research papers
The continued advancement of complex materials often requires a deeper understanding of the structure–function relationship across many length scales, which quickly becomes an arduous task when multiple measurements are required to characterize hierarchical and inherently heterogeneous materials. Therefore, there are benefits in the simultaneous characterization of multiple length scales. At the National Institute of Standards and Technology, a new neutron far-field interferometer is under development that aims to enable a multi-scale measurement combining the best of small-angle neutron scattering (SANS) and neutron imaging and tomography. Spatially resolved structural information on the same length scales as SANS (0.001–1 µm) and ultra-small-angle neutron scattering (USANS, 0.1–10 µm) will be collected via dark-field imaging simultaneously with regular attenuation radiography (>10 µm). The dark field is analogous to the polarization loss measured in spin-echo SANS (SESANS) and is related to isotropic SANS through a Hankel transform. Therefore, we use this close relationship and analyze results from SANS, USANS, SESANS and dark-field imaging of monodisperse spheres as a validation metric for the interferometry measurements. The results also highlight the strengths and weaknesses of these neutron techniques for both steady-state and pulsed neutron sources. Finally, we present an example of the value added by the spatial resolution enabled by dark-field imaging in the study of more complex heterogeneous materials. This information would otherwise be lost in other small-angle scattering measurements averaged over the sample.
Keywords: dark-field imaging; far-field interferometry; small-angle neutron scattering; ultra-small-angle neutron scattering; spin-echo small-angle neutron scattering; multi-scale measurements; polystyrene nanoparticles.
Supporting information
Portable Document Format (PDF) file https://doi.org/10.1107/S1600576724009944/ei5121sup1.pdf | |
Link https://doi.org/10.5286/ISIS.E.RB2220100 |