Download citation
Download citation
link to html
Chloro­thia­zide forms a 1:2 solvate with formic acid (systematic name: 6-chloro-2H-1,2,4-benzothia­diazine-7-sulfonamide 1,1-dioxide methanoic acid disolvate), C7H6ClN3O4S2·2CH2O2. The compound crystallizes with one chloro­thia­zide mol­ecule and two solvent mol­ecules in the asymmetric unit and displays an extensive hydrogen-bonding network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807042845/wn2197sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807042845/wn2197Isup2.hkl
Contains datablock I

CCDC reference: 663737

Key indicators

  • Single-crystal X-ray study
  • T = 123 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.052
  • wR factor = 0.114
  • Data-to-parameter ratio = 11.6

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full Low ....... 0.93
Author Response: Intermitant fault with DX drive (sample to detector distance) led to one shell of data being unsuitable for inclusion in final refinement. Considering the decent quality of the final model and a reflections to parameters ratio > 10:1, we concluded that a repeat data collection was not required.

Alert level B PLAT355_ALERT_3_B Long O-H Bond (0.82A) O8 - H2H ... 1.10 Ang.
Alert level C REFLT03_ALERT_3_C Reflection count < 95% complete From the CIF: _diffrn_reflns_theta_max 26.00 From the CIF: _diffrn_reflns_theta_full 26.00 From the CIF: _reflns_number_total 2650 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 2845 Completeness (_total/calc) 93.15% PLAT022_ALERT_3_C Ratio Unique / Expected Reflections too Low .... 0.93 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6 PLAT352_ALERT_3_C Short N-H Bond (0.87A) N3 - H3N ... 0.76 Ang. PLAT432_ALERT_2_C Short Inter X...Y Contact O4 .. C1 .. 3.00 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C H2 O2
1 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Chlorothiazide (CT) is a thiazide diuretic drug that is known to crystallize in at least one non-solvated form (Dupont & Dideberg, 1970; Shankland et al., 1997). The title compound was produced as part of an automated parallel crystallization study (Florence et al., 2006) of CT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction to investigate the basic science underlying the solid-state diversity of CT and the related thiazide diuretic, hydrochlorothiazide (Johnston et al., 2007). The sample was identified as a novel form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent manual recrystallization from a saturated formic acid solution by slow evaporation at 278 K yielded a sample suitable for single-crystal x-ray diffraction (Fig. 1).

The molecules crystallize in space group (P21/c) with one chlorothiazide (CT) and two solvent molecules in the asymmetric unit. The structure contains one N—H···N contact between CT molecules that forms an infinite chain of CT extending in the [101] direction. Molecules of CT also stack in the direction of the c axis with a further two N—H···O contacts between CT and each solvent molecule (residues B and C). In addition, two O—H···O interactions connect residue C with residues A and B (Table 1).

The contacts combine to form a layered structure (Fig. 2) comprising alternating layes of CT molecules (residue A) and solvent molecules (residues B and C) in the [010] direction.

Related literature top

For details on experimental methods used to obtain this form, see: Florence et al. (2003, 2006). For previous studies on the anhydrous form of the title compound, see: Dupont & Dideberg (1970); Shankland et al. (1997); for solvated forms, see: Johnston et al. (2007a,b). Intermolecular interactions in polymorphs and solvates of the related thiazide diuretic hydrochlorothiazide have also been studied (Johnston et al., 2007).

Experimental top

A single-crystal sample of the title compound was recrystallized from a saturated formic acid solution by isothermal solvent evaporation at 278 oK.

Refinement top

The H-atoms attached to O or N-atoms were located by difference synthesis and refined isotropically. All other H-atoms were constrained to idealized geometries using a riding model with Uiso(H)=1.2Ueq(C) and C—H=0.95 Å.

Structure description top

Chlorothiazide (CT) is a thiazide diuretic drug that is known to crystallize in at least one non-solvated form (Dupont & Dideberg, 1970; Shankland et al., 1997). The title compound was produced as part of an automated parallel crystallization study (Florence et al., 2006) of CT as part of a wider investigation that couples automated parallel crystallization with crystal structure prediction to investigate the basic science underlying the solid-state diversity of CT and the related thiazide diuretic, hydrochlorothiazide (Johnston et al., 2007). The sample was identified as a novel form using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent manual recrystallization from a saturated formic acid solution by slow evaporation at 278 K yielded a sample suitable for single-crystal x-ray diffraction (Fig. 1).

The molecules crystallize in space group (P21/c) with one chlorothiazide (CT) and two solvent molecules in the asymmetric unit. The structure contains one N—H···N contact between CT molecules that forms an infinite chain of CT extending in the [101] direction. Molecules of CT also stack in the direction of the c axis with a further two N—H···O contacts between CT and each solvent molecule (residues B and C). In addition, two O—H···O interactions connect residue C with residues A and B (Table 1).

The contacts combine to form a layered structure (Fig. 2) comprising alternating layes of CT molecules (residue A) and solvent molecules (residues B and C) in the [010] direction.

For details on experimental methods used to obtain this form, see: Florence et al. (2003, 2006). For previous studies on the anhydrous form of the title compound, see: Dupont & Dideberg (1970); Shankland et al. (1997); for solvated forms, see: Johnston et al. (2007a,b). Intermolecular interactions in polymorphs and solvates of the related thiazide diuretic hydrochlorothiazide have also been studied (Johnston et al., 2007).

Computing details top

Data collection: COLLECT (Hooft, 1988) and DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1988); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of title compound, showing 50% probablility displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound, viewed down the a-axis. Residues A, B and C (Fig. 1) are coloured red, blue and green, respectively. Hydrogen bonds are shown as grey dashed lines.
6-chloro-2H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide methanoic acid disolvate top
Crystal data top
C7H6ClN3O4S2·2CH2O2F(000) = 792
Mr = 387.77Dx = 1.789 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.2985 (5) ÅCell parameters from 2389 reflections
b = 21.5271 (14) Åθ = 1.0–27.5°
c = 8.3676 (5) ŵ = 0.60 mm1
β = 105.580 (3)°T = 123 K
V = 1439.89 (15) Å3Block, colourless
Z = 40.30 × 0.12 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
1872 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.079
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
phi and ω scansh = 1010
8698 measured reflectionsk = 2626
2650 independent reflectionsl = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.0295P)2 + 2.9523P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max = 0.002
S = 1.07Δρmax = 0.49 e Å3
2650 reflectionsΔρmin = 0.53 e Å3
228 parameters
Crystal data top
C7H6ClN3O4S2·2CH2O2V = 1439.89 (15) Å3
Mr = 387.77Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2985 (5) ŵ = 0.60 mm1
b = 21.5271 (14) ÅT = 123 K
c = 8.3676 (5) Å0.30 × 0.12 × 0.10 mm
β = 105.580 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1872 reflections with I > 2σ(I)
8698 measured reflectionsRint = 0.079
2650 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.49 e Å3
2650 reflectionsΔρmin = 0.53 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.58237 (12)0.27340 (4)0.40275 (12)0.0165 (3)
S11.15604 (12)0.13926 (4)0.92688 (12)0.0142 (3)
S20.57857 (12)0.12000 (4)0.43857 (12)0.0132 (3)
O11.2736 (3)0.11880 (14)0.8414 (4)0.0241 (7)
O21.0919 (4)0.09369 (13)1.0152 (4)0.0231 (7)
O30.6350 (3)0.05729 (12)0.4813 (3)0.0160 (7)
O40.4262 (3)0.14023 (13)0.4706 (3)0.0188 (7)
O50.9981 (4)0.00567 (13)1.2892 (4)0.0218 (7)
O61.0024 (4)0.10413 (12)1.3725 (4)0.0227 (7)
O70.7176 (4)0.03970 (14)1.0859 (4)0.0232 (7)
O80.5671 (5)0.04283 (17)0.8172 (5)0.0418 (10)
N11.2463 (4)0.19341 (15)1.0552 (4)0.0154 (8)
N21.1002 (4)0.27635 (16)0.8923 (4)0.0137 (7)
N30.5668 (5)0.13232 (18)0.2500 (4)0.0165 (8)
C11.2150 (5)0.25210 (19)1.0209 (5)0.0142 (9)
H11.28170.28101.09630.017*
C20.9839 (5)0.24083 (17)0.7773 (5)0.0124 (9)
C30.8579 (5)0.27031 (17)0.6553 (5)0.0125 (9)
H30.85500.31430.64620.015*
C40.7382 (5)0.23454 (17)0.5490 (5)0.0113 (8)
C50.7398 (5)0.16901 (18)0.5576 (5)0.0122 (8)
C60.8692 (5)0.14063 (18)0.6763 (5)0.0128 (8)
H60.87440.09660.68370.015*
C70.9906 (5)0.17624 (17)0.7838 (5)0.0126 (9)
C81.0677 (5)0.05427 (18)1.3764 (5)0.0187 (10)
H81.17740.04951.44750.022*
C90.7036 (5)0.03154 (18)0.9384 (5)0.0173 (9)
H90.79830.01580.90810.021*
H1H0.898 (7)0.018 (3)1.210 (7)0.058 (18)*
H2H0.562 (6)0.036 (2)0.686 (7)0.045 (15)*
H1N1.086 (6)0.317 (2)0.887 (6)0.040 (15)*
H2N0.470 (6)0.155 (2)0.197 (6)0.032 (13)*
H3N0.608 (6)0.108 (2)0.209 (6)0.034 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0158 (5)0.0160 (5)0.0156 (5)0.0048 (4)0.0004 (4)0.0034 (4)
S10.0124 (5)0.0133 (5)0.0146 (6)0.0017 (4)0.0005 (4)0.0012 (4)
S20.0125 (5)0.0133 (5)0.0130 (5)0.0001 (4)0.0019 (4)0.0009 (4)
O10.0166 (16)0.0281 (17)0.0267 (18)0.0082 (13)0.0041 (13)0.0070 (14)
O20.0241 (17)0.0187 (15)0.0228 (17)0.0064 (13)0.0001 (14)0.0077 (13)
O30.0177 (16)0.0113 (14)0.0173 (15)0.0035 (12)0.0015 (12)0.0002 (11)
O40.0122 (15)0.0221 (15)0.0225 (17)0.0012 (12)0.0053 (13)0.0026 (12)
O50.0236 (17)0.0136 (15)0.0238 (18)0.0023 (13)0.0012 (14)0.0027 (13)
O60.0251 (17)0.0120 (15)0.0317 (19)0.0034 (13)0.0089 (14)0.0009 (13)
O70.0238 (17)0.0293 (17)0.0147 (17)0.0054 (14)0.0020 (13)0.0046 (13)
O80.045 (2)0.048 (2)0.030 (2)0.0025 (18)0.0073 (18)0.0041 (17)
N10.0148 (18)0.0161 (18)0.0143 (18)0.0032 (15)0.0021 (15)0.0022 (14)
N20.0159 (18)0.0123 (16)0.0123 (18)0.0028 (15)0.0025 (15)0.0016 (14)
N30.016 (2)0.020 (2)0.0119 (19)0.0079 (16)0.0007 (16)0.0011 (16)
C10.015 (2)0.018 (2)0.012 (2)0.0004 (17)0.0061 (17)0.0007 (17)
C20.012 (2)0.015 (2)0.012 (2)0.0029 (16)0.0063 (17)0.0028 (16)
C30.014 (2)0.0087 (18)0.015 (2)0.0008 (16)0.0048 (17)0.0007 (16)
C40.012 (2)0.016 (2)0.008 (2)0.0043 (16)0.0079 (16)0.0038 (15)
C50.016 (2)0.015 (2)0.007 (2)0.0024 (17)0.0066 (17)0.0019 (16)
C60.016 (2)0.014 (2)0.009 (2)0.0023 (17)0.0058 (16)0.0007 (16)
C70.011 (2)0.015 (2)0.012 (2)0.0010 (16)0.0038 (17)0.0002 (16)
C80.019 (2)0.018 (2)0.019 (2)0.0020 (18)0.0045 (19)0.0012 (18)
C90.015 (2)0.011 (2)0.024 (3)0.0017 (16)0.0021 (19)0.0002 (17)
Geometric parameters (Å, º) top
Cl1—C41.738 (4)N2—C11.337 (5)
S1—O21.415 (3)N2—C21.394 (5)
S1—O11.425 (3)N2—H1N0.89 (5)
S1—N11.625 (3)N3—H2N0.95 (5)
S1—C71.752 (4)N3—H3N0.75 (5)
S2—O41.429 (3)C1—H10.9500
S2—O31.442 (3)C2—C71.392 (5)
S2—N31.577 (4)C2—C31.402 (5)
S2—C51.783 (4)C3—C41.377 (5)
O5—C81.317 (5)C3—H30.9500
O5—H1H0.95 (6)C4—C51.413 (5)
O6—C81.199 (5)C5—C61.393 (5)
O7—C91.221 (5)C6—C71.387 (5)
O8—C91.324 (5)C6—H60.9500
O8—H2H1.10 (5)C8—H80.9500
N1—C11.306 (5)C9—H90.9500
O2—S1—O1116.85 (19)C7—C2—N2120.5 (3)
O2—S1—N1108.88 (18)C7—C2—C3119.7 (3)
O1—S1—N1107.28 (18)N2—C2—C3119.8 (3)
O2—S1—C7109.66 (18)C4—C3—C2119.0 (3)
O1—S1—C7108.27 (19)C4—C3—H3120.5
N1—S1—C7105.26 (18)C2—C3—H3120.5
O4—S2—O3118.90 (18)C3—C4—C5122.0 (3)
O4—S2—N3108.45 (19)C3—C4—Cl1117.2 (3)
O3—S2—N3109.52 (19)C5—C4—Cl1120.8 (3)
O4—S2—C5106.48 (17)C6—C5—C4118.0 (3)
O3—S2—C5105.71 (17)C6—C5—S2117.3 (3)
N3—S2—C5107.16 (19)C4—C5—S2124.6 (3)
C8—O5—H1H109 (3)C7—C6—C5120.4 (4)
C9—O8—H2H122 (3)C7—C6—H6119.8
C1—N1—S1121.3 (3)C5—C6—H6119.8
C1—N2—C2123.6 (4)C6—C7—C2120.8 (3)
C1—N2—H1N119 (3)C6—C7—S1119.4 (3)
C2—N2—H1N117 (3)C2—C7—S1119.8 (3)
S2—N3—H2N112 (3)O6—C8—O5124.6 (4)
S2—N3—H3N116 (4)O6—C8—H8117.7
H2N—N3—H3N125 (5)O5—C8—H8117.7
N1—C1—N2127.7 (4)O7—C9—O8125.2 (4)
N1—C1—H1116.2O7—C9—H9117.4
N2—C1—H1116.2O8—C9—H9117.4
O2—S1—N1—C1131.6 (3)O4—S2—C5—C455.1 (4)
O1—S1—N1—C1101.1 (4)O3—S2—C5—C4177.6 (3)
C7—S1—N1—C114.1 (4)N3—S2—C5—C460.8 (4)
S1—N1—C1—N26.7 (6)C4—C5—C6—C71.0 (6)
C2—N2—C1—N15.0 (7)S2—C5—C6—C7174.1 (3)
C1—N2—C2—C75.2 (6)C5—C6—C7—C21.2 (6)
C1—N2—C2—C3174.0 (4)C5—C6—C7—S1177.7 (3)
C7—C2—C3—C43.0 (6)N2—C2—C7—C6175.9 (4)
N2—C2—C3—C4176.2 (4)C3—C2—C7—C63.3 (6)
C2—C3—C4—C50.8 (6)N2—C2—C7—S15.1 (6)
C2—C3—C4—Cl1178.8 (3)C3—C2—C7—S1175.7 (3)
C3—C4—C5—C61.2 (6)O2—S1—C7—C650.7 (4)
Cl1—C4—C5—C6179.3 (3)O1—S1—C7—C677.8 (4)
C3—C4—C5—S2173.5 (3)N1—S1—C7—C6167.7 (3)
Cl1—C4—C5—S26.1 (5)O2—S1—C7—C2130.3 (3)
O4—S2—C5—C6119.6 (3)O1—S1—C7—C2101.1 (4)
O3—S2—C5—C67.7 (4)N1—S1—C7—C213.3 (4)
N3—S2—C5—C6124.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1H···O70.95 (6)1.64 (6)2.593 (5)175 (6)
N2—H1N···O6i0.88 (4)1.83 (4)2.690 (4)166 (5)
O8—H2H···O31.10 (6)2.02 (5)3.027 (5)152 (4)
N3—H2N···N1ii0.94 (5)2.09 (5)3.022 (5)171 (4)
N3—H3N···O7iii0.76 (5)2.13 (5)2.890 (5)178 (6)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y, z1; (iii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC7H6ClN3O4S2·2CH2O2
Mr387.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)8.2985 (5), 21.5271 (14), 8.3676 (5)
β (°) 105.580 (3)
V3)1439.89 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.60
Crystal size (mm)0.30 × 0.12 × 0.10
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8698, 2650, 1872
Rint0.079
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.114, 1.07
No. of reflections2650
No. of parameters228
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.53

Computer programs: COLLECT (Hooft, 1988) and DENZO (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1988), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1H···O70.95 (6)1.64 (6)2.593 (5)175 (6)
N2—H1N···O6i0.88 (4)1.83 (4)2.690 (4)166 (5)
O8—H2H···O31.10 (6)2.02 (5)3.027 (5)152 (4)
N3—H2N···N1ii0.94 (5)2.09 (5)3.022 (5)171 (4)
N3—H3N···O7iii0.76 (5)2.13 (5)2.890 (5)178 (6)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1, y, z1; (iii) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds