294 (13) | 0.0348 (13) | −0.0036 (11) | 0.0078 (11) | −0.0027 (10) |
N4 | 0.0393 (15) | 0.0337 (15) | 0.0495 (15) | 0.0043 (12) | 0.0143 (12) | 0.0020 (12) |
N5 | 0.0398 (15) | 0.0354 (14) | 0.0361 (13) | 0.0087 (12) | 0.0054 (11) | −0.0003 (11) |
N6 | 0.0487 (17) | 0.0431 (16) | 0.0518 (17) | 0.0050 (14) | 0.0024 (15) | −0.0009 (14) |
N7 | 0.0539 (19) | 0.0532 (19) | 0.0545 (18) | −0.0108 (15) | 0.0214 (16) | −0.0027 (14) |
C1 | 0.0359 (17) | 0.0364 (17) | 0.0422 (17) | −0.0079 (14) | 0.0114 (14) | −0.0084 (14) |
C2 | 0.055 (2) | 0.043 (2) | 0.055 (2) | −0.0173 (18) | 0.0263 (17) | −0.0108 (17) |
C3 | 0.087 (3) | 0.041 (2) | 0.057 (2) | −0.019 (2) | 0.035 (2) | −0.0002 (17) |
C4 | 0.072 (3) | 0.0334 (18) | 0.0422 (18) | −0.0063 (17) | 0.0144 (17) | 0.0013 (14) |
C5 | 0.0429 (18) | 0.0306 (16) | 0.0322 (15) | −0.0053 (14) | 0.0030 (13) | −0.0047 (13) |
C6 | 0.0426 (18) | 0.0379 (17) | 0.0360 (16) | 0.0070 (15) | −0.0004 (14) | −0.0016 (14) |
C7 | 0.0436 (19) | 0.0406 (18) | 0.0470 (19) | 0.0107 (16) | 0.0056 (15) | −0.0053 (15) |
C8 | 0.053 (2) | 0.051 (2) | 0.0416 (18) | 0.0108 (17) | 0.0099 (15) | −0.0124 (16) |
C9 | 0.0399 (18) | 0.0445 (19) | 0.0396 (17) | 0.0035 (15) | 0.0132 (14) | −0.0032 (14) |
C10 | 0.097 (4) | 0.053 (3) | 0.063 (3) | 0.035 (2) | 0.003 (2) | −0.0066 (19) |
C11 | 0.073 (3) | 0.062 (2) | 0.0386 (18) | 0.013 (2) | 0.0151 (17) | 0.0032 (17) |
C12 | 0.0328 (17) | 0.048 (2) | 0.053 (2) | −0.0001 (16) | 0.0141 (15) | −0.0015 (17) |
C13 | 0.0446 (18) | 0.0335 (18) | 0.0478 (18) | −0.0013 (15) | 0.0039 (15) | −0.0011 (14) |
C14 | 0.067 (2) | 0.0314 (17) | 0.055 (2) | −0.0007 (18) | 0.0148 (18) | −0.0063 (16) |
C15 | 0.056 (2) | 0.0340 (18) | 0.0466 (18) | 0.0139 (17) | 0.0147 (16) | 0.0021 (14) |
C16 | 0.052 (2) | 0.048 (2) | 0.085 (3) | −0.0140 (19) | 0.018 (2) | −0.013 (2) |
C17 | 0.079 (3) | 0.050 (2) | 0.070 (3) | 0.015 (2) | 0.038 (2) | 0.0027 (19) |
C18 | 0.049 (2) | 0.041 (2) | 0.0419 (18) | −0.0104 (16) | 0.0095 (17) | 0.0008 (14) |
C19 | 0.045 (2) | 0.0314 (16) | 0.0393 (17) | 0.0018 (15) | 0.0078 (16) | 0.0046 (14) |
Cu—N7 | 1.974 (3) | N6—C19 | 1.150 (5) |
Cu—N1 | 2.038 (3) | N7—C18 | 1.164 (5) |
Cu—N2 | 2.041 (3) | C1—C2 | 1.383 (5) |
Cu—N3 | 2.071 (3) | C1—C12 | 1.497 (5) |
Cu—N6 | 2.131 (3) | C2—C3 | 1.362 (6) |
S1—C18 | 1.620 (4) | C3—C4 | 1.371 (6) |
S2—C19 | 1.615 (4) | C4—C5 | 1.389 (5) |
N1—C13 | 1.341 (4) | C5—C6 | 1.504 (5) |
N1—N4 | 1.372 (4) | C7—C8 | 1.369 (5) |
N2—C9 | 1.338 (4) | C7—C10 | 1.486 (5) |
N2—N5 | 1.361 (4) | C8—C9 | 1.383 (5) |
N3—C5 | 1.342 (4) | C9—C11 | 1.495 (5) |
N3—C1 | 1.354 (4) | C13—C14 | 1.384 (5) |
N4—C15 | 1.354 (4) | C13—C16 | 1.489 (5) |
N4—C12 | 1.451 (4) | C14—C15 | 1.360 (5) |
N5—C7 | 1.343 (4) | C15—C17 | 1.493 (5) |
N5—C6 | 1.460 (4) | ||
N7—Cu—N1 | 96.27 (12) | N3—C1—C2 | 121.2 (3) |
N7—Cu—N2 | 87.54 (12) | N3—C1—C12 | 116.5 (3) |
N1—Cu—N2 | 169.02 (10) | C2—C1—C12 | 122.2 (3) |
N7—Cu—N3 | 153.71 (13) | C3—C2—C1 | 119.5 (3) |
N1—Cu—N3 | 85.59 (10) | C2—C3—C4 | 120.1 (3) |
N2—Cu—N3 | 86.47 (10) | C3—C4—C5 | 118.3 (3) |
N7—Cu—N6 | 99.78 (14) | N3—C5—C4 | 122.2 (3) |
N1—Cu—N6 | 93.28 (11) | N3—C5—C6 | 116.4 (3) |
N2—Cu—N6 | 96.22 (11) | C4—C5—C6 | 121.3 (3) |
N3—Cu—N6 | 106.31 (12) | N5—C6—C5 | 111.3 (2) |
C13—N1—N4 | 105.2 (3) | N5—C7—C8 | 106.3 (3) |
C13—N1—Cu | 137.1 (2) | N5—C7—C10 | 123.4 (3) |
N4—N1—Cu | 117.47 (19) | C8—C7—C10 | 130.2 (3) |
C9—N2—N5 | 105.2 (3) | C7—C8—C9 | 106.7 (3) |
C9—N2—Cu | 134.8 (2) | N2—C9—C8 | 110.1 (3) |
N5—N2—Cu | 120.03 (18) | N2—C9—C11 | 122.8 (3) |
C5—N3—C1 | 118.7 (3) | C8—C9—C11 | 127.0 (3) |
C5—N3—Cu | 121.5 (2) | N4—C12—C1 | 110.5 (3) |
C1—N3—Cu | 119.8 (2) | N1—C13—C14 | 109.9 (3) |
C15—N4—N1 | 111.1 (3) | N1—C13—C16 | 122.7 (3) |
C15—N4—C12 | 128.7 (3) | C14—C13—C16 | 127.4 (3) |
N1—N4—C12 | 120.0 (3) | C15—C14—C13 | 107.4 (3) |
C7—N5—N2 | 111.6 (2) | N4—C15—C14 | 106.4 (3) |
C7—N5—C6 | 129.7 (3) | N4—C15—C17 | 122.6 (3) |
N2—N5—C6 | 118.6 (2) | C14—C15—C17 | 131.0 (3) |
C19—N6—Cu | 178.0 (3) | N7—C18—S1 | 179.1 (4) |
C18—N7—Cu | 153.4 (3) | N6—C19—S2 | 178.2 (3) |
N7—Cu—N1—C13 | −23.2 (3) | N3—C1—C2—C3 | 2.2 (5) |
N2—Cu—N1—C13 | 86.6 (6) | C12—C1—C2—C3 | −175.4 (3) |
N3—Cu—N1—C13 | 130.4 (3) | C1—C2—C3—C4 | −0.9 (5) |
N6—Cu—N1—C13 | −123.5 (3) | C2—C3—C4—C5 | −0.5 (5) |
N7—Cu—N1—N4 | 163.0 (2) | C1—N3—C5—C4 | 0.4 (4) |
N2—Cu—N1—N4 | −87.1 (6) | Cu—N3—C5—C4 | 178.7 (2) |
N3—Cu—N1—N4 | −43.3 (2) | C1—N3—C5—C6 | −176.6 (3) |
N6—Cu—N1—N4 | 62.8 (2) | Cu—N3—C5—C6 | 1.8 (3) |
N7—Cu—N2—C9 | −64.5 (3) | C3—C4—C5—N3 | 0.8 (5) |
N1—Cu—N2—C9 | −175.2 (5) | C3—C4—C5—C6 | 177.6 (3) |
N3—Cu—N2—C9 | 141.1 (3) | C7—N5—C6—C5 | −121.5 (3) |
N6—Cu—N2—C9 | 35.0 (3) | N2—N5—C6—C5 | 61.2 (4) |
N7—Cu—N2—N5 | 115.7 (2) | N3—C5—C6—N5 | −60.1 (3) |
N1—Cu—N2—N5 | 5.0 (7) | C4—C5—C6—N5 | 122.9 (3) |
N3—Cu—N2—N5 | −38.7 (2) | N2—N5—C7—C8 | 0.2 (4) |
N6—Cu—N2—N5 | −144.8 (2) | C6—N5—C7—C8 | −177.2 (3) |
N7—Cu—N3—C5 | −37.9 (4) | N2—N5—C7—C10 | −179.5 (4) |
N1—Cu—N3—C5 | −133.1 (2) | C6—N5—C7—C10 | 3.0 (6) |
N2—Cu—N3—C5 | 39.3 (2) | N5—C7—C8—C9 | −0.1 (4) |
N6—Cu—N3—C5 | 134.7 (2) | C10—C7—C8—C9 | 179.6 (4) |
N7—Cu—N3—C1 | 140.4 (3) | N5—N2—C9—C8 | 0.2 (4) |
N1—Cu—N3—C1 | 45.2 (2) | Cu—N2—C9—C8 | −179.6 (2) |
N2—Cu—N3—C1 | −142.4 (2) | N5—N2—C9—C11 | −179.7 (3) |
N6—Cu—N3—C1 | −47.0 (2) | Cu—N2—C9—C11 | 0.5 (5) |
C13—N1—N4—C15 | −0.4 (3) | C7—C8—C9—N2 | −0.1 (4) |
Cu—N1—N4—C15 | 175.2 (2) | C7—C8—C9—C11 | 179.8 (4) |
C13—N1—N4—C12 | −175.5 (3) | C15—N4—C12—C1 | −113.3 (4) |
Cu—N1—N4—C12 | 0.0 (4) | N1—N4—C12—C1 | 61.0 (4) |
C9—N2—N5—C7 | −0.2 (4) | N3—C1—C12—N4 | −58.4 (4) |
Cu—N2—N5—C7 | 179.6 (2) | C2—C1—C12—N4 | 119.3 (3) |
C9—N2—N5—C6 | 177.5 (3) | N4—N1—C13—C14 | −0.4 (4) |
Cu—N2—N5—C6 | −2.6 (4) | Cu—N1—C13—C14 | −174.6 (2) |
N7—Cu—N6—C19 | 115 (8) | N4—N1—C13—C16 | 178.6 (3) |
N1—Cu—N6—C19 | −149 (8) | Cu—N1—C13—C16 | 4.4 (5) |
N2—Cu—N6—C19 | 26 (8) | N1—C13—C14—C15 | 1.0 (4) |
N3—Cu—N6—C19 | −62 (8) | C16—C13—C14—C15 | −177.9 (4) |
N1—Cu—N7—C18 | 161.7 (7) | N1—N4—C15—C14 | 1.0 (4) |
N2—Cu—N7—C18 | −8.0 (7) | C12—N4—C15—C14 | 175.7 (3) |
N3—Cu—N7—C18 | 68.9 (8) | N1—N4—C15—C17 | −179.3 (3) |
N6—Cu—N7—C18 | −103.9 (7) | C12—N4—C15—C17 | −4.7 (5) |
C5—N3—C1—C2 | −1.9 (4) | C13—C14—C15—N4 | −1.2 (4) |
Cu—N3—C1—C2 | 179.8 (2) | C13—C14—C15—C17 | 179.1 (4) |
C5—N3—C1—C12 | 175.8 (3) | Cu—N7—C18—S1 | −83 (19) |
Cu—N3—C1—C12 | −2.6 (4) | Cu—N6—C19—S2 | 33 (18) |
Experimental details
Crystal data | |
Chemical formula | [Cu(CNS)2(C17H21N5)] |
Mr | 475.09 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 11.382 (5), 12.162 (4), 15.855 (7) |
β (°) | 103.31 (3) |
V (Å3) | 2135.8 (14) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 3.44 |
Crystal size (mm) | 0.32 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Enraf-Nonius CAD4 diffractometer |
Absorption correction | ψ-scan (North et al., 1968) |
Tmin, Tmax | 0.337, 0.503 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3237, 3057, 2649 |
Rint | 0.032 |
θmax (°) | 59.9 |
(sin θ/λ)max (Å−1) | 0.561 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.135, 1.04 |
No. of reflections | 3057 |
No. of parameters | 267 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.56, −0.52 |
Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, MolEN (Fair, 1990), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ZORTEP (Zsolnai & Pritzkow, 1994), SHELXL97.
Cu—N7 | 1.974 (3) | Cu—N3 | 2.071 (3) |
Cu—N1 | 2.038 (3) | Cu—N6 | 2.131 (3) |
Cu—N2 | 2.041 (3) | ||
N7—Cu—N1 | 96.27 (12) | N7—Cu—N6 | 99.78 (14) |
N7—Cu—N2 | 87.54 (12) | N1—Cu—N6 | 93.28 (11) |
N1—Cu—N2 | 169.02 (10) | N2—Cu—N6 | 96.22 (11) |
N7—Cu—N3 | 153.71 (13) | N3—Cu—N6 | 106.31 (12) |
N1—Cu—N3 | 85.59 (10) | N7—C18—S1 | 179.1 (4) |
N2—Cu—N3 | 86.47 (10) | N6—C19—S2 | 178.2 (3) |
The spectroscopic and chemical properties of copper compounds of pyrazole and its derivatives have been studied intensively during the last two decades (Sheu et al., 1995; Martens et al., 1995; Kitajima et al., 1992; Sorrel et al., 1991) because of their ease of handling and manipulation in making model compounds for biological systems such as haemocyanin and tyrosinase (Solomon et al., 1992). To give more insight into the coordination behaviour of pyrazole based ligands with copper(I) and copper(II) ions, a systematic study has been embarked on in our group (Manikandan et al., 1996, 1998) of the ligand 2,6-bis(3,5-dimethylpyrazol-1-ylmethyl)pyridine, L, containing one pyridine and two pyrazole donors. Herein, we report the crystal structure of (I), a monomeric copper(II) complex with the ligand L and thiocyanate counter ions. \scheme
The structure of (I) (Fig. 1) consists of a pentacoordinated Cu2+ ion in a distorted square pyramidal geometry, with the three N atoms from the ligand and an N from one of the thiocyanate groups occupying the basal plane. The axial position is occupied by the second thiocyanate N atom. The axial Cu—NCS bond distance is slightly longer (by ca 0.16 Å) than the corresponding equatorial bond (Table 1). The Cu2+ ion is displaced 0.308 Å above the plane formed by N1/N2/N3/N7. The significant deviation of the basal plane is evident also from the angles N1—Cu—N2 and N3—Cu—N7, with values of 169.10 (12) and 153.74 (14)°, respectively. The pyridine and pyrazole rings are planar. The geometries of the two linear thiocyanate ligands are similar, but they differ notably in the angles they make to the copper nucleus [177.7 (4) and 153.4 (3)°]. This dissimilarity destroys the approximate twofold rotational symmetry of the compound.
In order to quantify the distortion of the coordination polyhedron in (I), we have calculated the dihedral angles between the polyhedral faces, and thus the parameters Δ and τ, by following the methods described by Meutterties & Guggenberger (1974) and Addison et al. (1984). The parameters Δ and τ describe the deviation from trigonal bipyramidal geometry and trigonality, respectively. For the regular square pyramid structure, the trigonality parameter, τ, will be zero, and it increases to 1.0 as the trigonal bipyramidal distortion increases. Similarly, Δ is zero for trigonal bipyramidal compounds and increases to 1.0 for square pyramidal geometry. The calculated Δ and τ values for (I) are 0.706 and 0.256, respectively, indicating more trigonal distortion from ideal square pyramidal geometry.