Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807026128/tk2158sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536807026128/tk2158Isup2.hkl |
CCDC reference: 654894
The synthesis of (VI) was carried out by heating C60 in a stream of CF3I at 460 °C as previously described (Kareev et al., 2005). Crystals of the HPLC-purified compound were grown by slow evaporation of a saturated benzene solution.
Recently reported high-temperature reactions of C60 with CF3I have yielded five C60(CF3)10 derivatives, (I)–(V) with thermodynamically stable addition patterns that are asymmetric or dissymetric as well as unprecedented in fullerene(X)n chemistry (Kareev et al., 2005; Kareev, Lebedkin, Popov et al., 2006; Kareev, Lebedkin, Miller et al., 2006; Popov et al., 2007). A new member of this set of isomers, the title compound, (VI), has been prepared and we report its crystal structure here.
The structure of (VI), Fig. 1, comprises an idealized Ih C60 core with ten sp3 carbon atoms at positions 1, 6, 11, 18, 24, 27, 33, 51, 54, and 60 (Powell et al., 2002), each of which is attached to a CF3 group. The core sp3 carbon atoms are not adjacent to one another. The CF3 groups are arranged on a para-para-para-meta-para and para-meta-para ribbons of edge-sharing C6(CF3)2 hexagons (i.e., a p3mp,pmp overall addition pattern; see Schlegel diagram in Fig. 1). Note that the shared edges in each ribbon of hexagons are C(sp3)-C(sp2) bonds (e.g., C16—C17, C4—C18, etc.), not C(sp2)-C(sp2) bonds. Thus, any pair of adjacent hexagons along the ribbon have a common CF3 group. As in the recently published structures of three other isomers of C60(CF3)10 (see below), there are F···F intramolecular contacts between pairs of neighboring CF3 groups that range from 2.565 (1) to 2.727 (1) Å.
There are now six isomers of C60(CF3)10 that have been prepared at high temperature, isolated, and characterized. Fluorine-19 NMR spectroscopy has shown that one isomer, (I), has the ten CF3 groups arranged on a ribbon of seven meta- and para-C6(CF3)2 edge-sharing hexagons plus an isolated para-C6(CF3)2 (Kareev et al., 2005). The other four, C1-p3mpmpmp-C60(CF3)10, (II) (Kareev, Lebedkin, Miller et al., 2006), C1-pmp3mpmp-C60(CF3)10, (III) (Kareev et al., 2005), C2-[p3m2(loop)]2– C60(CF3)10, (IV) (Kareev, Lebedkin, Popov, et al., 2006), and C1-pmpmpmpmp-C60(CF3)10, (V) (Popov et al., 2007), have been structurally characterized by single-crystal X-ray diffraction. For comparison, Schlegel diagrams for the six isomers are shown in Fig. 2, arranged according to their DFT relative energies (Popov et al., 2007). The pmp3mpmp ribbon in (III) forms a loop in which two of the meta-C6(CF3)2 hexagons have a common C(sp2)-C(sp2) bond (C2—C12). The structure of (IV) is significantly different than the other two isomers in that every CF3 group has two CF3 nearest neighbors (i.e., there are no "terminal" CF3 groups). Instead, it has two symmetry-related p3m2 loops of five edge-sharing C6(CF3)2 hexagons that are joined by a C(sp2)-C(sp2) bond that is common to one of the meta-C6(CF3)2 hexagons in each loop.
The four shortest cage C—C bonds in (VI) are C4—C5, 1.350 (4) Å, C7—C8, 1.351 (3) Å, C9—C10, 1.359 (3) Å, and C52—C53, 1.348 (4) Å. All four are significantly shorter than the shortest C—C bond in the most precise structure of empty C60 reported to date (C60.Pt(octaethylporphyrin)), which is 1.379 (3) Å (Olmstead et al., 2003). More importantly, three of these bonds, C4—C5, C9—C10, and C52—C53, are pentagon-hexagon junctions, and the shortest pent-hex junction in C60.Pt(OEP) is 1.440 (3) Å (the longest pent-hex junction in C60.Pt(OEP) is 1.461 (3) Å).
The structure of (VI), predicted to be the most stable isomer of C60(CF3)10, demonstrates a new type of addition pattern for fullerene(CF3)n derivatives with n = 4–12, two independent ribbons of edge-sharing C6(CF3)2 hexagons, to go along with the other six types of addition patterns that have been observed, a single ribbon (e.g., (II)), a ribbon plus an isolated para-C6(CF3)2 hexagon (Kareev, Shustova, Newell et al., 2006), a single loop of C6(CF3)2 hexagons (Troyanov et al., 2006), two loops (e.g., (IV)), a loop plus an isolated hexagon (Shustova et al., 2006), and a loop plus a ribbon (Shustova et al., 2006).
For related literature, see: Kareev et al. (2005); Kareev, Lebedkin, Miller, Anderson, Strauss & Boltalina (2006); Kareev, Lebedkin, Popov, Miller, Anderson, Strauss & Boltalina (2006); Kareev, Shustova, Newell, Miller, Anderson, Strauss & Boltalina (2006); Olmstead et al. (2003); Popov et al. (2007); Powell et al. (2002); Shustova et al. (2006); Troyanov et al. (2006).
Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.
C70F30 | V = 2281.36 (14) Å3 |
Mr = 1410.70 | Z = 2 |
Triclinic, P1 | F(000) = 1380 |
Hall symbol: -P 1 | Dx = 2.054 Mg m−3 |
a = 11.0257 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.4172 (4) Å | µ = 0.21 mm−1 |
c = 20.4527 (7) Å | T = 296 K |
α = 82.369 (2)° | Plate, red |
β = 77.010 (2)° | 0.20 × 0.15 × 0.07 mm |
γ = 65.543 (2)° |
Bruker SMART CCD area-detector diffractometer | 10733 independent reflections |
Radiation source: fine-focus sealed tube | 6553 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
Detector resolution: 0 pixels mm-1 | θmax = 27.9°, θmin = 2.0° |
φ and ω scans | h = −14→14 |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | k = −15→15 |
Tmin = 0.959, Tmax = 0.986 | l = −26→26 |
77789 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.051 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.122 | w = 1/[σ2(Fo2) + (0.0526P)2 + 1.012P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
10733 reflections | Δρmax = 0.37 e Å−3 |
901 parameters | Δρmin = −0.35 e Å−3 |
C70F30 | γ = 65.543 (2)° |
Mr = 1410.70 | V = 2281.36 (14) Å3 |
Triclinic, P1 | Z = 2 |
a = 11.0257 (4) Å | Mo Kα radiation |
b = 11.4172 (4) Å | µ = 0.21 mm−1 |
c = 20.4527 (7) Å | T = 296 K |
α = 82.369 (2)° | 0.20 × 0.15 × 0.07 mm |
β = 77.010 (2)° |
Bruker SMART CCD area-detector diffractometer | 10733 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 6553 reflections with I > 2σ(I) |
Tmin = 0.959, Tmax = 0.986 | Rint = 0.071 |
77789 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 901 parameters |
wR(F2) = 0.122 | 0 restraints |
S = 1.03 | Δρmax = 0.37 e Å−3 |
10733 reflections | Δρmin = −0.35 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2417 (2) | 0.7966 (2) | 0.34912 (13) | 0.0167 (5) | |
C2 | 0.2516 (2) | 0.7634 (2) | 0.27679 (12) | 0.0157 (5) | |
C3 | 0.2495 (2) | 0.8705 (2) | 0.23314 (13) | 0.0173 (6) | |
C4 | 0.2609 (2) | 0.9648 (2) | 0.27116 (13) | 0.0162 (5) | |
C5 | 0.2671 (2) | 0.9221 (2) | 0.33561 (13) | 0.0168 (6) | |
C6 | 0.3388 (2) | 0.9626 (2) | 0.37893 (13) | 0.0177 (6) | |
C7 | 0.4466 (2) | 0.8404 (2) | 0.40600 (12) | 0.0169 (6) | |
C8 | 0.4474 (2) | 0.7213 (2) | 0.40838 (12) | 0.0162 (5) | |
C9 | 0.3574 (2) | 0.6916 (2) | 0.37692 (12) | 0.0162 (5) | |
C10 | 0.4272 (3) | 0.5707 (2) | 0.35399 (12) | 0.0162 (5) | |
C11 | 0.3963 (3) | 0.5230 (2) | 0.29636 (13) | 0.0176 (6) | |
C12 | 0.3211 (2) | 0.6414 (2) | 0.25287 (13) | 0.0162 (5) | |
C13 | 0.3861 (3) | 0.6252 (2) | 0.18461 (13) | 0.0175 (6) | |
C14 | 0.3740 (2) | 0.7309 (2) | 0.14025 (12) | 0.0166 (6) | |
C15 | 0.3069 (2) | 0.8550 (2) | 0.16543 (13) | 0.0167 (6) | |
C16 | 0.3800 (2) | 0.9347 (2) | 0.13014 (13) | 0.0166 (6) | |
C17 | 0.3899 (2) | 1.0259 (2) | 0.16422 (13) | 0.0168 (6) | |
C18 | 0.3072 (2) | 1.0677 (2) | 0.23469 (13) | 0.0178 (6) | |
C19 | 0.4165 (2) | 1.0723 (2) | 0.26848 (13) | 0.0169 (6) | |
C20 | 0.4315 (3) | 1.0228 (2) | 0.33214 (13) | 0.0189 (6) | |
C21 | 0.5635 (3) | 0.9656 (2) | 0.34854 (13) | 0.0173 (6) | |
C22 | 0.5765 (3) | 0.8555 (2) | 0.39425 (12) | 0.0180 (6) | |
C23 | 0.6973 (3) | 0.7512 (2) | 0.39117 (12) | 0.0177 (6) | |
C24 | 0.7061 (3) | 0.6125 (2) | 0.41016 (13) | 0.0184 (6) | |
C25 | 0.5740 (2) | 0.6062 (2) | 0.40545 (12) | 0.0169 (6) | |
C26 | 0.5631 (3) | 0.5161 (2) | 0.37195 (12) | 0.0168 (5) | |
C27 | 0.6828 (3) | 0.4085 (2) | 0.33531 (13) | 0.0185 (6) | |
C28 | 0.6564 (3) | 0.4076 (2) | 0.26429 (13) | 0.0183 (6) | |
C29 | 0.5305 (3) | 0.4583 (2) | 0.24692 (13) | 0.0175 (6) | |
C30 | 0.5150 (3) | 0.5120 (2) | 0.18045 (13) | 0.0172 (6) | |
C31 | 0.6259 (3) | 0.5114 (2) | 0.13233 (12) | 0.0173 (6) | |
C32 | 0.6174 (3) | 0.6223 (2) | 0.08498 (12) | 0.0174 (6) | |
C33 | 0.4824 (2) | 0.7288 (2) | 0.07731 (12) | 0.0165 (5) | |
C34 | 0.4910 (3) | 0.8593 (2) | 0.08202 (12) | 0.0168 (6) | |
C35 | 0.6130 (3) | 0.8730 (2) | 0.07202 (12) | 0.0160 (5) | |
C36 | 0.6250 (3) | 0.9616 (2) | 0.10971 (13) | 0.0166 (5) | |
C37 | 0.5142 (3) | 1.0392 (2) | 0.15430 (13) | 0.0173 (6) | |
C38 | 0.5328 (3) | 1.0666 (2) | 0.21882 (13) | 0.0173 (6) | |
C39 | 0.6600 (3) | 1.0195 (2) | 0.23429 (13) | 0.0176 (6) | |
C40 | 0.6768 (3) | 0.9647 (2) | 0.30016 (13) | 0.0189 (6) | |
C41 | 0.8032 (3) | 0.8540 (2) | 0.29596 (13) | 0.0188 (6) | |
C42 | 0.8110 (3) | 0.7479 (2) | 0.34053 (13) | 0.0186 (6) | |
C43 | 0.8836 (2) | 0.6200 (2) | 0.31604 (13) | 0.0182 (6) | |
C44 | 0.8164 (3) | 0.5385 (2) | 0.35195 (13) | 0.0192 (6) | |
C45 | 0.8045 (2) | 0.4494 (2) | 0.31806 (13) | 0.0191 (6) | |
C46 | 0.8588 (2) | 0.4371 (2) | 0.24768 (13) | 0.0178 (6) | |
C47 | 0.7705 (3) | 0.4108 (2) | 0.21537 (13) | 0.0183 (6) | |
C48 | 0.7565 (2) | 0.4596 (2) | 0.14998 (13) | 0.0168 (6) | |
C49 | 0.8269 (3) | 0.5382 (2) | 0.11544 (13) | 0.0180 (6) | |
C50 | 0.7365 (3) | 0.6373 (2) | 0.07528 (12) | 0.0165 (6) | |
C51 | 0.7523 (2) | 0.7629 (2) | 0.05412 (13) | 0.0179 (6) | |
C52 | 0.8333 (2) | 0.7879 (2) | 0.10011 (13) | 0.0174 (6) | |
C53 | 0.7617 (2) | 0.9049 (2) | 0.12601 (12) | 0.0169 (6) | |
C54 | 0.7919 (3) | 0.9537 (2) | 0.18355 (13) | 0.0189 (6) | |
C55 | 0.8700 (3) | 0.8365 (2) | 0.22661 (13) | 0.0185 (6) | |
C56 | 0.9363 (2) | 0.7156 (2) | 0.20313 (13) | 0.0183 (6) | |
C57 | 0.9411 (2) | 0.6057 (2) | 0.24838 (13) | 0.0187 (6) | |
C58 | 0.9285 (2) | 0.5115 (2) | 0.21303 (13) | 0.0188 (6) | |
C59 | 0.9144 (2) | 0.5601 (2) | 0.14573 (13) | 0.0190 (6) | |
C60 | 0.9458 (2) | 0.6816 (2) | 0.13085 (13) | 0.0192 (6) | |
C61 | 0.7442 (3) | 0.5715 (3) | 0.47912 (14) | 0.0239 (6) | |
C62 | 0.7206 (3) | 0.2761 (3) | 0.37207 (14) | 0.0234 (6) | |
C63 | 0.3201 (3) | 0.4339 (3) | 0.31551 (13) | 0.0226 (6) | |
C64 | 0.1010 (3) | 0.8192 (3) | 0.39247 (13) | 0.0204 (6) | |
C65 | 0.2467 (3) | 1.0509 (3) | 0.43616 (14) | 0.0230 (6) | |
C66 | 0.1864 (3) | 1.1957 (2) | 0.22957 (13) | 0.0203 (6) | |
C67 | 0.8628 (3) | 1.0456 (3) | 0.15876 (14) | 0.0247 (6) | |
C68 | 1.0902 (3) | 0.6488 (3) | 0.09045 (13) | 0.0222 (6) | |
C69 | 0.8119 (3) | 0.7730 (3) | −0.02073 (14) | 0.0226 (6) | |
C70 | 0.4339 (3) | 0.7203 (2) | 0.01389 (14) | 0.0214 (6) | |
F611 | 0.76569 (16) | 0.44873 (15) | 0.49619 (8) | 0.0308 (4) | |
F612 | 0.85722 (16) | 0.58620 (16) | 0.48205 (8) | 0.0319 (4) | |
F613 | 0.64501 (16) | 0.64363 (15) | 0.52626 (7) | 0.0314 (4) | |
F621 | 0.74936 (18) | 0.27710 (15) | 0.43163 (8) | 0.0381 (4) | |
F622 | 0.62194 (17) | 0.23418 (15) | 0.38229 (9) | 0.0390 (4) | |
F623 | 0.82980 (17) | 0.18848 (15) | 0.33644 (8) | 0.0383 (4) | |
F631 | 0.39635 (16) | 0.31892 (14) | 0.33950 (8) | 0.0296 (4) | |
F632 | 0.20746 (15) | 0.48301 (15) | 0.36110 (8) | 0.0295 (4) | |
F633 | 0.28378 (18) | 0.41388 (16) | 0.26113 (8) | 0.0371 (4) | |
F642 | 0.06714 (15) | 0.72019 (15) | 0.39106 (8) | 0.0298 (4) | |
F641 | 0.09679 (15) | 0.83392 (17) | 0.45607 (8) | 0.0327 (4) | |
F643 | 0.00523 (14) | 0.92366 (15) | 0.37012 (8) | 0.0312 (4) | |
F651 | 0.19299 (17) | 0.98964 (16) | 0.48593 (8) | 0.0382 (4) | |
F652 | 0.31852 (17) | 1.09449 (18) | 0.46359 (9) | 0.0426 (5) | |
F653 | 0.14744 (18) | 1.15135 (17) | 0.41575 (8) | 0.0463 (5) | |
F661 | 0.12361 (15) | 1.24453 (14) | 0.28967 (7) | 0.0274 (4) | |
F662 | 0.22418 (15) | 1.28328 (13) | 0.19096 (7) | 0.0243 (4) | |
F663 | 0.09553 (15) | 1.17960 (14) | 0.20141 (8) | 0.0287 (4) | |
F671 | 0.97937 (16) | 0.99175 (16) | 0.11674 (8) | 0.0357 (4) | |
F672 | 0.78381 (17) | 1.15036 (15) | 0.12711 (8) | 0.0342 (4) | |
F673 | 0.88955 (17) | 1.08596 (16) | 0.21035 (8) | 0.0338 (4) | |
F681 | 1.11860 (16) | 0.75255 (16) | 0.07779 (9) | 0.0374 (4) | |
F682 | 1.18111 (15) | 0.56230 (16) | 0.12451 (8) | 0.0333 (4) | |
F683 | 1.10892 (16) | 0.59912 (18) | 0.03215 (8) | 0.0391 (4) | |
F691 | 0.92556 (16) | 0.67079 (16) | −0.04011 (8) | 0.0365 (4) | |
F692 | 0.72486 (16) | 0.78140 (15) | −0.05850 (7) | 0.0290 (4) | |
F693 | 0.84067 (17) | 0.87724 (16) | −0.03585 (8) | 0.0335 (4) | |
F701 | 0.52725 (16) | 0.70742 (16) | −0.04165 (7) | 0.0305 (4) | |
F702 | 0.39998 (15) | 0.61870 (14) | 0.01983 (7) | 0.0250 (4) | |
F703 | 0.32346 (15) | 0.82544 (14) | 0.00445 (8) | 0.0263 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0127 (13) | 0.0197 (14) | 0.0188 (14) | −0.0072 (11) | −0.0034 (11) | −0.0011 (11) |
C2 | 0.0083 (12) | 0.0215 (14) | 0.0201 (14) | −0.0083 (11) | −0.0034 (11) | −0.0006 (11) |
C3 | 0.0083 (12) | 0.0192 (14) | 0.0246 (15) | −0.0046 (10) | −0.0045 (11) | −0.0021 (11) |
C4 | 0.0063 (12) | 0.0167 (13) | 0.0216 (15) | −0.0015 (10) | 0.0008 (10) | −0.0035 (11) |
C5 | 0.0091 (12) | 0.0160 (13) | 0.0241 (15) | −0.0038 (10) | −0.0021 (11) | −0.0021 (11) |
C6 | 0.0150 (13) | 0.0174 (13) | 0.0200 (14) | −0.0062 (11) | −0.0008 (11) | −0.0037 (11) |
C7 | 0.0149 (13) | 0.0220 (14) | 0.0145 (13) | −0.0078 (11) | −0.0013 (11) | −0.0038 (11) |
C8 | 0.0150 (13) | 0.0199 (14) | 0.0138 (13) | −0.0077 (11) | −0.0013 (10) | −0.0007 (10) |
C9 | 0.0157 (13) | 0.0194 (14) | 0.0168 (14) | −0.0111 (11) | −0.0025 (11) | 0.0017 (11) |
C10 | 0.0186 (14) | 0.0161 (13) | 0.0158 (13) | −0.0103 (11) | −0.0026 (11) | 0.0032 (10) |
C11 | 0.0174 (14) | 0.0147 (13) | 0.0221 (14) | −0.0079 (11) | −0.0032 (11) | −0.0011 (11) |
C12 | 0.0116 (13) | 0.0207 (14) | 0.0226 (14) | −0.0118 (11) | −0.0057 (11) | 0.0007 (11) |
C13 | 0.0162 (13) | 0.0198 (14) | 0.0219 (14) | −0.0107 (11) | −0.0070 (11) | −0.0014 (11) |
C14 | 0.0156 (13) | 0.0208 (14) | 0.0184 (14) | −0.0099 (11) | −0.0077 (11) | −0.0001 (11) |
C15 | 0.0104 (13) | 0.0179 (13) | 0.0237 (15) | −0.0051 (10) | −0.0075 (11) | −0.0013 (11) |
C16 | 0.0140 (13) | 0.0187 (13) | 0.0190 (14) | −0.0072 (11) | −0.0080 (11) | 0.0042 (11) |
C17 | 0.0127 (13) | 0.0143 (13) | 0.0206 (14) | −0.0026 (10) | −0.0055 (11) | 0.0025 (10) |
C18 | 0.0149 (13) | 0.0150 (13) | 0.0233 (15) | −0.0052 (11) | −0.0050 (11) | 0.0001 (11) |
C19 | 0.0150 (13) | 0.0099 (12) | 0.0257 (15) | −0.0040 (10) | −0.0041 (11) | −0.0027 (11) |
C20 | 0.0173 (14) | 0.0145 (13) | 0.0260 (15) | −0.0066 (11) | −0.0013 (11) | −0.0087 (11) |
C21 | 0.0176 (14) | 0.0171 (13) | 0.0217 (14) | −0.0096 (11) | −0.0046 (11) | −0.0051 (11) |
C22 | 0.0191 (14) | 0.0241 (14) | 0.0146 (13) | −0.0112 (12) | −0.0027 (11) | −0.0056 (11) |
C23 | 0.0174 (14) | 0.0232 (14) | 0.0174 (14) | −0.0106 (11) | −0.0081 (11) | −0.0011 (11) |
C24 | 0.0138 (13) | 0.0242 (14) | 0.0183 (14) | −0.0074 (11) | −0.0053 (11) | −0.0013 (11) |
C25 | 0.0150 (13) | 0.0201 (14) | 0.0173 (14) | −0.0085 (11) | −0.0058 (11) | 0.0030 (11) |
C26 | 0.0175 (14) | 0.0177 (13) | 0.0153 (13) | −0.0087 (11) | −0.0034 (11) | 0.0051 (10) |
C27 | 0.0176 (14) | 0.0168 (13) | 0.0219 (14) | −0.0075 (11) | −0.0048 (11) | 0.0002 (11) |
C28 | 0.0219 (14) | 0.0106 (12) | 0.0232 (15) | −0.0063 (11) | −0.0071 (12) | 0.0003 (10) |
C29 | 0.0216 (14) | 0.0117 (13) | 0.0226 (15) | −0.0105 (11) | −0.0032 (12) | −0.0008 (11) |
C30 | 0.0186 (14) | 0.0140 (13) | 0.0225 (14) | −0.0090 (11) | −0.0042 (11) | −0.0033 (11) |
C31 | 0.0208 (14) | 0.0151 (13) | 0.0175 (14) | −0.0068 (11) | −0.0056 (11) | −0.0041 (10) |
C32 | 0.0184 (14) | 0.0172 (13) | 0.0179 (14) | −0.0079 (11) | −0.0018 (11) | −0.0053 (11) |
C33 | 0.0151 (13) | 0.0181 (13) | 0.0161 (13) | −0.0057 (11) | −0.0036 (11) | −0.0013 (10) |
C34 | 0.0179 (14) | 0.0174 (13) | 0.0159 (14) | −0.0068 (11) | −0.0073 (11) | 0.0024 (10) |
C35 | 0.0178 (14) | 0.0140 (13) | 0.0148 (13) | −0.0062 (10) | −0.0041 (11) | 0.0051 (10) |
C36 | 0.0168 (13) | 0.0162 (13) | 0.0192 (14) | −0.0104 (11) | −0.0033 (11) | 0.0038 (10) |
C37 | 0.0180 (14) | 0.0124 (13) | 0.0216 (14) | −0.0066 (11) | −0.0046 (11) | 0.0022 (11) |
C38 | 0.0199 (14) | 0.0096 (12) | 0.0228 (14) | −0.0068 (11) | −0.0029 (11) | −0.0008 (10) |
C39 | 0.0194 (14) | 0.0155 (13) | 0.0223 (15) | −0.0112 (11) | −0.0031 (11) | −0.0022 (11) |
C40 | 0.0198 (14) | 0.0176 (14) | 0.0263 (15) | −0.0122 (11) | −0.0060 (12) | −0.0057 (11) |
C41 | 0.0145 (13) | 0.0249 (14) | 0.0245 (15) | −0.0129 (11) | −0.0076 (11) | −0.0022 (12) |
C42 | 0.0135 (13) | 0.0255 (15) | 0.0215 (14) | −0.0101 (11) | −0.0078 (11) | −0.0011 (11) |
C43 | 0.0093 (13) | 0.0229 (14) | 0.0240 (15) | −0.0061 (11) | −0.0083 (11) | 0.0014 (11) |
C44 | 0.0139 (13) | 0.0224 (14) | 0.0194 (14) | −0.0036 (11) | −0.0082 (11) | 0.0016 (11) |
C45 | 0.0119 (13) | 0.0175 (13) | 0.0243 (15) | −0.0009 (11) | −0.0083 (11) | 0.0026 (11) |
C46 | 0.0136 (13) | 0.0117 (13) | 0.0226 (15) | 0.0000 (10) | −0.0035 (11) | 0.0006 (11) |
C47 | 0.0178 (14) | 0.0091 (12) | 0.0248 (15) | −0.0008 (10) | −0.0055 (12) | −0.0026 (11) |
C48 | 0.0163 (13) | 0.0129 (13) | 0.0197 (14) | −0.0033 (11) | −0.0035 (11) | −0.0037 (10) |
C49 | 0.0150 (13) | 0.0174 (13) | 0.0187 (14) | −0.0032 (11) | −0.0013 (11) | −0.0053 (11) |
C50 | 0.0178 (14) | 0.0162 (13) | 0.0142 (13) | −0.0047 (11) | −0.0021 (11) | −0.0048 (10) |
C51 | 0.0142 (13) | 0.0201 (14) | 0.0201 (14) | −0.0077 (11) | −0.0029 (11) | −0.0012 (11) |
C52 | 0.0137 (13) | 0.0224 (14) | 0.0178 (14) | −0.0115 (11) | 0.0009 (11) | 0.0014 (11) |
C53 | 0.0145 (13) | 0.0210 (14) | 0.0171 (14) | −0.0112 (11) | −0.0004 (11) | 0.0021 (11) |
C54 | 0.0159 (13) | 0.0193 (14) | 0.0251 (15) | −0.0105 (11) | −0.0037 (11) | −0.0016 (11) |
C55 | 0.0136 (13) | 0.0255 (15) | 0.0233 (15) | −0.0142 (11) | −0.0053 (11) | 0.0013 (11) |
C56 | 0.0082 (13) | 0.0235 (14) | 0.0256 (15) | −0.0079 (11) | −0.0045 (11) | −0.0014 (11) |
C57 | 0.0071 (12) | 0.0196 (14) | 0.0277 (15) | −0.0027 (10) | −0.0042 (11) | −0.0028 (11) |
C58 | 0.0087 (12) | 0.0186 (14) | 0.0249 (15) | −0.0004 (11) | −0.0044 (11) | −0.0027 (11) |
C59 | 0.0096 (13) | 0.0190 (14) | 0.0240 (15) | −0.0025 (11) | 0.0004 (11) | −0.0030 (11) |
C60 | 0.0114 (13) | 0.0225 (14) | 0.0241 (15) | −0.0065 (11) | −0.0036 (11) | −0.0028 (11) |
C61 | 0.0186 (15) | 0.0280 (16) | 0.0243 (16) | −0.0080 (12) | −0.0062 (12) | 0.0013 (12) |
C62 | 0.0253 (15) | 0.0199 (14) | 0.0247 (16) | −0.0088 (12) | −0.0060 (12) | 0.0010 (12) |
C63 | 0.0284 (16) | 0.0252 (15) | 0.0214 (15) | −0.0177 (13) | −0.0059 (13) | 0.0003 (12) |
C64 | 0.0160 (14) | 0.0245 (15) | 0.0206 (15) | −0.0073 (12) | −0.0049 (11) | −0.0008 (11) |
C65 | 0.0221 (15) | 0.0214 (15) | 0.0258 (16) | −0.0086 (12) | −0.0038 (12) | −0.0035 (12) |
C66 | 0.0175 (14) | 0.0203 (14) | 0.0230 (15) | −0.0078 (11) | −0.0038 (12) | −0.0002 (12) |
C67 | 0.0225 (15) | 0.0303 (16) | 0.0272 (16) | −0.0165 (13) | −0.0034 (13) | −0.0026 (13) |
C68 | 0.0165 (14) | 0.0268 (15) | 0.0232 (15) | −0.0090 (12) | −0.0035 (12) | 0.0008 (12) |
C69 | 0.0187 (14) | 0.0215 (15) | 0.0257 (16) | −0.0066 (12) | −0.0034 (12) | −0.0008 (12) |
C70 | 0.0201 (14) | 0.0199 (14) | 0.0260 (16) | −0.0095 (12) | −0.0051 (12) | 0.0000 (12) |
F611 | 0.0380 (10) | 0.0272 (9) | 0.0290 (9) | −0.0125 (8) | −0.0150 (8) | 0.0069 (7) |
F612 | 0.0239 (9) | 0.0477 (11) | 0.0315 (9) | −0.0188 (8) | −0.0144 (7) | 0.0040 (8) |
F613 | 0.0297 (9) | 0.0385 (10) | 0.0221 (9) | −0.0084 (8) | −0.0057 (7) | −0.0049 (7) |
F621 | 0.0600 (12) | 0.0261 (9) | 0.0295 (10) | −0.0140 (9) | −0.0216 (9) | 0.0063 (7) |
F622 | 0.0401 (11) | 0.0271 (9) | 0.0567 (12) | −0.0209 (8) | −0.0176 (9) | 0.0149 (8) |
F623 | 0.0407 (10) | 0.0186 (9) | 0.0365 (10) | 0.0028 (8) | −0.0011 (8) | 0.0020 (7) |
F631 | 0.0359 (10) | 0.0206 (9) | 0.0370 (10) | −0.0171 (8) | −0.0074 (8) | 0.0037 (7) |
F632 | 0.0235 (9) | 0.0322 (9) | 0.0370 (10) | −0.0189 (7) | 0.0011 (8) | 0.0000 (7) |
F633 | 0.0585 (12) | 0.0481 (11) | 0.0296 (10) | −0.0434 (10) | −0.0159 (9) | 0.0040 (8) |
F642 | 0.0199 (8) | 0.0326 (9) | 0.0419 (10) | −0.0176 (7) | −0.0008 (7) | −0.0029 (8) |
F641 | 0.0221 (9) | 0.0543 (11) | 0.0219 (9) | −0.0162 (8) | 0.0015 (7) | −0.0086 (8) |
F643 | 0.0131 (8) | 0.0317 (9) | 0.0407 (10) | −0.0046 (7) | −0.0026 (7) | 0.0058 (8) |
F651 | 0.0439 (11) | 0.0340 (10) | 0.0306 (10) | −0.0176 (8) | 0.0139 (8) | −0.0090 (8) |
F652 | 0.0374 (10) | 0.0561 (12) | 0.0432 (11) | −0.0252 (9) | 0.0053 (8) | −0.0320 (9) |
F653 | 0.0426 (11) | 0.0359 (11) | 0.0331 (10) | 0.0149 (8) | −0.0095 (9) | −0.0101 (8) |
F661 | 0.0238 (9) | 0.0227 (9) | 0.0260 (9) | −0.0008 (7) | −0.0010 (7) | −0.0037 (7) |
F662 | 0.0270 (9) | 0.0166 (8) | 0.0272 (9) | −0.0066 (7) | −0.0058 (7) | 0.0006 (7) |
F663 | 0.0218 (9) | 0.0218 (8) | 0.0433 (10) | −0.0049 (7) | −0.0153 (8) | −0.0010 (7) |
F671 | 0.0310 (10) | 0.0389 (10) | 0.0427 (11) | −0.0246 (8) | 0.0071 (8) | −0.0078 (8) |
F672 | 0.0416 (10) | 0.0272 (9) | 0.0425 (10) | −0.0223 (8) | −0.0142 (8) | 0.0095 (8) |
F673 | 0.0378 (10) | 0.0403 (10) | 0.0387 (10) | −0.0293 (9) | −0.0082 (8) | −0.0045 (8) |
F681 | 0.0198 (9) | 0.0309 (10) | 0.0591 (12) | −0.0140 (8) | 0.0033 (8) | 0.0004 (8) |
F682 | 0.0128 (8) | 0.0401 (10) | 0.0383 (10) | −0.0047 (7) | −0.0026 (7) | 0.0036 (8) |
F683 | 0.0230 (9) | 0.0627 (12) | 0.0328 (10) | −0.0190 (9) | 0.0053 (8) | −0.0176 (9) |
F691 | 0.0265 (9) | 0.0357 (10) | 0.0288 (10) | 0.0025 (8) | 0.0030 (7) | −0.0042 (8) |
F692 | 0.0293 (9) | 0.0423 (10) | 0.0204 (9) | −0.0186 (8) | −0.0073 (7) | 0.0010 (7) |
F693 | 0.0423 (10) | 0.0378 (10) | 0.0286 (9) | −0.0283 (9) | −0.0001 (8) | 0.0013 (7) |
F701 | 0.0265 (9) | 0.0475 (11) | 0.0211 (9) | −0.0190 (8) | −0.0014 (7) | −0.0043 (7) |
F702 | 0.0282 (9) | 0.0240 (8) | 0.0287 (9) | −0.0136 (7) | −0.0088 (7) | −0.0033 (7) |
F703 | 0.0255 (9) | 0.0251 (9) | 0.0312 (9) | −0.0100 (7) | −0.0131 (7) | 0.0024 (7) |
C1—C9 | 1.505 (3) | C36—C37 | 1.388 (3) |
C1—C64 | 1.539 (4) | C36—C53 | 1.470 (3) |
C1—C2 | 1.545 (3) | C37—C38 | 1.472 (4) |
C1—C5 | 1.549 (3) | C38—C39 | 1.373 (4) |
C2—C12 | 1.377 (3) | C39—C40 | 1.426 (4) |
C2—C3 | 1.410 (4) | C39—C54 | 1.543 (4) |
C3—C15 | 1.389 (4) | C40—C41 | 1.437 (4) |
C3—C4 | 1.469 (3) | C41—C42 | 1.401 (4) |
C4—C5 | 1.350 (4) | C41—C55 | 1.441 (4) |
C4—C18 | 1.513 (4) | C42—C43 | 1.438 (4) |
C5—C6 | 1.532 (3) | C43—C57 | 1.387 (4) |
C6—C65 | 1.533 (4) | C43—C44 | 1.449 (4) |
C6—C7 | 1.544 (3) | C44—C45 | 1.368 (4) |
C6—C20 | 1.550 (4) | C45—C46 | 1.431 (4) |
C7—C8 | 1.351 (3) | C46—C58 | 1.397 (4) |
C7—C22 | 1.475 (4) | C46—C47 | 1.435 (4) |
C8—C9 | 1.462 (3) | C47—C48 | 1.395 (4) |
C8—C25 | 1.464 (3) | C48—C49 | 1.439 (4) |
C9—C10 | 1.359 (3) | C49—C59 | 1.373 (4) |
C10—C26 | 1.477 (3) | C49—C50 | 1.461 (3) |
C10—C11 | 1.519 (3) | C50—C51 | 1.511 (4) |
C11—C63 | 1.532 (4) | C51—C69 | 1.534 (4) |
C11—C29 | 1.542 (4) | C51—C52 | 1.556 (3) |
C11—C12 | 1.546 (3) | C52—C53 | 1.348 (4) |
C12—C13 | 1.416 (4) | C52—C60 | 1.519 (4) |
C13—C14 | 1.389 (4) | C53—C54 | 1.520 (4) |
C13—C30 | 1.466 (3) | C54—C67 | 1.525 (4) |
C14—C15 | 1.405 (3) | C54—C55 | 1.543 (4) |
C14—C33 | 1.542 (4) | C55—C56 | 1.361 (4) |
C15—C16 | 1.473 (4) | C56—C57 | 1.447 (4) |
C16—C17 | 1.380 (3) | C56—C60 | 1.548 (4) |
C16—C34 | 1.421 (4) | C57—C58 | 1.439 (4) |
C17—C37 | 1.408 (4) | C58—C59 | 1.431 (4) |
C17—C18 | 1.539 (4) | C59—C60 | 1.541 (4) |
C18—C66 | 1.527 (3) | C60—C68 | 1.534 (4) |
C18—C19 | 1.539 (3) | C61—F611 | 1.333 (3) |
C19—C20 | 1.366 (4) | C61—F612 | 1.339 (3) |
C19—C38 | 1.430 (4) | C61—F613 | 1.340 (3) |
C20—C21 | 1.425 (4) | C62—F622 | 1.326 (3) |
C21—C40 | 1.405 (4) | C62—F621 | 1.328 (3) |
C21—C22 | 1.440 (4) | C62—F623 | 1.335 (3) |
C22—C23 | 1.366 (4) | C63—F632 | 1.329 (3) |
C23—C42 | 1.425 (4) | C63—F631 | 1.331 (3) |
C23—C24 | 1.548 (4) | C63—F633 | 1.339 (3) |
C24—C25 | 1.512 (3) | C64—F641 | 1.322 (3) |
C24—C61 | 1.521 (4) | C64—F643 | 1.333 (3) |
C24—C44 | 1.541 (4) | C64—F642 | 1.335 (3) |
C25—C26 | 1.367 (3) | C65—F653 | 1.313 (3) |
C26—C27 | 1.506 (3) | C65—F651 | 1.326 (3) |
C27—C62 | 1.531 (4) | C65—F652 | 1.338 (3) |
C27—C28 | 1.546 (4) | C66—F661 | 1.334 (3) |
C27—C45 | 1.550 (4) | C66—F662 | 1.335 (3) |
C28—C29 | 1.375 (4) | C66—F663 | 1.346 (3) |
C28—C47 | 1.431 (4) | C67—F671 | 1.326 (3) |
C29—C30 | 1.432 (4) | C67—F672 | 1.339 (3) |
C30—C31 | 1.385 (4) | C67—F673 | 1.340 (3) |
C31—C48 | 1.423 (3) | C68—F681 | 1.326 (3) |
C31—C32 | 1.472 (4) | C68—F683 | 1.326 (3) |
C32—C50 | 1.361 (4) | C68—F682 | 1.333 (3) |
C32—C33 | 1.509 (3) | C69—F692 | 1.328 (3) |
C33—C70 | 1.539 (4) | C69—F691 | 1.333 (3) |
C33—C34 | 1.547 (3) | C69—F693 | 1.335 (3) |
C34—C35 | 1.386 (4) | C70—F701 | 1.329 (3) |
C35—C36 | 1.414 (3) | C70—F703 | 1.339 (3) |
C35—C51 | 1.531 (3) | C70—F702 | 1.342 (3) |
C9—C1—C64 | 114.0 (2) | C38—C39—C40 | 118.5 (2) |
C9—C1—C2 | 107.7 (2) | C38—C39—C54 | 123.6 (2) |
C64—C1—C2 | 111.8 (2) | C40—C39—C54 | 109.8 (2) |
C9—C1—C5 | 109.8 (2) | C21—C40—C39 | 120.0 (2) |
C64—C1—C5 | 111.9 (2) | C21—C40—C41 | 120.1 (2) |
C2—C1—C5 | 100.83 (19) | C39—C40—C41 | 109.2 (2) |
C12—C2—C3 | 119.2 (2) | C42—C41—C40 | 118.9 (2) |
C12—C2—C1 | 123.8 (2) | C42—C41—C55 | 120.9 (2) |
C3—C2—C1 | 108.9 (2) | C40—C41—C55 | 109.2 (2) |
C15—C3—C2 | 120.8 (2) | C41—C42—C23 | 120.8 (2) |
C15—C3—C4 | 121.3 (2) | C41—C42—C43 | 119.3 (2) |
C2—C3—C4 | 108.0 (2) | C23—C42—C43 | 109.5 (2) |
C5—C4—C3 | 110.7 (2) | C57—C43—C42 | 118.8 (2) |
C5—C4—C18 | 125.9 (2) | C57—C43—C44 | 121.1 (2) |
C3—C4—C18 | 120.3 (2) | C42—C43—C44 | 108.8 (2) |
C4—C5—C6 | 122.8 (2) | C45—C44—C43 | 119.6 (2) |
C4—C5—C1 | 109.9 (2) | C45—C44—C24 | 122.8 (2) |
C6—C5—C1 | 123.8 (2) | C43—C44—C24 | 109.2 (2) |
C5—C6—C65 | 116.1 (2) | C44—C45—C46 | 119.8 (2) |
C5—C6—C7 | 108.8 (2) | C44—C45—C27 | 124.1 (2) |
C65—C6—C7 | 110.8 (2) | C46—C45—C27 | 109.0 (2) |
C5—C6—C20 | 108.5 (2) | C58—C46—C45 | 121.2 (2) |
C65—C6—C20 | 111.2 (2) | C58—C46—C47 | 119.2 (2) |
C7—C6—C20 | 100.25 (19) | C45—C46—C47 | 109.5 (2) |
C8—C7—C22 | 119.4 (2) | C48—C47—C28 | 121.0 (2) |
C8—C7—C6 | 123.9 (2) | C48—C47—C46 | 119.3 (2) |
C22—C7—C6 | 109.5 (2) | C28—C47—C46 | 109.2 (2) |
C7—C8—C9 | 123.2 (2) | C47—C48—C31 | 119.5 (2) |
C7—C8—C25 | 121.1 (2) | C47—C48—C49 | 120.7 (2) |
C9—C8—C25 | 107.2 (2) | C31—C48—C49 | 107.3 (2) |
C10—C9—C8 | 107.5 (2) | C59—C49—C48 | 119.7 (2) |
C10—C9—C1 | 125.7 (2) | C59—C49—C50 | 122.9 (2) |
C8—C9—C1 | 121.4 (2) | C48—C49—C50 | 107.3 (2) |
C9—C10—C26 | 109.3 (2) | C32—C50—C49 | 109.2 (2) |
C9—C10—C11 | 123.7 (2) | C32—C50—C51 | 124.7 (2) |
C26—C10—C11 | 122.6 (2) | C49—C50—C51 | 121.0 (2) |
C10—C11—C63 | 116.4 (2) | C50—C51—C35 | 108.0 (2) |
C10—C11—C29 | 108.2 (2) | C50—C51—C69 | 113.4 (2) |
C63—C11—C29 | 110.7 (2) | C35—C51—C69 | 110.5 (2) |
C10—C11—C12 | 108.1 (2) | C50—C51—C52 | 110.5 (2) |
C63—C11—C12 | 111.4 (2) | C35—C51—C52 | 101.25 (19) |
C29—C11—C12 | 100.8 (2) | C69—C51—C52 | 112.5 (2) |
C2—C12—C13 | 119.8 (2) | C53—C52—C60 | 123.2 (2) |
C2—C12—C11 | 123.1 (2) | C53—C52—C51 | 109.6 (2) |
C13—C12—C11 | 110.0 (2) | C60—C52—C51 | 123.7 (2) |
C14—C13—C12 | 120.9 (2) | C52—C53—C36 | 110.6 (2) |
C14—C13—C30 | 120.5 (2) | C52—C53—C54 | 125.4 (2) |
C12—C13—C30 | 108.7 (2) | C36—C53—C54 | 120.7 (2) |
C13—C14—C15 | 118.8 (2) | C53—C54—C67 | 112.0 (2) |
C13—C14—C33 | 123.1 (2) | C53—C54—C39 | 110.2 (2) |
C15—C14—C33 | 110.6 (2) | C67—C54—C39 | 110.4 (2) |
C3—C15—C14 | 120.0 (2) | C53—C54—C55 | 108.4 (2) |
C3—C15—C16 | 120.1 (2) | C67—C54—C55 | 114.2 (2) |
C14—C15—C16 | 108.4 (2) | C39—C54—C55 | 101.0 (2) |
C17—C16—C34 | 121.0 (2) | C56—C55—C41 | 119.8 (2) |
C17—C16—C15 | 119.9 (2) | C56—C55—C54 | 122.6 (2) |
C34—C16—C15 | 108.8 (2) | C41—C55—C54 | 109.1 (2) |
C16—C17—C37 | 119.6 (2) | C55—C56—C57 | 119.6 (2) |
C16—C17—C18 | 123.3 (2) | C55—C56—C60 | 124.3 (2) |
C37—C17—C18 | 110.4 (2) | C57—C56—C60 | 109.1 (2) |
C4—C18—C66 | 111.0 (2) | C43—C57—C58 | 119.1 (2) |
C4—C18—C17 | 110.8 (2) | C43—C57—C56 | 121.5 (2) |
C66—C18—C17 | 110.1 (2) | C58—C57—C56 | 108.8 (2) |
C4—C18—C19 | 108.5 (2) | C46—C58—C59 | 120.9 (2) |
C66—C18—C19 | 115.2 (2) | C46—C58—C57 | 119.2 (2) |
C17—C18—C19 | 100.76 (19) | C59—C58—C57 | 109.0 (2) |
C20—C19—C38 | 120.0 (2) | C49—C59—C58 | 119.9 (2) |
C20—C19—C18 | 122.4 (2) | C49—C59—C60 | 123.5 (2) |
C38—C19—C18 | 109.9 (2) | C58—C59—C60 | 109.9 (2) |
C19—C20—C21 | 119.6 (2) | C52—C60—C68 | 115.8 (2) |
C19—C20—C6 | 124.6 (2) | C52—C60—C59 | 109.4 (2) |
C21—C20—C6 | 109.4 (2) | C68—C60—C59 | 110.6 (2) |
C40—C21—C20 | 120.1 (2) | C52—C60—C56 | 109.2 (2) |
C40—C21—C22 | 119.3 (2) | C68—C60—C56 | 110.4 (2) |
C20—C21—C22 | 110.7 (2) | C59—C60—C56 | 100.3 (2) |
C23—C22—C21 | 120.7 (2) | F611—C61—F612 | 107.2 (2) |
C23—C22—C7 | 121.5 (2) | F611—C61—F613 | 107.5 (2) |
C21—C22—C7 | 106.9 (2) | F612—C61—F613 | 107.4 (2) |
C22—C23—C42 | 120.1 (2) | F611—C61—C24 | 112.7 (2) |
C22—C23—C24 | 122.5 (2) | F612—C61—C24 | 111.5 (2) |
C42—C23—C24 | 109.6 (2) | F613—C61—C24 | 110.3 (2) |
C25—C24—C61 | 113.7 (2) | F622—C62—F621 | 107.3 (2) |
C25—C24—C44 | 108.4 (2) | F622—C62—F623 | 107.0 (2) |
C61—C24—C44 | 114.4 (2) | F621—C62—F623 | 107.3 (2) |
C25—C24—C23 | 109.3 (2) | F622—C62—C27 | 112.3 (2) |
C61—C24—C23 | 109.4 (2) | F621—C62—C27 | 111.9 (2) |
C44—C24—C23 | 100.8 (2) | F623—C62—C27 | 110.7 (2) |
C26—C25—C8 | 107.7 (2) | F632—C63—F631 | 107.8 (2) |
C26—C25—C24 | 125.0 (2) | F632—C63—F633 | 107.3 (2) |
C8—C25—C24 | 122.1 (2) | F631—C63—F633 | 107.0 (2) |
C25—C26—C10 | 108.2 (2) | F632—C63—C11 | 112.6 (2) |
C25—C26—C27 | 123.9 (2) | F631—C63—C11 | 112.2 (2) |
C10—C26—C27 | 123.4 (2) | F633—C63—C11 | 109.8 (2) |
C26—C27—C62 | 115.3 (2) | F641—C64—F643 | 108.2 (2) |
C26—C27—C28 | 107.9 (2) | F641—C64—F642 | 107.1 (2) |
C62—C27—C28 | 112.6 (2) | F643—C64—F642 | 107.0 (2) |
C26—C27—C45 | 107.9 (2) | F641—C64—C1 | 111.9 (2) |
C62—C27—C45 | 111.2 (2) | F643—C64—C1 | 111.0 (2) |
C28—C27—C45 | 100.8 (2) | F642—C64—C1 | 111.4 (2) |
C29—C28—C47 | 119.1 (2) | F653—C65—F651 | 108.2 (2) |
C29—C28—C27 | 124.9 (2) | F653—C65—F652 | 107.7 (2) |
C47—C28—C27 | 109.2 (2) | F651—C65—F652 | 105.5 (2) |
C28—C29—C30 | 120.1 (2) | F653—C65—C6 | 112.5 (2) |
C28—C29—C11 | 124.1 (2) | F651—C65—C6 | 112.3 (2) |
C30—C29—C11 | 109.4 (2) | F652—C65—C6 | 110.2 (2) |
C31—C30—C29 | 121.0 (2) | F661—C66—F662 | 108.0 (2) |
C31—C30—C13 | 119.6 (2) | F661—C66—F663 | 108.0 (2) |
C29—C30—C13 | 108.7 (2) | F662—C66—F663 | 107.0 (2) |
C30—C31—C48 | 119.3 (2) | F661—C66—C18 | 111.9 (2) |
C30—C31—C32 | 121.4 (2) | F662—C66—C18 | 111.6 (2) |
C48—C31—C32 | 107.8 (2) | F663—C66—C18 | 110.1 (2) |
C50—C32—C31 | 108.4 (2) | F671—C67—F672 | 107.8 (2) |
C50—C32—C33 | 124.9 (2) | F671—C67—F673 | 107.4 (2) |
C31—C32—C33 | 121.2 (2) | F672—C67—F673 | 107.2 (2) |
C32—C33—C70 | 113.3 (2) | F671—C67—C54 | 112.7 (2) |
C32—C33—C14 | 110.3 (2) | F672—C67—C54 | 110.8 (2) |
C70—C33—C14 | 110.1 (2) | F673—C67—C54 | 110.8 (2) |
C32—C33—C34 | 108.4 (2) | F681—C68—F683 | 107.7 (2) |
C70—C33—C34 | 113.5 (2) | F681—C68—F682 | 107.7 (2) |
C14—C33—C34 | 100.45 (19) | F683—C68—F682 | 107.0 (2) |
C35—C34—C16 | 119.2 (2) | F681—C68—C60 | 111.1 (2) |
C35—C34—C33 | 122.8 (2) | F683—C68—C60 | 112.5 (2) |
C16—C34—C33 | 109.7 (2) | F682—C68—C60 | 110.6 (2) |
C34—C35—C36 | 119.6 (2) | F692—C69—F691 | 106.8 (2) |
C34—C35—C51 | 124.1 (2) | F692—C69—F693 | 107.2 (2) |
C36—C35—C51 | 108.8 (2) | F691—C69—F693 | 107.5 (2) |
C37—C36—C35 | 120.7 (2) | F692—C69—C51 | 111.0 (2) |
C37—C36—C53 | 121.0 (2) | F691—C69—C51 | 112.4 (2) |
C35—C36—C53 | 108.1 (2) | F693—C69—C51 | 111.7 (2) |
C36—C37—C17 | 119.7 (2) | F701—C70—F703 | 107.5 (2) |
C36—C37—C38 | 120.0 (2) | F701—C70—F702 | 107.2 (2) |
C17—C37—C38 | 108.8 (2) | F703—C70—F702 | 107.1 (2) |
C39—C38—C19 | 121.6 (2) | F701—C70—C33 | 113.2 (2) |
C39—C38—C37 | 120.4 (2) | F703—C70—C33 | 111.1 (2) |
C19—C38—C37 | 108.2 (2) | F702—C70—C33 | 110.4 (2) |
Experimental details
Crystal data | |
Chemical formula | C70F30 |
Mr | 1410.70 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 11.0257 (4), 11.4172 (4), 20.4527 (7) |
α, β, γ (°) | 82.369 (2), 77.010 (2), 65.543 (2) |
V (Å3) | 2281.36 (14) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.20 × 0.15 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.959, 0.986 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 77789, 10733, 6553 |
Rint | 0.071 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.122, 1.03 |
No. of reflections | 10733 |
No. of parameters | 901 |
Δρmax, Δρmin (e Å−3) | 0.37, −0.35 |
Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000), SHELXTL.
Recently reported high-temperature reactions of C60 with CF3I have yielded five C60(CF3)10 derivatives, (I)–(V) with thermodynamically stable addition patterns that are asymmetric or dissymetric as well as unprecedented in fullerene(X)n chemistry (Kareev et al., 2005; Kareev, Lebedkin, Popov et al., 2006; Kareev, Lebedkin, Miller et al., 2006; Popov et al., 2007). A new member of this set of isomers, the title compound, (VI), has been prepared and we report its crystal structure here.
The structure of (VI), Fig. 1, comprises an idealized Ih C60 core with ten sp3 carbon atoms at positions 1, 6, 11, 18, 24, 27, 33, 51, 54, and 60 (Powell et al., 2002), each of which is attached to a CF3 group. The core sp3 carbon atoms are not adjacent to one another. The CF3 groups are arranged on a para-para-para-meta-para and para-meta-para ribbons of edge-sharing C6(CF3)2 hexagons (i.e., a p3mp,pmp overall addition pattern; see Schlegel diagram in Fig. 1). Note that the shared edges in each ribbon of hexagons are C(sp3)-C(sp2) bonds (e.g., C16—C17, C4—C18, etc.), not C(sp2)-C(sp2) bonds. Thus, any pair of adjacent hexagons along the ribbon have a common CF3 group. As in the recently published structures of three other isomers of C60(CF3)10 (see below), there are F···F intramolecular contacts between pairs of neighboring CF3 groups that range from 2.565 (1) to 2.727 (1) Å.
There are now six isomers of C60(CF3)10 that have been prepared at high temperature, isolated, and characterized. Fluorine-19 NMR spectroscopy has shown that one isomer, (I), has the ten CF3 groups arranged on a ribbon of seven meta- and para-C6(CF3)2 edge-sharing hexagons plus an isolated para-C6(CF3)2 (Kareev et al., 2005). The other four, C1-p3mpmpmp-C60(CF3)10, (II) (Kareev, Lebedkin, Miller et al., 2006), C1-pmp3mpmp-C60(CF3)10, (III) (Kareev et al., 2005), C2-[p3m2(loop)]2– C60(CF3)10, (IV) (Kareev, Lebedkin, Popov, et al., 2006), and C1-pmpmpmpmp-C60(CF3)10, (V) (Popov et al., 2007), have been structurally characterized by single-crystal X-ray diffraction. For comparison, Schlegel diagrams for the six isomers are shown in Fig. 2, arranged according to their DFT relative energies (Popov et al., 2007). The pmp3mpmp ribbon in (III) forms a loop in which two of the meta-C6(CF3)2 hexagons have a common C(sp2)-C(sp2) bond (C2—C12). The structure of (IV) is significantly different than the other two isomers in that every CF3 group has two CF3 nearest neighbors (i.e., there are no "terminal" CF3 groups). Instead, it has two symmetry-related p3m2 loops of five edge-sharing C6(CF3)2 hexagons that are joined by a C(sp2)-C(sp2) bond that is common to one of the meta-C6(CF3)2 hexagons in each loop.
The four shortest cage C—C bonds in (VI) are C4—C5, 1.350 (4) Å, C7—C8, 1.351 (3) Å, C9—C10, 1.359 (3) Å, and C52—C53, 1.348 (4) Å. All four are significantly shorter than the shortest C—C bond in the most precise structure of empty C60 reported to date (C60.Pt(octaethylporphyrin)), which is 1.379 (3) Å (Olmstead et al., 2003). More importantly, three of these bonds, C4—C5, C9—C10, and C52—C53, are pentagon-hexagon junctions, and the shortest pent-hex junction in C60.Pt(OEP) is 1.440 (3) Å (the longest pent-hex junction in C60.Pt(OEP) is 1.461 (3) Å).
The structure of (VI), predicted to be the most stable isomer of C60(CF3)10, demonstrates a new type of addition pattern for fullerene(CF3)n derivatives with n = 4–12, two independent ribbons of edge-sharing C6(CF3)2 hexagons, to go along with the other six types of addition patterns that have been observed, a single ribbon (e.g., (II)), a ribbon plus an isolated para-C6(CF3)2 hexagon (Kareev, Shustova, Newell et al., 2006), a single loop of C6(CF3)2 hexagons (Troyanov et al., 2006), two loops (e.g., (IV)), a loop plus an isolated hexagon (Shustova et al., 2006), and a loop plus a ribbon (Shustova et al., 2006).