Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520615006150/dk5032sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Ca3SnO_295Ksup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Sr3SnO_295Ksup3.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Eu3SnO_295Ksup4.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Ba3SnO_295Ksup5.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Ca3PbO_295Ksup6.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Sr3PbO_295Ksup7.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Eu3PbO_295Ksup8.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Ba3PbO_295Ksup9.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Eu3SiO_100Ksup10.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Ca3SiO_100Ksup11.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Ca3SiO_500Ksup12.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Ca3GeO_500Ksup13.hkl |
CCDC references: 1056257; 1062668; 1062669; 1062670; 1062671; 1062672; 1062673; 1062674; 1062675; 1062676; 1062677; 1062678; 1062679; 1062680; 1062681; 1062682; 1062683
For all compounds, data collection: Bruker Suite (Bruker AXS, 2013); cell refinement: Bruker Suite (Bruker AXS, 2013); data reduction: Bruker Suite (Bruker AXS, 2013). Program(s) used to solve structure: SHELXL (Sheldrick, 2008) for Ca3SnO_295K, Sr3SnO_295K, Eu3SnO_295K, Ba3SnO_295K, Ca3PbO_295K, Sr3PbO_295K, Eu3PbO_295K, Ba3PbO_295K, Eu3SiO_100K, Ca3SiO_100K, Ca3SiO_500K, Ca3GeO_500K. Program(s) used to refine structure: SHELXL (Sheldrick, 2008) for Ca3SnO_295K, Sr3SnO_295K, Eu3SnO_295K, Ba3SnO_295K, Ca3PbO_295K, Sr3PbO_295K, Eu3PbO_295K, Ba3PbO_295K, Eu3SiO_100K, Ca3SiO_100K, Ca3SiO_500K, Ca3GeO_500K; JANA2006 (Petricek, 2006) for Ba3PbO_100K, Ba3SnO_100K, Eu3GeO_100K, Ca3SiO_295K, Ca3GeO_100K.
Cs3SnO | Mo Kα radiation, λ = 0.71073 Å |
Mr = 254.93 | Cell parameters from 2160 reflections |
Cubic, Pm3m | θ = 4.2–37.1° |
a = 4.827 (3) Å | µ = 8.91 mm−1 |
V = 112.44 (18) Å3 | T = 295 K |
Z = 1 | Block, dark grey metallic |
F(000) = 118 | 0.12 × 0.10 × 0.06 mm |
Dx = 3.765 Mg m−3 |
SMART APEX II, Bruker AXS diffractometer | 85 reflections with I > 2σ(I) |
ωscan | Rint = 0.026 |
Absorption correction: multi-scan Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany. | θmax = 36.7°, θmin = 4.2° |
Tmin = 0.175, Tmax = 0.275 | h = −8→8 |
2145 measured reflections | k = −8→8 |
85 independent reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.008 | w = 1/[σ2(Fo2) + (0.0142P)2]
where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.022 | (Δ/σ)max < 0.001 |
S = 1.38 | Δρmax = 0.39 e Å−3 |
85 reflections | Δρmin = −0.38 e Å−3 |
6 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.225 (13) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn | 0.5000 | 0.5000 | 0.5000 | 0.00955 (10) | |
Ca | 0.5000 | 0.0000 | 0.0000 | 0.01161 (14) | |
O | 0.0000 | 0.0000 | 0.0000 | 0.0096 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.00955 (10) | 0.00955 (10) | 0.00955 (10) | 0.000 | 0.000 | 0.000 |
Ca | 0.00872 (16) | 0.01306 (15) | 0.01306 (15) | 0.000 | 0.000 | 0.000 |
O | 0.0096 (4) | 0.0096 (4) | 0.0096 (4) | 0.000 | 0.000 | 0.000 |
Sn—Cai | 3.4129 (18) | Ca—Snxiii | 3.4129 (18) |
Sn—Ca | 3.4129 (18) | Ca—Cax | 3.4129 (18) |
Sn—Caii | 3.4129 (18) | Ca—Caxiv | 3.4129 (18) |
Sn—Caiii | 3.4129 (18) | Ca—Caxv | 3.4129 (18) |
Sn—Caiv | 3.4129 (18) | Ca—Caviii | 3.4129 (18) |
Sn—Cav | 3.4129 (18) | Ca—Snxvi | 3.4129 (18) |
Sn—Cavi | 3.4129 (18) | Ca—Cav | 3.4129 (18) |
Sn—Cavii | 3.4129 (18) | Ca—Caxvii | 3.4129 (18) |
Sn—Caviii | 3.4129 (18) | Ca—Caxviii | 3.4129 (18) |
Sn—Caix | 3.4129 (18) | O—Caii | 2.4133 (13) |
Sn—Cax | 3.4129 (18) | O—Caxix | 2.4133 (13) |
Sn—Caxi | 3.4129 (18) | O—Caxv | 2.4133 (13) |
Ca—Oxii | 2.4133 (13) | O—Cav | 2.4133 (13) |
Ca—O | 2.4133 (13) | O—Caxiv | 2.4133 (13) |
Cai—Sn—Ca | 120.0 | Sn—Ca—Cax | 60.0 |
Cai—Sn—Caii | 180.0 | Snxiii—Ca—Cax | 120.0 |
Ca—Sn—Caii | 60.0 | Oxii—Ca—Caxiv | 135.0 |
Cai—Sn—Caiii | 60.0 | O—Ca—Caxiv | 45.0 |
Ca—Sn—Caiii | 120.0 | Sn—Ca—Caxiv | 120.0 |
Caii—Sn—Caiii | 120.0 | Snxiii—Ca—Caxiv | 60.0 |
Cai—Sn—Caiv | 60.0 | Cax—Ca—Caxiv | 180.0 |
Ca—Sn—Caiv | 180.0 | Oxii—Ca—Caxv | 135.0 |
Caii—Sn—Caiv | 120.0 | O—Ca—Caxv | 45.0 |
Caiii—Sn—Caiv | 60.0 | Sn—Ca—Caxv | 120.0 |
Cai—Sn—Cav | 120.0 | Snxiii—Ca—Caxv | 60.0 |
Ca—Sn—Cav | 60.0 | Cax—Ca—Caxv | 120.0 |
Caii—Sn—Cav | 60.0 | Caxiv—Ca—Caxv | 60.0 |
Caiii—Sn—Cav | 180.0 | Oxii—Ca—Caviii | 45.0 |
Caiv—Sn—Cav | 120.0 | O—Ca—Caviii | 135.0 |
Cai—Sn—Cavi | 60.0 | Sn—Ca—Caviii | 60.0 |
Ca—Sn—Cavi | 90.0 | Snxiii—Ca—Caviii | 120.0 |
Caii—Sn—Cavi | 120.0 | Cax—Ca—Caviii | 60.0 |
Caiii—Sn—Cavi | 120.0 | Caxiv—Ca—Caviii | 120.0 |
Caiv—Sn—Cavi | 90.0 | Caxv—Ca—Caviii | 180.0 |
Cav—Sn—Cavi | 60.0 | Oxii—Ca—Snxvi | 90.0 |
Cai—Sn—Cavii | 120.0 | O—Ca—Snxvi | 90.0 |
Ca—Sn—Cavii | 120.0 | Sn—Ca—Snxvi | 90.0 |
Caii—Sn—Cavii | 60.0 | Snxiii—Ca—Snxvi | 90.0 |
Caiii—Sn—Cavii | 90.0 | Cax—Ca—Snxvi | 120.0 |
Caiv—Sn—Cavii | 60.0 | Caxiv—Ca—Snxvi | 60.0 |
Cav—Sn—Cavii | 90.0 | Caxv—Ca—Snxvi | 120.0 |
Cavi—Sn—Cavii | 120.0 | Caviii—Ca—Snxvi | 60.0 |
Cai—Sn—Caviii | 60.0 | Oxii—Ca—Cav | 135.0 |
Ca—Sn—Caviii | 60.0 | O—Ca—Cav | 45.0 |
Caii—Sn—Caviii | 120.0 | Sn—Ca—Cav | 60.0 |
Caiii—Sn—Caviii | 90.0 | Snxiii—Ca—Cav | 120.0 |
Caiv—Sn—Caviii | 120.0 | Cax—Ca—Cav | 120.0 |
Cav—Sn—Caviii | 90.0 | Caxiv—Ca—Cav | 60.0 |
Cavi—Sn—Caviii | 60.0 | Caxv—Ca—Cav | 90.0 |
Cavii—Sn—Caviii | 180.0 | Caviii—Ca—Cav | 90.0 |
Cai—Sn—Caix | 120.0 | Snxvi—Ca—Cav | 60.0 |
Ca—Sn—Caix | 90.0 | Oxii—Ca—Caxvii | 45.0 |
Caii—Sn—Caix | 60.0 | O—Ca—Caxvii | 135.0 |
Caiii—Sn—Caix | 60.0 | Sn—Ca—Caxvii | 120.0 |
Caiv—Sn—Caix | 90.0 | Snxiii—Ca—Caxvii | 60.0 |
Cav—Sn—Caix | 120.0 | Cax—Ca—Caxvii | 60.0 |
Cavi—Sn—Caix | 180.0 | Caxiv—Ca—Caxvii | 120.0 |
Cavii—Sn—Caix | 60.0 | Caxv—Ca—Caxvii | 90.0 |
Caviii—Sn—Caix | 120.0 | Caviii—Ca—Caxvii | 90.0 |
Cai—Sn—Cax | 90.0 | Snxvi—Ca—Caxvii | 120.0 |
Ca—Sn—Cax | 60.0 | Cav—Ca—Caxvii | 180.0 |
Caii—Sn—Cax | 90.0 | Oxii—Ca—Caxviii | 45.0 |
Caiii—Sn—Cax | 60.0 | O—Ca—Caxviii | 135.0 |
Caiv—Sn—Cax | 120.0 | Sn—Ca—Caxviii | 120.0 |
Cav—Sn—Cax | 120.0 | Snxiii—Ca—Caxviii | 60.0 |
Cavi—Sn—Cax | 120.0 | Cax—Ca—Caxviii | 90.0 |
Cavii—Sn—Cax | 120.0 | Caxiv—Ca—Caxviii | 90.0 |
Caviii—Sn—Cax | 60.0 | Caxv—Ca—Caxviii | 120.0 |
Caix—Sn—Cax | 60.0 | Caviii—Ca—Caxviii | 60.0 |
Cai—Sn—Caxi | 90.0 | Snxvi—Ca—Caxviii | 60.0 |
Ca—Sn—Caxi | 120.0 | Cav—Ca—Caxviii | 120.0 |
Caii—Sn—Caxi | 90.0 | Caxvii—Ca—Caxviii | 60.0 |
Caiii—Sn—Caxi | 120.0 | Caii—O—Ca | 90.0 |
Caiv—Sn—Caxi | 60.0 | Caii—O—Caxix | 90.0 |
Cav—Sn—Caxi | 60.0 | Ca—O—Caxix | 180.0 |
Cavi—Sn—Caxi | 60.0 | Caii—O—Caxv | 90.0 |
Cavii—Sn—Caxi | 60.0 | Ca—O—Caxv | 90.0 |
Caviii—Sn—Caxi | 120.0 | Caxix—O—Caxv | 90.0 |
Caix—Sn—Caxi | 120.0 | Caii—O—Cav | 90.0 |
Cax—Sn—Caxi | 180.0 | Ca—O—Cav | 90.0 |
Oxii—Ca—O | 180.0 | Caxix—O—Cav | 90.0 |
Oxii—Ca—Sn | 90.0 | Caxv—O—Cav | 180.0 |
O—Ca—Sn | 90.0 | Caii—O—Caxiv | 180.0 |
Oxii—Ca—Snxiii | 90.0 | Ca—O—Caxiv | 90.0 |
O—Ca—Snxiii | 90.0 | Caxix—O—Caxiv | 90.0 |
Sn—Ca—Snxiii | 180.0 | Caxv—O—Caxiv | 90.0 |
Oxii—Ca—Cax | 45.0 | Cav—O—Caxiv | 90.0 |
O—Ca—Cax | 135.0 |
Symmetry codes: (i) y+1, z+1, x; (ii) y, z, x; (iii) z+1, x, y+1; (iv) x, y+1, z+1; (v) z, x, y; (vi) x, y+1, z; (vii) z, x, y+1; (viii) z+1, x, y; (ix) x, y, z+1; (x) y+1, z, x; (xi) y, z+1, x; (xii) x+1, y, z; (xiii) x, y−1, z−1; (xiv) y, z, x−1; (xv) z, x−1, y; (xvi) x, y, z−1; (xvii) z+1, x−1, y; (xviii) y+1, z, x−1; (xix) x−1, y, z. |
Sr3SnO | Mo Kα radiation, λ = 0.71073 Å |
Mr = 397.55 | Cell parameters from 899 reflections |
Cubic, Pm3m | θ = 4.0–37.1° |
a = 5.1394 (18) Å | µ = 33.70 mm−1 |
V = 135.75 (14) Å3 | T = 295 K |
Z = 1 | Block, dark grey metallic |
F(000) = 172 | 0.10 × 0.07 × 0.03 mm |
Dx = 4.863 Mg m−3 |
SMART APEX II, Bruker AXS diffractometer | 98 reflections with I > 2σ(I) |
ωscan | Rint = 0.035 |
Absorption correction: multi-scan Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany. | θmax = 36.8°, θmin = 4.0° |
Tmin = 0.074, Tmax = 0.167 | h = −8→8 |
2627 measured reflections | k = −8→8 |
99 independent reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.010 | w = 1/[σ2(Fo2) + (0.0122P)2 + 0.0362P]
where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.035 | (Δ/σ)max < 0.001 |
S = 1.36 | Δρmax = 0.50 e Å−3 |
99 reflections | Δρmin = −0.43 e Å−3 |
6 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.104 (6) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn | 0.5000 | 0.5000 | 0.5000 | 0.01120 (16) | |
Sr | 0.5000 | 0.0000 | 0.0000 | 0.01386 (14) | |
O | 0.0000 | 0.0000 | 0.0000 | 0.0117 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.01120 (16) | 0.01120 (16) | 0.01120 (16) | 0.000 | 0.000 | 0.000 |
Sr | 0.00905 (17) | 0.01626 (15) | 0.01626 (15) | 0.000 | 0.000 | 0.000 |
O | 0.0117 (7) | 0.0117 (7) | 0.0117 (7) | 0.000 | 0.000 | 0.000 |
Sn—Sri | 3.6341 (13) | Sr—Snxiii | 3.6341 (13) |
Sn—Sr | 3.6341 (13) | Sr—Srx | 3.6341 (13) |
Sn—Srii | 3.6341 (13) | Sr—Srxiv | 3.6341 (13) |
Sn—Sriii | 3.6341 (13) | Sr—Srxv | 3.6341 (13) |
Sn—Sriv | 3.6341 (13) | Sr—Srviii | 3.6341 (13) |
Sn—Srv | 3.6341 (13) | Sr—Snxvi | 3.6341 (13) |
Sn—Srvi | 3.6341 (13) | Sr—Srv | 3.6341 (13) |
Sn—Srvii | 3.6341 (13) | Sr—Srxvii | 3.6341 (13) |
Sn—Srviii | 3.6341 (13) | Sr—Srxviii | 3.6341 (13) |
Sn—Srix | 3.6341 (13) | O—Srii | 2.5697 (9) |
Sn—Srx | 3.6341 (13) | O—Srxix | 2.5697 (9) |
Sn—Srxi | 3.6341 (13) | O—Srxv | 2.5697 (9) |
Sr—Oxii | 2.5697 (9) | O—Srv | 2.5697 (9) |
Sr—O | 2.5697 (9) | O—Srxiv | 2.5697 (9) |
Sri—Sn—Sr | 120.0 | Sn—Sr—Srx | 60.0 |
Sri—Sn—Srii | 180.0 | Snxiii—Sr—Srx | 120.0 |
Sr—Sn—Srii | 60.0 | Oxii—Sr—Srxiv | 135.0 |
Sri—Sn—Sriii | 60.0 | O—Sr—Srxiv | 45.0 |
Sr—Sn—Sriii | 120.0 | Sn—Sr—Srxiv | 120.0 |
Srii—Sn—Sriii | 120.0 | Snxiii—Sr—Srxiv | 60.0 |
Sri—Sn—Sriv | 60.0 | Srx—Sr—Srxiv | 180.0 |
Sr—Sn—Sriv | 180.0 | Oxii—Sr—Srxv | 135.0 |
Srii—Sn—Sriv | 120.0 | O—Sr—Srxv | 45.0 |
Sriii—Sn—Sriv | 60.0 | Sn—Sr—Srxv | 120.0 |
Sri—Sn—Srv | 120.0 | Snxiii—Sr—Srxv | 60.0 |
Sr—Sn—Srv | 60.0 | Srx—Sr—Srxv | 120.0 |
Srii—Sn—Srv | 60.0 | Srxiv—Sr—Srxv | 60.0 |
Sriii—Sn—Srv | 180.0 | Oxii—Sr—Srviii | 45.0 |
Sriv—Sn—Srv | 120.0 | O—Sr—Srviii | 135.0 |
Sri—Sn—Srvi | 60.0 | Sn—Sr—Srviii | 60.0 |
Sr—Sn—Srvi | 90.0 | Snxiii—Sr—Srviii | 120.0 |
Srii—Sn—Srvi | 120.0 | Srx—Sr—Srviii | 60.0 |
Sriii—Sn—Srvi | 120.0 | Srxiv—Sr—Srviii | 120.0 |
Sriv—Sn—Srvi | 90.0 | Srxv—Sr—Srviii | 180.0 |
Srv—Sn—Srvi | 60.0 | Oxii—Sr—Snxvi | 90.0 |
Sri—Sn—Srvii | 120.0 | O—Sr—Snxvi | 90.0 |
Sr—Sn—Srvii | 120.0 | Sn—Sr—Snxvi | 90.0 |
Srii—Sn—Srvii | 60.0 | Snxiii—Sr—Snxvi | 90.0 |
Sriii—Sn—Srvii | 90.0 | Srx—Sr—Snxvi | 120.0 |
Sriv—Sn—Srvii | 60.0 | Srxiv—Sr—Snxvi | 60.0 |
Srv—Sn—Srvii | 90.0 | Srxv—Sr—Snxvi | 120.0 |
Srvi—Sn—Srvii | 120.0 | Srviii—Sr—Snxvi | 60.0 |
Sri—Sn—Srviii | 60.0 | Oxii—Sr—Srv | 135.0 |
Sr—Sn—Srviii | 60.0 | O—Sr—Srv | 45.0 |
Srii—Sn—Srviii | 120.0 | Sn—Sr—Srv | 60.0 |
Sriii—Sn—Srviii | 90.0 | Snxiii—Sr—Srv | 120.0 |
Sriv—Sn—Srviii | 120.0 | Srx—Sr—Srv | 120.0 |
Srv—Sn—Srviii | 90.0 | Srxiv—Sr—Srv | 60.0 |
Srvi—Sn—Srviii | 60.0 | Srxv—Sr—Srv | 90.0 |
Srvii—Sn—Srviii | 180.0 | Srviii—Sr—Srv | 90.0 |
Sri—Sn—Srix | 120.0 | Snxvi—Sr—Srv | 60.0 |
Sr—Sn—Srix | 90.0 | Oxii—Sr—Srxvii | 45.0 |
Srii—Sn—Srix | 60.0 | O—Sr—Srxvii | 135.0 |
Sriii—Sn—Srix | 60.0 | Sn—Sr—Srxvii | 120.0 |
Sriv—Sn—Srix | 90.0 | Snxiii—Sr—Srxvii | 60.0 |
Srv—Sn—Srix | 120.0 | Srx—Sr—Srxvii | 60.0 |
Srvi—Sn—Srix | 180.0 | Srxiv—Sr—Srxvii | 120.0 |
Srvii—Sn—Srix | 60.0 | Srxv—Sr—Srxvii | 90.0 |
Srviii—Sn—Srix | 120.0 | Srviii—Sr—Srxvii | 90.0 |
Sri—Sn—Srx | 90.0 | Snxvi—Sr—Srxvii | 120.0 |
Sr—Sn—Srx | 60.0 | Srv—Sr—Srxvii | 180.0 |
Srii—Sn—Srx | 90.0 | Oxii—Sr—Srxviii | 45.0 |
Sriii—Sn—Srx | 60.0 | O—Sr—Srxviii | 135.0 |
Sriv—Sn—Srx | 120.0 | Sn—Sr—Srxviii | 120.0 |
Srv—Sn—Srx | 120.0 | Snxiii—Sr—Srxviii | 60.0 |
Srvi—Sn—Srx | 120.0 | Srx—Sr—Srxviii | 90.0 |
Srvii—Sn—Srx | 120.0 | Srxiv—Sr—Srxviii | 90.0 |
Srviii—Sn—Srx | 60.0 | Srxv—Sr—Srxviii | 120.0 |
Srix—Sn—Srx | 60.0 | Srviii—Sr—Srxviii | 60.0 |
Sri—Sn—Srxi | 90.0 | Snxvi—Sr—Srxviii | 60.0 |
Sr—Sn—Srxi | 120.0 | Srv—Sr—Srxviii | 120.0 |
Srii—Sn—Srxi | 90.0 | Srxvii—Sr—Srxviii | 60.0 |
Sriii—Sn—Srxi | 120.0 | Srii—O—Sr | 90.0 |
Sriv—Sn—Srxi | 60.0 | Srii—O—Srxix | 90.0 |
Srv—Sn—Srxi | 60.0 | Sr—O—Srxix | 180.0 |
Srvi—Sn—Srxi | 60.0 | Srii—O—Srxv | 90.0 |
Srvii—Sn—Srxi | 60.0 | Sr—O—Srxv | 90.0 |
Srviii—Sn—Srxi | 120.0 | Srxix—O—Srxv | 90.0 |
Srix—Sn—Srxi | 120.0 | Srii—O—Srv | 90.0 |
Srx—Sn—Srxi | 180.0 | Sr—O—Srv | 90.0 |
Oxii—Sr—O | 180.0 | Srxix—O—Srv | 90.0 |
Oxii—Sr—Sn | 90.0 | Srxv—O—Srv | 180.0 |
O—Sr—Sn | 90.0 | Srii—O—Srxiv | 180.0 |
Oxii—Sr—Snxiii | 90.0 | Sr—O—Srxiv | 90.0 |
O—Sr—Snxiii | 90.0 | Srxix—O—Srxiv | 90.0 |
Sn—Sr—Snxiii | 180.0 | Srxv—O—Srxiv | 90.0 |
Oxii—Sr—Srx | 45.0 | Srv—O—Srxiv | 90.0 |
O—Sr—Srx | 135.0 |
Symmetry codes: (i) y+1, z+1, x; (ii) y, z, x; (iii) z+1, x, y+1; (iv) x, y+1, z+1; (v) z, x, y; (vi) x, y+1, z; (vii) z, x, y+1; (viii) z+1, x, y; (ix) x, y, z+1; (x) y+1, z, x; (xi) y, z+1, x; (xii) x+1, y, z; (xiii) x, y−1, z−1; (xiv) y, z, x−1; (xv) z, x−1, y; (xvi) x, y, z−1; (xvii) z+1, x−1, y; (xviii) y+1, z, x−1; (xix) x−1, y, z. |
Eu3SnO | Mo Kα radiation, λ = 0.71073 Å |
Mr = 590.57 | Cell parameters from 704 reflections |
Cubic, Pm3m | θ = 4.0–36.4° |
a = 5.077 (3) Å | µ = 40.00 mm−1 |
V = 130.9 (2) Å3 | T = 295 K |
Z = 1 | Block, dark grey metallic |
F(000) = 247 | 0.06 × 0.04 × 0.02 mm |
Dx = 7.494 Mg m−3 |
SMART APEX II, Bruker AXS diffractometer | 89 reflections with I > 2σ(I) |
ωscan | Rint = 0.024 |
Absorption correction: multi-scan Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany. | θmax = 36.4°, θmin = 4.0° |
Tmin = 0.084, Tmax = 0.166 | h = −8→8 |
2477 measured reflections | k = −8→8 |
93 independent reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.012 | w = 1/[σ2(Fo2) + (0.0171P)2 + 0.034P]
where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.033 | (Δ/σ)max < 0.001 |
S = 1.12 | Δρmax = 1.10 e Å−3 |
93 reflections | Δρmin = −0.60 e Å−3 |
6 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.096 (4) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Eu1 | 0.5000 | 0.0000 | 0.0000 | 0.01524 (15) | |
Sn1 | 0.5000 | 0.5000 | 0.5000 | 0.01222 (14) | |
O1 | 0.0000 | 0.0000 | 0.0000 | 0.0113 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu1 | 0.00971 (15) | 0.01801 (15) | 0.01801 (15) | 0.000 | 0.000 | 0.000 |
Sn1 | 0.01222 (14) | 0.01222 (14) | 0.01222 (14) | 0.000 | 0.000 | 0.000 |
O1 | 0.0113 (7) | 0.0113 (7) | 0.0113 (7) | 0.000 | 0.000 | 0.000 |
Eu1—O1i | 2.5385 (14) | Sn1—Eu1xii | 3.590 (2) |
Eu1—O1 | 2.5385 (14) | Sn1—Eu1xiii | 3.590 (2) |
Eu1—Sn1 | 3.590 (2) | Sn1—Eu1x | 3.590 (2) |
Eu1—Eu1ii | 3.590 (2) | Sn1—Eu1xiv | 3.590 (2) |
Eu1—Sn1iii | 3.590 (2) | Sn1—Eu1xv | 3.590 (2) |
Eu1—Eu1iv | 3.590 (2) | Sn1—Eu1v | 3.590 (2) |
Eu1—Eu1v | 3.590 (2) | Sn1—Eu1xvi | 3.590 (2) |
Eu1—Eu1vi | 3.590 (2) | Sn1—Eu1iv | 3.590 (2) |
Eu1—Eu1vii | 3.590 (2) | Sn1—Eu1xvii | 3.590 (2) |
Eu1—Eu1viii | 3.590 (2) | O1—Eu1viii | 2.5385 (14) |
Eu1—Eu1ix | 3.590 (2) | O1—Eu1xviii | 2.5385 (14) |
Eu1—Eu1x | 3.590 (2) | O1—Eu1ii | 2.5385 (14) |
Sn1—Eu1xi | 3.590 (2) | O1—Eu1x | 2.5385 (14) |
Sn1—Eu1viii | 3.590 (2) | O1—Eu1vi | 2.5385 (14) |
O1i—Eu1—O1 | 180.0 | Eu1viii—Sn1—Eu1xiii | 120.0 |
O1i—Eu1—Sn1 | 90.0 | Eu1xii—Sn1—Eu1xiii | 60.0 |
O1—Eu1—Sn1 | 90.0 | Eu1xi—Sn1—Eu1x | 120.0 |
O1i—Eu1—Eu1ii | 135.0 | Eu1—Sn1—Eu1x | 60.0 |
O1—Eu1—Eu1ii | 45.0 | Eu1viii—Sn1—Eu1x | 60.0 |
Sn1—Eu1—Eu1ii | 120.0 | Eu1xii—Sn1—Eu1x | 180.0 |
O1i—Eu1—Sn1iii | 90.0 | Eu1xiii—Sn1—Eu1x | 120.0 |
O1—Eu1—Sn1iii | 90.0 | Eu1xi—Sn1—Eu1xiv | 60.0 |
Sn1—Eu1—Sn1iii | 180.0 | Eu1—Sn1—Eu1xiv | 90.0 |
Eu1ii—Eu1—Sn1iii | 60.0 | Eu1viii—Sn1—Eu1xiv | 120.0 |
O1i—Eu1—Eu1iv | 45.0 | Eu1xii—Sn1—Eu1xiv | 120.0 |
O1—Eu1—Eu1iv | 135.0 | Eu1xiii—Sn1—Eu1xiv | 90.0 |
Sn1—Eu1—Eu1iv | 60.0 | Eu1x—Sn1—Eu1xiv | 60.0 |
Eu1ii—Eu1—Eu1iv | 120.0 | Eu1xi—Sn1—Eu1xv | 120.0 |
Sn1iii—Eu1—Eu1iv | 120.0 | Eu1—Sn1—Eu1xv | 120.0 |
O1i—Eu1—Eu1v | 45.0 | Eu1viii—Sn1—Eu1xv | 60.0 |
O1—Eu1—Eu1v | 135.0 | Eu1xii—Sn1—Eu1xv | 90.0 |
Sn1—Eu1—Eu1v | 60.0 | Eu1xiii—Sn1—Eu1xv | 60.0 |
Eu1ii—Eu1—Eu1v | 180.0 | Eu1x—Sn1—Eu1xv | 90.0 |
Sn1iii—Eu1—Eu1v | 120.0 | Eu1xiv—Sn1—Eu1xv | 120.0 |
Eu1iv—Eu1—Eu1v | 60.0 | Eu1xi—Sn1—Eu1v | 60.0 |
O1i—Eu1—Eu1vi | 135.0 | Eu1—Sn1—Eu1v | 60.0 |
O1—Eu1—Eu1vi | 45.0 | Eu1viii—Sn1—Eu1v | 120.0 |
Sn1—Eu1—Eu1vi | 120.0 | Eu1xii—Sn1—Eu1v | 90.0 |
Eu1ii—Eu1—Eu1vi | 60.0 | Eu1xiii—Sn1—Eu1v | 120.0 |
Sn1iii—Eu1—Eu1vi | 60.0 | Eu1x—Sn1—Eu1v | 90.0 |
Eu1iv—Eu1—Eu1vi | 180.0 | Eu1xiv—Sn1—Eu1v | 60.0 |
Eu1v—Eu1—Eu1vi | 120.0 | Eu1xv—Sn1—Eu1v | 180.0 |
O1i—Eu1—Eu1vii | 45.0 | Eu1xi—Sn1—Eu1xvi | 120.0 |
O1—Eu1—Eu1vii | 135.0 | Eu1—Sn1—Eu1xvi | 90.0 |
Sn1—Eu1—Eu1vii | 120.0 | Eu1viii—Sn1—Eu1xvi | 60.0 |
Eu1ii—Eu1—Eu1vii | 90.0 | Eu1xii—Sn1—Eu1xvi | 60.0 |
Sn1iii—Eu1—Eu1vii | 60.0 | Eu1xiii—Sn1—Eu1xvi | 90.0 |
Eu1iv—Eu1—Eu1vii | 60.0 | Eu1x—Sn1—Eu1xvi | 120.0 |
Eu1v—Eu1—Eu1vii | 90.0 | Eu1xiv—Sn1—Eu1xvi | 180.0 |
Eu1vi—Eu1—Eu1vii | 120.0 | Eu1xv—Sn1—Eu1xvi | 60.0 |
O1i—Eu1—Eu1viii | 135.0 | Eu1v—Sn1—Eu1xvi | 120.0 |
O1—Eu1—Eu1viii | 45.0 | Eu1xi—Sn1—Eu1iv | 90.0 |
Sn1—Eu1—Eu1viii | 60.0 | Eu1—Sn1—Eu1iv | 60.0 |
Eu1ii—Eu1—Eu1viii | 60.0 | Eu1viii—Sn1—Eu1iv | 90.0 |
Sn1iii—Eu1—Eu1viii | 120.0 | Eu1xii—Sn1—Eu1iv | 60.0 |
Eu1iv—Eu1—Eu1viii | 90.0 | Eu1xiii—Sn1—Eu1iv | 120.0 |
Eu1v—Eu1—Eu1viii | 120.0 | Eu1x—Sn1—Eu1iv | 120.0 |
Eu1vi—Eu1—Eu1viii | 90.0 | Eu1xiv—Sn1—Eu1iv | 120.0 |
Eu1vii—Eu1—Eu1viii | 120.0 | Eu1xv—Sn1—Eu1iv | 120.0 |
O1i—Eu1—Eu1ix | 45.0 | Eu1v—Sn1—Eu1iv | 60.0 |
O1—Eu1—Eu1ix | 135.0 | Eu1xvi—Sn1—Eu1iv | 60.0 |
Sn1—Eu1—Eu1ix | 120.0 | Eu1xi—Sn1—Eu1xvii | 90.0 |
Eu1ii—Eu1—Eu1ix | 120.0 | Eu1—Sn1—Eu1xvii | 120.0 |
Sn1iii—Eu1—Eu1ix | 60.0 | Eu1viii—Sn1—Eu1xvii | 90.0 |
Eu1iv—Eu1—Eu1ix | 90.0 | Eu1xii—Sn1—Eu1xvii | 120.0 |
Eu1v—Eu1—Eu1ix | 60.0 | Eu1xiii—Sn1—Eu1xvii | 60.0 |
Eu1vi—Eu1—Eu1ix | 90.0 | Eu1x—Sn1—Eu1xvii | 60.0 |
Eu1vii—Eu1—Eu1ix | 60.0 | Eu1xiv—Sn1—Eu1xvii | 60.0 |
Eu1viii—Eu1—Eu1ix | 180.0 | Eu1xv—Sn1—Eu1xvii | 60.0 |
O1i—Eu1—Eu1x | 135.0 | Eu1v—Sn1—Eu1xvii | 120.0 |
O1—Eu1—Eu1x | 45.0 | Eu1xvi—Sn1—Eu1xvii | 120.0 |
Sn1—Eu1—Eu1x | 60.0 | Eu1iv—Sn1—Eu1xvii | 180.0 |
Eu1ii—Eu1—Eu1x | 90.0 | Eu1viii—O1—Eu1 | 90.0 |
Sn1iii—Eu1—Eu1x | 120.0 | Eu1viii—O1—Eu1xviii | 90.0 |
Eu1iv—Eu1—Eu1x | 120.0 | Eu1—O1—Eu1xviii | 180.0 |
Eu1v—Eu1—Eu1x | 90.0 | Eu1viii—O1—Eu1ii | 90.0 |
Eu1vi—Eu1—Eu1x | 60.0 | Eu1—O1—Eu1ii | 90.0 |
Eu1vii—Eu1—Eu1x | 180.0 | Eu1xviii—O1—Eu1ii | 90.0 |
Eu1viii—Eu1—Eu1x | 60.0 | Eu1viii—O1—Eu1x | 90.0 |
Eu1ix—Eu1—Eu1x | 120.0 | Eu1—O1—Eu1x | 90.0 |
Eu1xi—Sn1—Eu1 | 120.0 | Eu1xviii—O1—Eu1x | 90.0 |
Eu1xi—Sn1—Eu1viii | 180.0 | Eu1ii—O1—Eu1x | 180.0 |
Eu1—Sn1—Eu1viii | 60.0 | Eu1viii—O1—Eu1vi | 180.0 |
Eu1xi—Sn1—Eu1xii | 60.0 | Eu1—O1—Eu1vi | 90.0 |
Eu1—Sn1—Eu1xii | 120.0 | Eu1xviii—O1—Eu1vi | 90.0 |
Eu1viii—Sn1—Eu1xii | 120.0 | Eu1ii—O1—Eu1vi | 90.0 |
Eu1xi—Sn1—Eu1xiii | 60.0 | Eu1x—O1—Eu1vi | 90.0 |
Eu1—Sn1—Eu1xiii | 180.0 |
Symmetry codes: (i) x+1, y, z; (ii) z, x−1, y; (iii) x, y−1, z−1; (iv) y+1, z, x; (v) z+1, x, y; (vi) y, z, x−1; (vii) z+1, x−1, y; (viii) y, z, x; (ix) y+1, z, x−1; (x) z, x, y; (xi) y+1, z+1, x; (xii) z+1, x, y+1; (xiii) x, y+1, z+1; (xiv) x, y+1, z; (xv) z, x, y+1; (xvi) x, y, z+1; (xvii) y, z+1, x; (xviii) x−1, y, z. |
Ba3SnO | Mo Kα radiation, λ = 0.71073 Å |
Mr = 546.71 | Cell parameters from 852 reflections |
Cubic, Pm3m | θ = 3.7–36.8° |
a = 5.444 (3) Å | µ = 21.75 mm−1 |
V = 161.3 (2) Å3 | T = 295 K |
Z = 1 | Block, dark grey metallic |
F(000) = 226 | 0.08 × 0.06 × 0.05 mm |
Dx = 5.627 Mg m−3 |
SMART APEX II, Bruker AXS diffractometer | 108 reflections with I > 2σ(I) |
ωscan | Rint = 0.023 |
Absorption correction: multi-scan Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany. | θmax = 36.8°, θmin = 3.7° |
Tmin = 0.094, Tmax = 0.167 | h = −9→9 |
3126 measured reflections | k = −9→9 |
114 independent reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.016 | w = 1/[σ2(Fo2) + (0.0275P)2 + 0.1057P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.067 | (Δ/σ)max < 0.001 |
S = 1.44 | Δρmax = 1.00 e Å−3 |
114 reflections | Δρmin = −0.62 e Å−3 |
6 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.072 (7) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.5000 | 0.0000 | 0.0000 | 0.0239 (3) | |
Sn2 | 0.5000 | 0.5000 | 0.5000 | 0.0159 (3) | |
O3 | 0.0000 | 0.0000 | 0.0000 | 0.0146 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.0134 (3) | 0.0291 (3) | 0.0291 (3) | 0.000 | 0.000 | 0.000 |
Sn2 | 0.0159 (3) | 0.0159 (3) | 0.0159 (3) | 0.000 | 0.000 | 0.000 |
O3 | 0.0146 (12) | 0.0146 (12) | 0.0146 (12) | 0.000 | 0.000 | 0.000 |
Ba1—O3i | 2.7220 (13) | Sn2—Ba1xii | 3.8495 (18) |
Ba1—O3 | 2.7220 (13) | Sn2—Ba1xiii | 3.8495 (18) |
Ba1—Sn2 | 3.8495 (18) | Sn2—Ba1x | 3.8495 (18) |
Ba1—Ba1ii | 3.8495 (18) | Sn2—Ba1xiv | 3.8495 (18) |
Ba1—Sn2iii | 3.8495 (18) | Sn2—Ba1xv | 3.8495 (18) |
Ba1—Ba1iv | 3.8495 (18) | Sn2—Ba1v | 3.8495 (18) |
Ba1—Ba1v | 3.8495 (18) | Sn2—Ba1xvi | 3.8495 (18) |
Ba1—Ba1vi | 3.8495 (18) | Sn2—Ba1iv | 3.8495 (18) |
Ba1—Ba1vii | 3.8495 (18) | Sn2—Ba1xvii | 3.8495 (18) |
Ba1—Ba1viii | 3.8495 (18) | O3—Ba1viii | 2.7220 (13) |
Ba1—Ba1ix | 3.8495 (18) | O3—Ba1xviii | 2.7220 (13) |
Ba1—Ba1x | 3.8495 (18) | O3—Ba1ii | 2.7220 (13) |
Sn2—Ba1xi | 3.8495 (18) | O3—Ba1x | 2.7220 (13) |
Sn2—Ba1viii | 3.8495 (18) | O3—Ba1vi | 2.7220 (13) |
O3i—Ba1—O3 | 180.0 | Ba1viii—Sn2—Ba1xiii | 120.0 |
O3i—Ba1—Sn2 | 90.0 | Ba1xii—Sn2—Ba1xiii | 60.0 |
O3—Ba1—Sn2 | 90.0 | Ba1xi—Sn2—Ba1x | 120.0 |
O3i—Ba1—Ba1ii | 135.0 | Ba1—Sn2—Ba1x | 60.0 |
O3—Ba1—Ba1ii | 45.0 | Ba1viii—Sn2—Ba1x | 60.0 |
Sn2—Ba1—Ba1ii | 120.0 | Ba1xii—Sn2—Ba1x | 180.0 |
O3i—Ba1—Sn2iii | 90.0 | Ba1xiii—Sn2—Ba1x | 120.0 |
O3—Ba1—Sn2iii | 90.0 | Ba1xi—Sn2—Ba1xiv | 60.0 |
Sn2—Ba1—Sn2iii | 180.0 | Ba1—Sn2—Ba1xiv | 90.0 |
Ba1ii—Ba1—Sn2iii | 60.0 | Ba1viii—Sn2—Ba1xiv | 120.0 |
O3i—Ba1—Ba1iv | 45.0 | Ba1xii—Sn2—Ba1xiv | 120.0 |
O3—Ba1—Ba1iv | 135.0 | Ba1xiii—Sn2—Ba1xiv | 90.0 |
Sn2—Ba1—Ba1iv | 60.0 | Ba1x—Sn2—Ba1xiv | 60.0 |
Ba1ii—Ba1—Ba1iv | 120.0 | Ba1xi—Sn2—Ba1xv | 120.0 |
Sn2iii—Ba1—Ba1iv | 120.0 | Ba1—Sn2—Ba1xv | 120.0 |
O3i—Ba1—Ba1v | 45.0 | Ba1viii—Sn2—Ba1xv | 60.0 |
O3—Ba1—Ba1v | 135.0 | Ba1xii—Sn2—Ba1xv | 90.0 |
Sn2—Ba1—Ba1v | 60.0 | Ba1xiii—Sn2—Ba1xv | 60.0 |
Ba1ii—Ba1—Ba1v | 180.0 | Ba1x—Sn2—Ba1xv | 90.0 |
Sn2iii—Ba1—Ba1v | 120.0 | Ba1xiv—Sn2—Ba1xv | 120.0 |
Ba1iv—Ba1—Ba1v | 60.0 | Ba1xi—Sn2—Ba1v | 60.0 |
O3i—Ba1—Ba1vi | 135.0 | Ba1—Sn2—Ba1v | 60.0 |
O3—Ba1—Ba1vi | 45.0 | Ba1viii—Sn2—Ba1v | 120.0 |
Sn2—Ba1—Ba1vi | 120.0 | Ba1xii—Sn2—Ba1v | 90.0 |
Ba1ii—Ba1—Ba1vi | 60.0 | Ba1xiii—Sn2—Ba1v | 120.0 |
Sn2iii—Ba1—Ba1vi | 60.0 | Ba1x—Sn2—Ba1v | 90.0 |
Ba1iv—Ba1—Ba1vi | 180.0 | Ba1xiv—Sn2—Ba1v | 60.0 |
Ba1v—Ba1—Ba1vi | 120.0 | Ba1xv—Sn2—Ba1v | 180.0 |
O3i—Ba1—Ba1vii | 45.0 | Ba1xi—Sn2—Ba1xvi | 120.0 |
O3—Ba1—Ba1vii | 135.0 | Ba1—Sn2—Ba1xvi | 90.0 |
Sn2—Ba1—Ba1vii | 120.0 | Ba1viii—Sn2—Ba1xvi | 60.0 |
Ba1ii—Ba1—Ba1vii | 90.0 | Ba1xii—Sn2—Ba1xvi | 60.0 |
Sn2iii—Ba1—Ba1vii | 60.0 | Ba1xiii—Sn2—Ba1xvi | 90.0 |
Ba1iv—Ba1—Ba1vii | 60.0 | Ba1x—Sn2—Ba1xvi | 120.0 |
Ba1v—Ba1—Ba1vii | 90.0 | Ba1xiv—Sn2—Ba1xvi | 180.0 |
Ba1vi—Ba1—Ba1vii | 120.0 | Ba1xv—Sn2—Ba1xvi | 60.0 |
O3i—Ba1—Ba1viii | 135.0 | Ba1v—Sn2—Ba1xvi | 120.0 |
O3—Ba1—Ba1viii | 45.0 | Ba1xi—Sn2—Ba1iv | 90.0 |
Sn2—Ba1—Ba1viii | 60.0 | Ba1—Sn2—Ba1iv | 60.0 |
Ba1ii—Ba1—Ba1viii | 60.0 | Ba1viii—Sn2—Ba1iv | 90.0 |
Sn2iii—Ba1—Ba1viii | 120.0 | Ba1xii—Sn2—Ba1iv | 60.0 |
Ba1iv—Ba1—Ba1viii | 90.0 | Ba1xiii—Sn2—Ba1iv | 120.0 |
Ba1v—Ba1—Ba1viii | 120.0 | Ba1x—Sn2—Ba1iv | 120.0 |
Ba1vi—Ba1—Ba1viii | 90.0 | Ba1xiv—Sn2—Ba1iv | 120.0 |
Ba1vii—Ba1—Ba1viii | 120.0 | Ba1xv—Sn2—Ba1iv | 120.0 |
O3i—Ba1—Ba1ix | 45.0 | Ba1v—Sn2—Ba1iv | 60.0 |
O3—Ba1—Ba1ix | 135.0 | Ba1xvi—Sn2—Ba1iv | 60.0 |
Sn2—Ba1—Ba1ix | 120.0 | Ba1xi—Sn2—Ba1xvii | 90.0 |
Ba1ii—Ba1—Ba1ix | 120.0 | Ba1—Sn2—Ba1xvii | 120.0 |
Sn2iii—Ba1—Ba1ix | 60.0 | Ba1viii—Sn2—Ba1xvii | 90.0 |
Ba1iv—Ba1—Ba1ix | 90.0 | Ba1xii—Sn2—Ba1xvii | 120.0 |
Ba1v—Ba1—Ba1ix | 60.0 | Ba1xiii—Sn2—Ba1xvii | 60.0 |
Ba1vi—Ba1—Ba1ix | 90.0 | Ba1x—Sn2—Ba1xvii | 60.0 |
Ba1vii—Ba1—Ba1ix | 60.0 | Ba1xiv—Sn2—Ba1xvii | 60.0 |
Ba1viii—Ba1—Ba1ix | 180.0 | Ba1xv—Sn2—Ba1xvii | 60.0 |
O3i—Ba1—Ba1x | 135.0 | Ba1v—Sn2—Ba1xvii | 120.0 |
O3—Ba1—Ba1x | 45.0 | Ba1xvi—Sn2—Ba1xvii | 120.0 |
Sn2—Ba1—Ba1x | 60.0 | Ba1iv—Sn2—Ba1xvii | 180.0 |
Ba1ii—Ba1—Ba1x | 90.0 | Ba1viii—O3—Ba1 | 90.0 |
Sn2iii—Ba1—Ba1x | 120.0 | Ba1viii—O3—Ba1xviii | 90.0 |
Ba1iv—Ba1—Ba1x | 120.0 | Ba1—O3—Ba1xviii | 180.0 |
Ba1v—Ba1—Ba1x | 90.0 | Ba1viii—O3—Ba1ii | 90.0 |
Ba1vi—Ba1—Ba1x | 60.0 | Ba1—O3—Ba1ii | 90.0 |
Ba1vii—Ba1—Ba1x | 180.0 | Ba1xviii—O3—Ba1ii | 90.0 |
Ba1viii—Ba1—Ba1x | 60.0 | Ba1viii—O3—Ba1x | 90.0 |
Ba1ix—Ba1—Ba1x | 120.0 | Ba1—O3—Ba1x | 90.0 |
Ba1xi—Sn2—Ba1 | 120.0 | Ba1xviii—O3—Ba1x | 90.0 |
Ba1xi—Sn2—Ba1viii | 180.0 | Ba1ii—O3—Ba1x | 180.0 |
Ba1—Sn2—Ba1viii | 60.0 | Ba1viii—O3—Ba1vi | 180.0 |
Ba1xi—Sn2—Ba1xii | 60.0 | Ba1—O3—Ba1vi | 90.0 |
Ba1—Sn2—Ba1xii | 120.0 | Ba1xviii—O3—Ba1vi | 90.0 |
Ba1viii—Sn2—Ba1xii | 120.0 | Ba1ii—O3—Ba1vi | 90.0 |
Ba1xi—Sn2—Ba1xiii | 60.0 | Ba1x—O3—Ba1vi | 90.0 |
Ba1—Sn2—Ba1xiii | 180.0 |
Symmetry codes: (i) x+1, y, z; (ii) z, x−1, y; (iii) x, y−1, z−1; (iv) y+1, z, x; (v) z+1, x, y; (vi) y, z, x−1; (vii) z+1, x−1, y; (viii) y, z, x; (ix) y+1, z, x−1; (x) z, x, y; (xi) y+1, z+1, x; (xii) z+1, x, y+1; (xiii) x, y+1, z+1; (xiv) x, y+1, z; (xv) z, x, y+1; (xvi) x, y, z+1; (xvii) y, z+1, x; (xviii) x−1, y, z. |
Ca3PbO | Mo Kα radiation, λ = 0.71073 Å |
Mr = 343.43 | Cell parameters from 2179 reflections |
Cubic, Pm3m | θ = 4.2–36.9° |
a = 4.8402 (7) Å | µ = 40.39 mm−1 |
V = 113.39 (5) Å3 | T = 295 K |
Z = 1 | Block, dark grey metallic |
F(000) = 150 | 0.14 × 0.08 × 0.05 mm |
Dx = 5.029 Mg m−3 |
SMART APEX II, Bruker AXS diffractometer | 86 reflections with I > 2σ(I) |
ωscan | Rint = 0.036 |
Absorption correction: multi-scan Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany. | θmax = 36.9°, θmin = 4.2° |
Tmin = 0.068, Tmax = 0.167 | h = −8→8 |
2184 measured reflections | k = −8→8 |
86 independent reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.012 | w = 1/[σ2(Fo2) + (0.0165P)2 + 0.2596P]
where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.030 | (Δ/σ)max < 0.001 |
S = 1.21 | Δρmax = 1.23 e Å−3 |
86 reflections | Δρmin = −1.07 e Å−3 |
6 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.096 (7) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pb | 0.5000 | 0.5000 | 0.5000 | 0.00839 (16) | |
Ca | 0.5000 | 0.0000 | 0.0000 | 0.0105 (2) | |
O | 0.0000 | 0.0000 | 0.0000 | 0.0090 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pb | 0.00839 (16) | 0.00839 (16) | 0.00839 (16) | 0.000 | 0.000 | 0.000 |
Ca | 0.0078 (4) | 0.0118 (3) | 0.0118 (3) | 0.000 | 0.000 | 0.000 |
O | 0.0090 (13) | 0.0090 (13) | 0.0090 (13) | 0.000 | 0.000 | 0.000 |
Pb—Cai | 3.4225 (5) | Ca—Pbxiii | 3.4225 (5) |
Pb—Ca | 3.4225 (5) | Ca—Cax | 3.4225 (5) |
Pb—Caii | 3.4225 (5) | Ca—Caxiv | 3.4225 (5) |
Pb—Caiii | 3.4225 (5) | Ca—Caxv | 3.4225 (5) |
Pb—Caiv | 3.4225 (5) | Ca—Caviii | 3.4225 (5) |
Pb—Cav | 3.4225 (5) | Ca—Pbxvi | 3.4225 (5) |
Pb—Cavi | 3.4225 (5) | Ca—Cav | 3.4225 (5) |
Pb—Cavii | 3.4225 (5) | Ca—Caxvii | 3.4225 (5) |
Pb—Caviii | 3.4225 (5) | Ca—Caxviii | 3.4225 (5) |
Pb—Caix | 3.4225 (5) | O—Caii | 2.4201 (4) |
Pb—Cax | 3.4225 (5) | O—Caxix | 2.4201 (4) |
Pb—Caxi | 3.4225 (5) | O—Caxv | 2.4201 (4) |
Ca—Oxii | 2.4201 (4) | O—Cav | 2.4201 (4) |
Ca—O | 2.4201 (4) | O—Caxiv | 2.4201 (4) |
Cai—Pb—Ca | 120.0 | Pb—Ca—Cax | 60.0 |
Cai—Pb—Caii | 180.0 | Pbxiii—Ca—Cax | 120.0 |
Ca—Pb—Caii | 60.0 | Oxii—Ca—Caxiv | 135.0 |
Cai—Pb—Caiii | 60.0 | O—Ca—Caxiv | 45.0 |
Ca—Pb—Caiii | 120.0 | Pb—Ca—Caxiv | 120.0 |
Caii—Pb—Caiii | 120.0 | Pbxiii—Ca—Caxiv | 60.0 |
Cai—Pb—Caiv | 60.0 | Cax—Ca—Caxiv | 180.0 |
Ca—Pb—Caiv | 180.0 | Oxii—Ca—Caxv | 135.0 |
Caii—Pb—Caiv | 120.0 | O—Ca—Caxv | 45.0 |
Caiii—Pb—Caiv | 60.0 | Pb—Ca—Caxv | 120.0 |
Cai—Pb—Cav | 120.0 | Pbxiii—Ca—Caxv | 60.0 |
Ca—Pb—Cav | 60.0 | Cax—Ca—Caxv | 120.0 |
Caii—Pb—Cav | 60.0 | Caxiv—Ca—Caxv | 60.0 |
Caiii—Pb—Cav | 180.0 | Oxii—Ca—Caviii | 45.0 |
Caiv—Pb—Cav | 120.0 | O—Ca—Caviii | 135.0 |
Cai—Pb—Cavi | 60.0 | Pb—Ca—Caviii | 60.0 |
Ca—Pb—Cavi | 90.0 | Pbxiii—Ca—Caviii | 120.0 |
Caii—Pb—Cavi | 120.0 | Cax—Ca—Caviii | 60.0 |
Caiii—Pb—Cavi | 120.0 | Caxiv—Ca—Caviii | 120.0 |
Caiv—Pb—Cavi | 90.0 | Caxv—Ca—Caviii | 180.0 |
Cav—Pb—Cavi | 60.0 | Oxii—Ca—Pbxvi | 90.0 |
Cai—Pb—Cavii | 120.0 | O—Ca—Pbxvi | 90.0 |
Ca—Pb—Cavii | 120.0 | Pb—Ca—Pbxvi | 90.0 |
Caii—Pb—Cavii | 60.0 | Pbxiii—Ca—Pbxvi | 90.0 |
Caiii—Pb—Cavii | 90.0 | Cax—Ca—Pbxvi | 120.0 |
Caiv—Pb—Cavii | 60.0 | Caxiv—Ca—Pbxvi | 60.0 |
Cav—Pb—Cavii | 90.0 | Caxv—Ca—Pbxvi | 120.0 |
Cavi—Pb—Cavii | 120.0 | Caviii—Ca—Pbxvi | 60.0 |
Cai—Pb—Caviii | 60.0 | Oxii—Ca—Cav | 135.0 |
Ca—Pb—Caviii | 60.0 | O—Ca—Cav | 45.0 |
Caii—Pb—Caviii | 120.0 | Pb—Ca—Cav | 60.0 |
Caiii—Pb—Caviii | 90.0 | Pbxiii—Ca—Cav | 120.0 |
Caiv—Pb—Caviii | 120.0 | Cax—Ca—Cav | 120.0 |
Cav—Pb—Caviii | 90.0 | Caxiv—Ca—Cav | 60.0 |
Cavi—Pb—Caviii | 60.0 | Caxv—Ca—Cav | 90.0 |
Cavii—Pb—Caviii | 180.0 | Caviii—Ca—Cav | 90.0 |
Cai—Pb—Caix | 120.0 | Pbxvi—Ca—Cav | 60.0 |
Ca—Pb—Caix | 90.0 | Oxii—Ca—Caxvii | 45.0 |
Caii—Pb—Caix | 60.0 | O—Ca—Caxvii | 135.0 |
Caiii—Pb—Caix | 60.0 | Pb—Ca—Caxvii | 120.0 |
Caiv—Pb—Caix | 90.0 | Pbxiii—Ca—Caxvii | 60.0 |
Cav—Pb—Caix | 120.0 | Cax—Ca—Caxvii | 60.0 |
Cavi—Pb—Caix | 180.0 | Caxiv—Ca—Caxvii | 120.0 |
Cavii—Pb—Caix | 60.0 | Caxv—Ca—Caxvii | 90.0 |
Caviii—Pb—Caix | 120.0 | Caviii—Ca—Caxvii | 90.0 |
Cai—Pb—Cax | 90.0 | Pbxvi—Ca—Caxvii | 120.0 |
Ca—Pb—Cax | 60.0 | Cav—Ca—Caxvii | 180.0 |
Caii—Pb—Cax | 90.0 | Oxii—Ca—Caxviii | 45.0 |
Caiii—Pb—Cax | 60.0 | O—Ca—Caxviii | 135.0 |
Caiv—Pb—Cax | 120.0 | Pb—Ca—Caxviii | 120.0 |
Cav—Pb—Cax | 120.0 | Pbxiii—Ca—Caxviii | 60.0 |
Cavi—Pb—Cax | 120.0 | Cax—Ca—Caxviii | 90.0 |
Cavii—Pb—Cax | 120.0 | Caxiv—Ca—Caxviii | 90.0 |
Caviii—Pb—Cax | 60.0 | Caxv—Ca—Caxviii | 120.0 |
Caix—Pb—Cax | 60.0 | Caviii—Ca—Caxviii | 60.0 |
Cai—Pb—Caxi | 90.0 | Pbxvi—Ca—Caxviii | 60.0 |
Ca—Pb—Caxi | 120.0 | Cav—Ca—Caxviii | 120.0 |
Caii—Pb—Caxi | 90.0 | Caxvii—Ca—Caxviii | 60.0 |
Caiii—Pb—Caxi | 120.0 | Caii—O—Ca | 90.0 |
Caiv—Pb—Caxi | 60.0 | Caii—O—Caxix | 90.0 |
Cav—Pb—Caxi | 60.0 | Ca—O—Caxix | 180.0 |
Cavi—Pb—Caxi | 60.0 | Caii—O—Caxv | 90.0 |
Cavii—Pb—Caxi | 60.0 | Ca—O—Caxv | 90.0 |
Caviii—Pb—Caxi | 120.0 | Caxix—O—Caxv | 90.0 |
Caix—Pb—Caxi | 120.0 | Caii—O—Cav | 90.0 |
Cax—Pb—Caxi | 180.0 | Ca—O—Cav | 90.0 |
Oxii—Ca—O | 180.0 | Caxix—O—Cav | 90.0 |
Oxii—Ca—Pb | 90.0 | Caxv—O—Cav | 180.0 |
O—Ca—Pb | 90.0 | Caii—O—Caxiv | 180.0 |
Oxii—Ca—Pbxiii | 90.0 | Ca—O—Caxiv | 90.0 |
O—Ca—Pbxiii | 90.0 | Caxix—O—Caxiv | 90.0 |
Pb—Ca—Pbxiii | 180.0 | Caxv—O—Caxiv | 90.0 |
Oxii—Ca—Cax | 45.0 | Cav—O—Caxiv | 90.0 |
O—Ca—Cax | 135.0 |
Symmetry codes: (i) y+1, z+1, x; (ii) y, z, x; (iii) z+1, x, y+1; (iv) x, y+1, z+1; (v) z, x, y; (vi) x, y+1, z; (vii) z, x, y+1; (viii) z+1, x, y; (ix) x, y, z+1; (x) y+1, z, x; (xi) y, z+1, x; (xii) x+1, y, z; (xiii) x, y−1, z−1; (xiv) y, z, x−1; (xv) z, x−1, y; (xvi) x, y, z−1; (xvii) z+1, x−1, y; (xviii) y+1, z, x−1; (xix) x−1, y, z. |
Sr3PbO | Mo Kα radiation, λ = 0.71073 Å |
Mr = 486.05 | Cell parameters from 1032 reflections |
Cubic, Pm3m | θ = 4.0–36.9° |
a = 5.151 (3) Å | µ = 59.67 mm−1 |
V = 136.6 (2) Å3 | T = 295 K |
Z = 1 | Block, dark grey metallic |
F(000) = 204 | 0.12 × 0.12 × 0.04 mm |
Dx = 5.907 Mg m−3 |
SMART APEX II, Bruker AXS diffractometer | 101 reflections with I > 2σ(I) |
ωscan | Rint = 0.059 |
Absorption correction: multi-scan Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany. | θmax = 37.0°, θmin = 4.0° |
Tmin = 0.025, Tmax = 0.111 | h = −8→8 |
1691 measured reflections | k = −8→6 |
101 independent reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.018 | w = 1/[σ2(Fo2) + (0.0167P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.037 | (Δ/σ)max < 0.001 |
S = 1.24 | Δρmax = 1.74 e Å−3 |
101 reflections | Δρmin = −1.72 e Å−3 |
6 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.159 (9) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pb | 0.5000 | 0.5000 | 0.5000 | 0.01312 (16) | |
Sr | 0.5000 | 0.0000 | 0.0000 | 0.01613 (19) | |
O | 0.0000 | 0.0000 | 0.0000 | 0.0135 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pb | 0.01312 (16) | 0.01312 (16) | 0.01312 (16) | 0.000 | 0.000 | 0.000 |
Sr | 0.0109 (2) | 0.0187 (2) | 0.0187 (2) | 0.000 | 0.000 | 0.000 |
O | 0.0135 (12) | 0.0135 (12) | 0.0135 (12) | 0.000 | 0.000 | 0.000 |
Pb—Sri | 3.642 (2) | Sr—Pbxiii | 3.642 (2) |
Pb—Sr | 3.642 (2) | Sr—Srx | 3.642 (2) |
Pb—Srii | 3.642 (2) | Sr—Srxiv | 3.642 (2) |
Pb—Sriii | 3.642 (2) | Sr—Srxv | 3.642 (2) |
Pb—Sriv | 3.642 (2) | Sr—Srviii | 3.642 (2) |
Pb—Srv | 3.642 (2) | Sr—Pbxvi | 3.642 (2) |
Pb—Srvi | 3.642 (2) | Sr—Srv | 3.642 (2) |
Pb—Srvii | 3.642 (2) | Sr—Srxvii | 3.642 (2) |
Pb—Srviii | 3.642 (2) | Sr—Srxviii | 3.642 (2) |
Pb—Srix | 3.642 (2) | O—Srii | 2.5753 (15) |
Pb—Srx | 3.642 (2) | O—Srxix | 2.5753 (15) |
Pb—Srxi | 3.642 (2) | O—Srxv | 2.5753 (15) |
Sr—Oxii | 2.5753 (15) | O—Srv | 2.5753 (15) |
Sr—O | 2.5753 (15) | O—Srxiv | 2.5753 (15) |
Sri—Pb—Sr | 120.0 | Pb—Sr—Srx | 60.0 |
Sri—Pb—Srii | 180.0 | Pbxiii—Sr—Srx | 120.0 |
Sr—Pb—Srii | 60.0 | Oxii—Sr—Srxiv | 135.0 |
Sri—Pb—Sriii | 60.0 | O—Sr—Srxiv | 45.0 |
Sr—Pb—Sriii | 120.0 | Pb—Sr—Srxiv | 120.0 |
Srii—Pb—Sriii | 120.0 | Pbxiii—Sr—Srxiv | 60.0 |
Sri—Pb—Sriv | 60.0 | Srx—Sr—Srxiv | 180.0 |
Sr—Pb—Sriv | 180.0 | Oxii—Sr—Srxv | 135.0 |
Srii—Pb—Sriv | 120.0 | O—Sr—Srxv | 45.0 |
Sriii—Pb—Sriv | 60.0 | Pb—Sr—Srxv | 120.0 |
Sri—Pb—Srv | 120.0 | Pbxiii—Sr—Srxv | 60.0 |
Sr—Pb—Srv | 60.0 | Srx—Sr—Srxv | 120.0 |
Srii—Pb—Srv | 60.0 | Srxiv—Sr—Srxv | 60.0 |
Sriii—Pb—Srv | 180.0 | Oxii—Sr—Srviii | 45.0 |
Sriv—Pb—Srv | 120.0 | O—Sr—Srviii | 135.0 |
Sri—Pb—Srvi | 60.0 | Pb—Sr—Srviii | 60.0 |
Sr—Pb—Srvi | 90.0 | Pbxiii—Sr—Srviii | 120.0 |
Srii—Pb—Srvi | 120.0 | Srx—Sr—Srviii | 60.0 |
Sriii—Pb—Srvi | 120.0 | Srxiv—Sr—Srviii | 120.0 |
Sriv—Pb—Srvi | 90.0 | Srxv—Sr—Srviii | 180.0 |
Srv—Pb—Srvi | 60.0 | Oxii—Sr—Pbxvi | 90.0 |
Sri—Pb—Srvii | 120.0 | O—Sr—Pbxvi | 90.0 |
Sr—Pb—Srvii | 120.0 | Pb—Sr—Pbxvi | 90.0 |
Srii—Pb—Srvii | 60.0 | Pbxiii—Sr—Pbxvi | 90.0 |
Sriii—Pb—Srvii | 90.0 | Srx—Sr—Pbxvi | 120.0 |
Sriv—Pb—Srvii | 60.0 | Srxiv—Sr—Pbxvi | 60.0 |
Srv—Pb—Srvii | 90.0 | Srxv—Sr—Pbxvi | 120.0 |
Srvi—Pb—Srvii | 120.0 | Srviii—Sr—Pbxvi | 60.0 |
Sri—Pb—Srviii | 60.0 | Oxii—Sr—Srv | 135.0 |
Sr—Pb—Srviii | 60.0 | O—Sr—Srv | 45.0 |
Srii—Pb—Srviii | 120.0 | Pb—Sr—Srv | 60.0 |
Sriii—Pb—Srviii | 90.0 | Pbxiii—Sr—Srv | 120.0 |
Sriv—Pb—Srviii | 120.0 | Srx—Sr—Srv | 120.0 |
Srv—Pb—Srviii | 90.0 | Srxiv—Sr—Srv | 60.0 |
Srvi—Pb—Srviii | 60.0 | Srxv—Sr—Srv | 90.0 |
Srvii—Pb—Srviii | 180.0 | Srviii—Sr—Srv | 90.0 |
Sri—Pb—Srix | 120.0 | Pbxvi—Sr—Srv | 60.0 |
Sr—Pb—Srix | 90.0 | Oxii—Sr—Srxvii | 45.0 |
Srii—Pb—Srix | 60.0 | O—Sr—Srxvii | 135.0 |
Sriii—Pb—Srix | 60.0 | Pb—Sr—Srxvii | 120.0 |
Sriv—Pb—Srix | 90.0 | Pbxiii—Sr—Srxvii | 60.0 |
Srv—Pb—Srix | 120.0 | Srx—Sr—Srxvii | 60.0 |
Srvi—Pb—Srix | 180.0 | Srxiv—Sr—Srxvii | 120.0 |
Srvii—Pb—Srix | 60.0 | Srxv—Sr—Srxvii | 90.0 |
Srviii—Pb—Srix | 120.0 | Srviii—Sr—Srxvii | 90.0 |
Sri—Pb—Srx | 90.0 | Pbxvi—Sr—Srxvii | 120.0 |
Sr—Pb—Srx | 60.0 | Srv—Sr—Srxvii | 180.0 |
Srii—Pb—Srx | 90.0 | Oxii—Sr—Srxviii | 45.0 |
Sriii—Pb—Srx | 60.0 | O—Sr—Srxviii | 135.0 |
Sriv—Pb—Srx | 120.0 | Pb—Sr—Srxviii | 120.0 |
Srv—Pb—Srx | 120.0 | Pbxiii—Sr—Srxviii | 60.0 |
Srvi—Pb—Srx | 120.0 | Srx—Sr—Srxviii | 90.0 |
Srvii—Pb—Srx | 120.0 | Srxiv—Sr—Srxviii | 90.0 |
Srviii—Pb—Srx | 60.0 | Srxv—Sr—Srxviii | 120.0 |
Srix—Pb—Srx | 60.0 | Srviii—Sr—Srxviii | 60.0 |
Sri—Pb—Srxi | 90.0 | Pbxvi—Sr—Srxviii | 60.0 |
Sr—Pb—Srxi | 120.0 | Srv—Sr—Srxviii | 120.0 |
Srii—Pb—Srxi | 90.0 | Srxvii—Sr—Srxviii | 60.0 |
Sriii—Pb—Srxi | 120.0 | Srii—O—Sr | 90.0 |
Sriv—Pb—Srxi | 60.0 | Srii—O—Srxix | 90.0 |
Srv—Pb—Srxi | 60.0 | Sr—O—Srxix | 180.0 |
Srvi—Pb—Srxi | 60.0 | Srii—O—Srxv | 90.0 |
Srvii—Pb—Srxi | 60.0 | Sr—O—Srxv | 90.0 |
Srviii—Pb—Srxi | 120.0 | Srxix—O—Srxv | 90.0 |
Srix—Pb—Srxi | 120.0 | Srii—O—Srv | 90.0 |
Srx—Pb—Srxi | 180.0 | Sr—O—Srv | 90.0 |
Oxii—Sr—O | 180.0 | Srxix—O—Srv | 90.0 |
Oxii—Sr—Pb | 90.0 | Srxv—O—Srv | 180.0 |
O—Sr—Pb | 90.0 | Srii—O—Srxiv | 180.0 |
Oxii—Sr—Pbxiii | 90.0 | Sr—O—Srxiv | 90.0 |
O—Sr—Pbxiii | 90.0 | Srxix—O—Srxiv | 90.0 |
Pb—Sr—Pbxiii | 180.0 | Srxv—O—Srxiv | 90.0 |
Oxii—Sr—Srx | 45.0 | Srv—O—Srxiv | 90.0 |
O—Sr—Srx | 135.0 |
Symmetry codes: (i) y+1, z+1, x; (ii) y, z, x; (iii) z+1, x, y+1; (iv) x, y+1, z+1; (v) z, x, y; (vi) x, y+1, z; (vii) z, x, y+1; (viii) z+1, x, y; (ix) x, y, z+1; (x) y+1, z, x; (xi) y, z+1, x; (xii) x+1, y, z; (xiii) x, y−1, z−1; (xiv) y, z, x−1; (xv) z, x−1, y; (xvi) x, y, z−1; (xvii) z+1, x−1, y; (xviii) y+1, z, x−1; (xix) x−1, y, z. |
Eu3PbO | Mo Kα radiation, λ = 0.71073 Å |
Mr = 679.07 | Cell parameters from 932 reflections |
Cubic, Pm3m | θ = 4.0–36.3° |
a = 5.0910 (19) Å | µ = 66.79 mm−1 |
V = 131.95 (15) Å3 | T = 295 K |
Z = 1 | Block, dark grey metallic |
F(000) = 279 | 0.40 × 0.08 × 0.06 mm |
Dx = 8.546 Mg m−3 |
SMART APEX II, Bruker AXS diffractometer | 93 reflections with I > 2σ(I) |
ωscan | Rint = 0.042 |
Absorption correction: multi-scan Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany. | θmax = 36.3°, θmin = 4.0° |
Tmin = 0.028, Tmax = 0.110 | h = −8→8 |
2520 measured reflections | k = −8→8 |
93 independent reflections | l = −8→8 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.011 | w = 1/[σ2(Fo2) + (0.0154P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.028 | (Δ/σ)max < 0.001 |
S = 1.13 | Δρmax = 0.95 e Å−3 |
93 reflections | Δρmin = −1.06 e Å−3 |
6 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.057 (2) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Eu | 0.5000 | 0.0000 | 0.0000 | 0.01608 (12) | |
Pb | 0.5000 | 0.5000 | 0.5000 | 0.01263 (12) | |
O1 | 0.0000 | 0.0000 | 0.0000 | 0.0110 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu | 0.01024 (12) | 0.01900 (12) | 0.01900 (12) | 0.000 | 0.000 | 0.000 |
Pb | 0.01263 (12) | 0.01263 (12) | 0.01263 (12) | 0.000 | 0.000 | 0.000 |
O1 | 0.0110 (7) | 0.0110 (7) | 0.0110 (7) | 0.000 | 0.000 | 0.000 |
Eu—O1i | 2.5455 (9) | Pb—Euxii | 3.5999 (13) |
Eu—O1 | 2.5455 (9) | Pb—Euxiii | 3.5999 (13) |
Eu—Pb | 3.5999 (13) | Pb—Eux | 3.5999 (13) |
Eu—Euii | 3.5999 (13) | Pb—Euxiv | 3.5999 (13) |
Eu—Pbiii | 3.5999 (13) | Pb—Euxv | 3.5999 (13) |
Eu—Euiv | 3.5999 (13) | Pb—Euv | 3.5999 (13) |
Eu—Euv | 3.5999 (13) | Pb—Euxvi | 3.5999 (13) |
Eu—Euvi | 3.5999 (13) | Pb—Euiv | 3.5999 (13) |
Eu—Euvii | 3.5999 (13) | Pb—Euxvii | 3.5999 (13) |
Eu—Euviii | 3.5999 (13) | O1—Euviii | 2.5455 (9) |
Eu—Euix | 3.5999 (13) | O1—Euxviii | 2.5455 (9) |
Eu—Eux | 3.5999 (13) | O1—Euii | 2.5455 (9) |
Pb—Euxi | 3.5999 (13) | O1—Eux | 2.5455 (9) |
Pb—Euviii | 3.5999 (13) | O1—Euvi | 2.5455 (9) |
O1i—Eu—O1 | 180.0 | Euviii—Pb—Euxiii | 120.0 |
O1i—Eu—Pb | 90.0 | Euxii—Pb—Euxiii | 60.0 |
O1—Eu—Pb | 90.0 | Euxi—Pb—Eux | 120.0 |
O1i—Eu—Euii | 135.0 | Eu—Pb—Eux | 60.0 |
O1—Eu—Euii | 45.0 | Euviii—Pb—Eux | 60.0 |
Pb—Eu—Euii | 120.0 | Euxii—Pb—Eux | 180.0 |
O1i—Eu—Pbiii | 90.0 | Euxiii—Pb—Eux | 120.0 |
O1—Eu—Pbiii | 90.0 | Euxi—Pb—Euxiv | 60.0 |
Pb—Eu—Pbiii | 180.0 | Eu—Pb—Euxiv | 90.0 |
Euii—Eu—Pbiii | 60.0 | Euviii—Pb—Euxiv | 120.0 |
O1i—Eu—Euiv | 45.0 | Euxii—Pb—Euxiv | 120.0 |
O1—Eu—Euiv | 135.0 | Euxiii—Pb—Euxiv | 90.0 |
Pb—Eu—Euiv | 60.0 | Eux—Pb—Euxiv | 60.0 |
Euii—Eu—Euiv | 120.0 | Euxi—Pb—Euxv | 120.0 |
Pbiii—Eu—Euiv | 120.0 | Eu—Pb—Euxv | 120.0 |
O1i—Eu—Euv | 45.0 | Euviii—Pb—Euxv | 60.0 |
O1—Eu—Euv | 135.0 | Euxii—Pb—Euxv | 90.0 |
Pb—Eu—Euv | 60.0 | Euxiii—Pb—Euxv | 60.0 |
Euii—Eu—Euv | 180.0 | Eux—Pb—Euxv | 90.0 |
Pbiii—Eu—Euv | 120.0 | Euxiv—Pb—Euxv | 120.0 |
Euiv—Eu—Euv | 60.0 | Euxi—Pb—Euv | 60.0 |
O1i—Eu—Euvi | 135.0 | Eu—Pb—Euv | 60.0 |
O1—Eu—Euvi | 45.0 | Euviii—Pb—Euv | 120.0 |
Pb—Eu—Euvi | 120.0 | Euxii—Pb—Euv | 90.0 |
Euii—Eu—Euvi | 60.0 | Euxiii—Pb—Euv | 120.0 |
Pbiii—Eu—Euvi | 60.0 | Eux—Pb—Euv | 90.0 |
Euiv—Eu—Euvi | 180.0 | Euxiv—Pb—Euv | 60.0 |
Euv—Eu—Euvi | 120.0 | Euxv—Pb—Euv | 180.0 |
O1i—Eu—Euvii | 45.0 | Euxi—Pb—Euxvi | 120.0 |
O1—Eu—Euvii | 135.0 | Eu—Pb—Euxvi | 90.0 |
Pb—Eu—Euvii | 120.0 | Euviii—Pb—Euxvi | 60.0 |
Euii—Eu—Euvii | 90.0 | Euxii—Pb—Euxvi | 60.0 |
Pbiii—Eu—Euvii | 60.0 | Euxiii—Pb—Euxvi | 90.0 |
Euiv—Eu—Euvii | 60.0 | Eux—Pb—Euxvi | 120.0 |
Euv—Eu—Euvii | 90.0 | Euxiv—Pb—Euxvi | 180.0 |
Euvi—Eu—Euvii | 120.0 | Euxv—Pb—Euxvi | 60.0 |
O1i—Eu—Euviii | 135.0 | Euv—Pb—Euxvi | 120.0 |
O1—Eu—Euviii | 45.0 | Euxi—Pb—Euiv | 90.0 |
Pb—Eu—Euviii | 60.0 | Eu—Pb—Euiv | 60.0 |
Euii—Eu—Euviii | 60.0 | Euviii—Pb—Euiv | 90.0 |
Pbiii—Eu—Euviii | 120.0 | Euxii—Pb—Euiv | 60.0 |
Euiv—Eu—Euviii | 90.0 | Euxiii—Pb—Euiv | 120.0 |
Euv—Eu—Euviii | 120.0 | Eux—Pb—Euiv | 120.0 |
Euvi—Eu—Euviii | 90.0 | Euxiv—Pb—Euiv | 120.0 |
Euvii—Eu—Euviii | 120.0 | Euxv—Pb—Euiv | 120.0 |
O1i—Eu—Euix | 45.0 | Euv—Pb—Euiv | 60.0 |
O1—Eu—Euix | 135.0 | Euxvi—Pb—Euiv | 60.0 |
Pb—Eu—Euix | 120.0 | Euxi—Pb—Euxvii | 90.0 |
Euii—Eu—Euix | 120.0 | Eu—Pb—Euxvii | 120.0 |
Pbiii—Eu—Euix | 60.0 | Euviii—Pb—Euxvii | 90.0 |
Euiv—Eu—Euix | 90.0 | Euxii—Pb—Euxvii | 120.0 |
Euv—Eu—Euix | 60.0 | Euxiii—Pb—Euxvii | 60.0 |
Euvi—Eu—Euix | 90.0 | Eux—Pb—Euxvii | 60.0 |
Euvii—Eu—Euix | 60.0 | Euxiv—Pb—Euxvii | 60.0 |
Euviii—Eu—Euix | 180.0 | Euxv—Pb—Euxvii | 60.0 |
O1i—Eu—Eux | 135.0 | Euv—Pb—Euxvii | 120.0 |
O1—Eu—Eux | 45.0 | Euxvi—Pb—Euxvii | 120.0 |
Pb—Eu—Eux | 60.0 | Euiv—Pb—Euxvii | 180.0 |
Euii—Eu—Eux | 90.0 | Euviii—O1—Eu | 90.0 |
Pbiii—Eu—Eux | 120.0 | Euviii—O1—Euxviii | 90.0 |
Euiv—Eu—Eux | 120.0 | Eu—O1—Euxviii | 180.0 |
Euv—Eu—Eux | 90.0 | Euviii—O1—Euii | 90.0 |
Euvi—Eu—Eux | 60.0 | Eu—O1—Euii | 90.0 |
Euvii—Eu—Eux | 180.0 | Euxviii—O1—Euii | 90.0 |
Euviii—Eu—Eux | 60.0 | Euviii—O1—Eux | 90.0 |
Euix—Eu—Eux | 120.0 | Eu—O1—Eux | 90.0 |
Euxi—Pb—Eu | 120.0 | Euxviii—O1—Eux | 90.0 |
Euxi—Pb—Euviii | 180.0 | Euii—O1—Eux | 180.0 |
Eu—Pb—Euviii | 60.0 | Euviii—O1—Euvi | 180.0 |
Euxi—Pb—Euxii | 60.0 | Eu—O1—Euvi | 90.0 |
Eu—Pb—Euxii | 120.0 | Euxviii—O1—Euvi | 90.0 |
Euviii—Pb—Euxii | 120.0 | Euii—O1—Euvi | 90.0 |
Euxi—Pb—Euxiii | 60.0 | Eux—O1—Euvi | 90.0 |
Eu—Pb—Euxiii | 180.0 |
Symmetry codes: (i) x+1, y, z; (ii) z, x−1, y; (iii) x, y−1, z−1; (iv) y+1, z, x; (v) z+1, x, y; (vi) y, z, x−1; (vii) z+1, x−1, y; (viii) y, z, x; (ix) y+1, z, x−1; (x) z, x, y; (xi) y+1, z+1, x; (xii) z+1, x, y+1; (xiii) x, y+1, z+1; (xiv) x, y+1, z; (xv) z, x, y+1; (xvi) x, y, z+1; (xvii) y, z+1, x; (xviii) x−1, y, z. |
Ba3PbO | Mo Kα radiation, λ = 0.71073 Å |
Mr = 635.21 | Cell parameters from 1270 reflections |
Cubic, Pm3m | θ = 3.7–36.4° |
a = 5.489 (7) Å | µ = 42.85 mm−1 |
V = 165.4 (7) Å3 | T = 295 K |
Z = 1 | Block, dark grey metallic |
F(000) = 258 | 0.05 × 0.03 × 0.02 mm |
Dx = 6.377 Mg m−3 |
SMART APEX II, Bruker AXS diffractometer | 116 reflections with I > 2σ(I) |
ωscan | Rint = 0.043 |
Absorption correction: multi-scan Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany. | θmax = 36.9°, θmin = 3.7° |
Tmin = 0.134, Tmax = 0.275 | h = −9→9 |
3016 measured reflections | k = −9→9 |
117 independent reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.012 | w = 1/[σ2(Fo2) + (0.0151P)2 + 0.0671P]
where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.033 | (Δ/σ)max < 0.001 |
S = 1.22 | Δρmax = 0.95 e Å−3 |
117 reflections | Δρmin = −0.74 e Å−3 |
6 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.102 (4) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Pb | 0.5000 | 0.5000 | 0.5000 | 0.01680 (15) | |
Ba | 0.5000 | 0.0000 | 0.0000 | 0.02499 (13) | |
O | 0.0000 | 0.0000 | 0.0000 | 0.0154 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pb | 0.01680 (15) | 0.01680 (15) | 0.01680 (15) | 0.000 | 0.000 | 0.000 |
Ba | 0.01372 (16) | 0.03063 (15) | 0.03063 (15) | 0.000 | 0.000 | 0.000 |
O | 0.0154 (11) | 0.0154 (11) | 0.0154 (11) | 0.000 | 0.000 | 0.000 |
Pb—Bai | 3.882 (5) | Ba—Pbxiii | 3.882 (5) |
Pb—Ba | 3.882 (5) | Ba—Bax | 3.882 (5) |
Pb—Baii | 3.882 (5) | Ba—Baxiv | 3.882 (5) |
Pb—Baiii | 3.882 (5) | Ba—Baxv | 3.882 (5) |
Pb—Baiv | 3.882 (5) | Ba—Baviii | 3.882 (5) |
Pb—Bav | 3.882 (5) | Ba—Pbxvi | 3.882 (5) |
Pb—Bavi | 3.882 (5) | Ba—Bav | 3.882 (5) |
Pb—Bavii | 3.882 (5) | Ba—Baxvii | 3.882 (5) |
Pb—Baviii | 3.882 (5) | Ba—Baxviii | 3.882 (5) |
Pb—Baix | 3.882 (5) | O—Baii | 2.745 (4) |
Pb—Bax | 3.882 (5) | O—Baxix | 2.745 (4) |
Pb—Baxi | 3.882 (5) | O—Baxv | 2.745 (4) |
Ba—Oxii | 2.745 (4) | O—Bav | 2.745 (4) |
Ba—O | 2.745 (4) | O—Baxiv | 2.745 (4) |
Bai—Pb—Ba | 120.0 | Pb—Ba—Bax | 60.0 |
Bai—Pb—Baii | 180.0 | Pbxiii—Ba—Bax | 120.0 |
Ba—Pb—Baii | 60.0 | Oxii—Ba—Baxiv | 135.0 |
Bai—Pb—Baiii | 60.0 | O—Ba—Baxiv | 45.0 |
Ba—Pb—Baiii | 120.0 | Pb—Ba—Baxiv | 120.0 |
Baii—Pb—Baiii | 120.0 | Pbxiii—Ba—Baxiv | 60.0 |
Bai—Pb—Baiv | 60.0 | Bax—Ba—Baxiv | 180.0 |
Ba—Pb—Baiv | 180.0 | Oxii—Ba—Baxv | 135.0 |
Baii—Pb—Baiv | 120.0 | O—Ba—Baxv | 45.0 |
Baiii—Pb—Baiv | 60.0 | Pb—Ba—Baxv | 120.0 |
Bai—Pb—Bav | 120.0 | Pbxiii—Ba—Baxv | 60.0 |
Ba—Pb—Bav | 60.0 | Bax—Ba—Baxv | 120.0 |
Baii—Pb—Bav | 60.0 | Baxiv—Ba—Baxv | 60.0 |
Baiii—Pb—Bav | 180.0 | Oxii—Ba—Baviii | 45.0 |
Baiv—Pb—Bav | 120.0 | O—Ba—Baviii | 135.0 |
Bai—Pb—Bavi | 60.0 | Pb—Ba—Baviii | 60.0 |
Ba—Pb—Bavi | 90.0 | Pbxiii—Ba—Baviii | 120.0 |
Baii—Pb—Bavi | 120.0 | Bax—Ba—Baviii | 60.0 |
Baiii—Pb—Bavi | 120.0 | Baxiv—Ba—Baviii | 120.0 |
Baiv—Pb—Bavi | 90.0 | Baxv—Ba—Baviii | 180.0 |
Bav—Pb—Bavi | 60.0 | Oxii—Ba—Pbxvi | 90.0 |
Bai—Pb—Bavii | 120.0 | O—Ba—Pbxvi | 90.0 |
Ba—Pb—Bavii | 120.0 | Pb—Ba—Pbxvi | 90.0 |
Baii—Pb—Bavii | 60.0 | Pbxiii—Ba—Pbxvi | 90.0 |
Baiii—Pb—Bavii | 90.0 | Bax—Ba—Pbxvi | 120.0 |
Baiv—Pb—Bavii | 60.0 | Baxiv—Ba—Pbxvi | 60.0 |
Bav—Pb—Bavii | 90.0 | Baxv—Ba—Pbxvi | 120.0 |
Bavi—Pb—Bavii | 120.0 | Baviii—Ba—Pbxvi | 60.0 |
Bai—Pb—Baviii | 60.0 | Oxii—Ba—Bav | 135.0 |
Ba—Pb—Baviii | 60.0 | O—Ba—Bav | 45.0 |
Baii—Pb—Baviii | 120.0 | Pb—Ba—Bav | 60.0 |
Baiii—Pb—Baviii | 90.0 | Pbxiii—Ba—Bav | 120.0 |
Baiv—Pb—Baviii | 120.0 | Bax—Ba—Bav | 120.0 |
Bav—Pb—Baviii | 90.0 | Baxiv—Ba—Bav | 60.0 |
Bavi—Pb—Baviii | 60.0 | Baxv—Ba—Bav | 90.0 |
Bavii—Pb—Baviii | 180.0 | Baviii—Ba—Bav | 90.0 |
Bai—Pb—Baix | 120.0 | Pbxvi—Ba—Bav | 60.0 |
Ba—Pb—Baix | 90.0 | Oxii—Ba—Baxvii | 45.0 |
Baii—Pb—Baix | 60.0 | O—Ba—Baxvii | 135.0 |
Baiii—Pb—Baix | 60.0 | Pb—Ba—Baxvii | 120.0 |
Baiv—Pb—Baix | 90.0 | Pbxiii—Ba—Baxvii | 60.0 |
Bav—Pb—Baix | 120.0 | Bax—Ba—Baxvii | 60.0 |
Bavi—Pb—Baix | 180.0 | Baxiv—Ba—Baxvii | 120.0 |
Bavii—Pb—Baix | 60.0 | Baxv—Ba—Baxvii | 90.0 |
Baviii—Pb—Baix | 120.0 | Baviii—Ba—Baxvii | 90.0 |
Bai—Pb—Bax | 90.0 | Pbxvi—Ba—Baxvii | 120.0 |
Ba—Pb—Bax | 60.0 | Bav—Ba—Baxvii | 180.0 |
Baii—Pb—Bax | 90.0 | Oxii—Ba—Baxviii | 45.0 |
Baiii—Pb—Bax | 60.0 | O—Ba—Baxviii | 135.0 |
Baiv—Pb—Bax | 120.0 | Pb—Ba—Baxviii | 120.0 |
Bav—Pb—Bax | 120.0 | Pbxiii—Ba—Baxviii | 60.0 |
Bavi—Pb—Bax | 120.0 | Bax—Ba—Baxviii | 90.0 |
Bavii—Pb—Bax | 120.0 | Baxiv—Ba—Baxviii | 90.0 |
Baviii—Pb—Bax | 60.0 | Baxv—Ba—Baxviii | 120.0 |
Baix—Pb—Bax | 60.0 | Baviii—Ba—Baxviii | 60.0 |
Bai—Pb—Baxi | 90.0 | Pbxvi—Ba—Baxviii | 60.0 |
Ba—Pb—Baxi | 120.0 | Bav—Ba—Baxviii | 120.0 |
Baii—Pb—Baxi | 90.0 | Baxvii—Ba—Baxviii | 60.0 |
Baiii—Pb—Baxi | 120.0 | Baii—O—Ba | 90.0 |
Baiv—Pb—Baxi | 60.0 | Baii—O—Baxix | 90.0 |
Bav—Pb—Baxi | 60.0 | Ba—O—Baxix | 180.0 |
Bavi—Pb—Baxi | 60.0 | Baii—O—Baxv | 90.0 |
Bavii—Pb—Baxi | 60.0 | Ba—O—Baxv | 90.0 |
Baviii—Pb—Baxi | 120.0 | Baxix—O—Baxv | 90.0 |
Baix—Pb—Baxi | 120.0 | Baii—O—Bav | 90.0 |
Bax—Pb—Baxi | 180.0 | Ba—O—Bav | 90.0 |
Oxii—Ba—O | 180.0 | Baxix—O—Bav | 90.0 |
Oxii—Ba—Pb | 90.0 | Baxv—O—Bav | 180.0 |
O—Ba—Pb | 90.0 | Baii—O—Baxiv | 180.0 |
Oxii—Ba—Pbxiii | 90.0 | Ba—O—Baxiv | 90.0 |
O—Ba—Pbxiii | 90.0 | Baxix—O—Baxiv | 90.0 |
Pb—Ba—Pbxiii | 180.0 | Baxv—O—Baxiv | 90.0 |
Oxii—Ba—Bax | 45.0 | Bav—O—Baxiv | 90.0 |
O—Ba—Bax | 135.0 |
Symmetry codes: (i) y+1, z+1, x; (ii) y, z, x; (iii) z+1, x, y+1; (iv) x, y+1, z+1; (v) z, x, y; (vi) x, y+1, z; (vii) z, x, y+1; (viii) z+1, x, y; (ix) x, y, z+1; (x) y+1, z, x; (xi) y, z+1, x; (xii) x+1, y, z; (xiii) x, y−1, z−1; (xiv) y, z, x−1; (xv) z, x−1, y; (xvi) x, y, z−1; (xvii) z+1, x−1, y; (xviii) y+1, z, x−1; (xix) x−1, y, z. |
Eu3SiO | Dx = 6.761 Mg m−3 |
Mr = 499.97 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbnm | Cell parameters from 8655 reflections |
a = 7.0138 (7) Å | θ = 2.9–36.4° |
b = 7.0383 (7) Å | µ = 37.90 mm−1 |
c = 9.9501 (10) Å | T = 100 K |
V = 491.19 (9) Å3 | Block, grey |
Z = 4 | 0.28 × 0.25 × 0.07 mm |
F(000) = 844 |
SMART APEX II, Bruker AXS diffractometer | 3386 reflections with I > 2σ(I) |
ωscan | Rint = 0.078 |
Absorption correction: multi-scan Sheldrick, G. M. (2012a) TWINABS - Bruker AXS area detector scaling and absorption for twinned crystals, Version 2012/1, University of Göttingen. Germany. | θmax = 36.4°, θmin = 3.6° |
Tmin = 0.031, Tmax = 0.166 | h = 0→11 |
13755 measured reflections | k = 0→11 |
3442 independent reflections | l = 0→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | w = 1/[σ2(Fo2) + (0.0818P)2 + 15.1882P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.140 | (Δ/σ)max < 0.001 |
S = 1.13 | Δρmax = 6.54 e Å−3 |
3442 reflections | Δρmin = −4.35 e Å−3 |
30 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0096 (10) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
Eu1 | −0.06364 (10) | −0.00956 (10) | 0.2500 | 0.00539 (18) | |
Eu2 | 0.21721 (7) | 0.28226 (7) | 0.03310 (5) | 0.00545 (17) | |
Si | 0.4941 (6) | 0.0256 (6) | 0.2500 | 0.0064 (6) | |
O | 0.0000 | 0.0000 | 0.0000 | 0.0054 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu1 | 0.0049 (3) | 0.0071 (3) | 0.0041 (3) | 0.00008 (19) | 0.000 | 0.000 |
Eu2 | 0.0046 (3) | 0.0048 (3) | 0.0070 (3) | −0.00115 (12) | 0.00028 (12) | −0.00024 (13) |
Si | 0.0058 (15) | 0.0058 (15) | 0.0076 (17) | −0.0024 (12) | 0.000 | 0.000 |
O | 0.007 (4) | 0.005 (4) | 0.004 (4) | 0.000 (3) | 0.002 (3) | −0.003 (3) |
Eu1—Oi | 2.5281 (3) | Eu2—Eu2iii | 3.5491 (4) |
Eu1—O | 2.5281 (3) | Eu2—Eu2x | 3.5491 (4) |
Eu1—Siii | 3.112 (4) | Eu2—Eu1x | 3.5649 (8) |
Eu1—Siiii | 3.308 (4) | Eu2—Eu1vi | 3.5748 (7) |
Eu1—Eu2iv | 3.5649 (8) | Eu2—Eu1ix | 3.5856 (7) |
Eu1—Eu2iii | 3.5649 (8) | Eu2—Eu2ix | 3.5970 (4) |
Eu1—Eu2v | 3.5716 (8) | Si—Eu1xi | 3.112 (4) |
Eu1—Eu2 | 3.5716 (8) | Si—Eu2iii | 3.129 (3) |
Eu1—Eu2vi | 3.5748 (7) | Si—Eu2iv | 3.129 (3) |
Eu1—Eu2i | 3.5748 (7) | Si—Eu1x | 3.308 (4) |
Eu1—Eu2vii | 3.5856 (7) | Si—Eu2v | 3.420 (3) |
Eu1—Eu2viii | 3.5856 (7) | Si—Eu2xii | 3.494 (3) |
Eu2—O | 2.5251 (5) | Si—Eu2ix | 3.494 (3) |
Eu2—Oix | 2.5280 (5) | O—Eu2vi | 2.5251 (5) |
Eu2—Six | 3.129 (3) | O—Eu2iii | 2.5280 (5) |
Eu2—Si | 3.420 (3) | O—Eu2viii | 2.5280 (5) |
Eu2—Siviii | 3.494 (3) | O—Eu1vi | 2.5281 (3) |
Oi—Eu1—O | 159.43 (3) | Oix—Eu2—Eu1x | 45.167 (12) |
Oi—Eu1—Siii | 100.013 (16) | Six—Eu2—Eu1x | 71.36 (8) |
O—Eu1—Siii | 100.013 (16) | Si—Eu2—Eu1x | 56.49 (7) |
Oi—Eu1—Siiii | 90.02 (2) | Siviii—Eu2—Eu1x | 129.35 (7) |
O—Eu1—Siiii | 90.02 (2) | Eu2iii—Eu2—Eu1x | 108.62 (2) |
Siii—Eu1—Siiii | 103.03 (12) | Eu2x—Eu2—Eu1x | 60.271 (16) |
Oi—Eu1—Eu2iv | 45.165 (12) | O—Eu2—Eu1 | 45.059 (12) |
O—Eu1—Eu2iv | 119.10 (2) | Oix—Eu2—Eu1 | 149.32 (2) |
Siii—Eu1—Eu2iv | 135.41 (4) | Six—Eu2—Eu1 | 68.69 (8) |
Siiii—Eu1—Eu2iv | 59.54 (5) | Si—Eu2—Eu1 | 68.17 (7) |
Oi—Eu1—Eu2iii | 119.10 (2) | Siviii—Eu2—Eu1 | 117.56 (7) |
O—Eu1—Eu2iii | 45.165 (12) | Eu2iii—Eu2—Eu1 | 60.084 (16) |
Siii—Eu1—Eu2iii | 135.41 (4) | Eu2x—Eu2—Eu1 | 129.918 (18) |
Siiii—Eu1—Eu2iii | 59.54 (5) | Eu1x—Eu2—Eu1 | 104.267 (18) |
Eu2iv—Eu1—Eu2iii | 74.52 (2) | O—Eu2—Eu1vi | 45.009 (13) |
Oi—Eu1—Eu2v | 44.991 (13) | Oix—Eu2—Eu1vi | 117.339 (19) |
O—Eu1—Eu2v | 118.81 (2) | Six—Eu2—Eu1vi | 134.00 (7) |
Siii—Eu1—Eu2v | 120.27 (6) | Si—Eu2—Eu1vi | 112.63 (6) |
Siiii—Eu1—Eu2v | 119.18 (5) | Siviii—Eu2—Eu1vi | 55.79 (7) |
Eu2iv—Eu1—Eu2v | 59.644 (12) | Eu2iii—Eu2—Eu1vi | 60.439 (14) |
Eu2iii—Eu1—Eu2v | 103.08 (2) | Eu2x—Eu2—Eu1vi | 124.852 (14) |
Oi—Eu1—Eu2 | 118.81 (2) | Eu1x—Eu2—Eu1vi | 154.57 (2) |
O—Eu1—Eu2 | 44.991 (13) | Eu1—Eu2—Eu1vi | 90.068 (14) |
Siii—Eu1—Eu2 | 120.27 (6) | O—Eu2—Eu1ix | 120.48 (2) |
Siiii—Eu1—Eu2 | 119.18 (5) | Oix—Eu2—Eu1ix | 44.836 (12) |
Eu2iv—Eu1—Eu2 | 103.08 (2) | Six—Eu2—Eu1ix | 120.05 (7) |
Eu2iii—Eu1—Eu2 | 59.644 (12) | Si—Eu2—Eu1ix | 119.21 (6) |
Eu2v—Eu1—Eu2 | 74.35 (2) | Siviii—Eu2—Eu1ix | 52.12 (7) |
Oi—Eu1—Eu2vi | 147.44 (3) | Eu2iii—Eu2—Eu1ix | 112.758 (17) |
O—Eu1—Eu2vi | 44.941 (12) | Eu2x—Eu2—Eu1ix | 60.135 (14) |
Siii—Eu1—Eu2vi | 75.07 (5) | Eu1x—Eu2—Eu1ix | 90.002 (14) |
Siiii—Eu1—Eu2vi | 60.88 (4) | Eu1—Eu2—Eu1ix | 165.399 (19) |
Eu2iv—Eu1—Eu2vi | 117.50 (2) | Eu1vi—Eu2—Eu1ix | 75.504 (16) |
Eu2iii—Eu1—Eu2vi | 60.504 (10) | O—Eu2—Eu2ix | 117.71 (2) |
Eu2v—Eu1—Eu2vi | 162.01 (2) | Oix—Eu2—Eu2ix | 44.583 (11) |
Eu2—Eu1—Eu2vi | 89.931 (14) | Six—Eu2—Eu2ix | 131.10 (8) |
Oi—Eu1—Eu2i | 44.941 (12) | Si—Eu2—Eu2ix | 59.68 (6) |
O—Eu1—Eu2i | 147.44 (3) | Siviii—Eu2—Eu2ix | 109.74 (7) |
Siii—Eu1—Eu2i | 75.07 (5) | Eu2iii—Eu2—Eu2ix | 75.43 (2) |
Siiii—Eu1—Eu2i | 60.88 (4) | Eu2x—Eu2—Eu2ix | 89.93 (2) |
Eu2iv—Eu1—Eu2i | 60.504 (10) | Eu1x—Eu2—Eu2ix | 59.884 (16) |
Eu2iii—Eu1—Eu2i | 117.50 (2) | Eu1—Eu2—Eu2ix | 125.15 (3) |
Eu2v—Eu1—Eu2i | 89.931 (14) | Eu1vi—Eu2—Eu2ix | 94.69 (2) |
Eu2—Eu1—Eu2i | 162.01 (2) | Eu1ix—Eu2—Eu2ix | 59.638 (19) |
Eu2vi—Eu1—Eu2i | 103.99 (2) | Eu1xi—Si—Eu2iii | 115.39 (11) |
Oi—Eu1—Eu2vii | 44.833 (12) | Eu1xi—Si—Eu2iv | 115.39 (11) |
O—Eu1—Eu2vii | 146.80 (3) | Eu2iii—Si—Eu2iv | 87.23 (11) |
Siii—Eu1—Eu2vii | 62.43 (4) | Eu1xi—Si—Eu1x | 86.09 (10) |
Siiii—Eu1—Eu2vii | 120.30 (3) | Eu2iii—Si—Eu1x | 127.68 (9) |
Eu2iv—Eu1—Eu2vii | 89.998 (13) | Eu2iv—Si—Eu1x | 127.68 (9) |
Eu2iii—Eu1—Eu2vii | 162.02 (2) | Eu1xi—Si—Eu2 | 127.46 (9) |
Eu2v—Eu1—Eu2vii | 60.340 (9) | Eu2iii—Si—Eu2 | 65.46 (5) |
Eu2—Eu1—Eu2vii | 117.04 (2) | Eu2iv—Si—Eu2 | 117.09 (13) |
Eu2vi—Eu1—Eu2vii | 136.84 (2) | Eu1x—Si—Eu2 | 63.97 (7) |
Eu2i—Eu1—Eu2vii | 59.426 (11) | Eu1xi—Si—Eu2v | 127.46 (9) |
Oi—Eu1—Eu2viii | 146.80 (3) | Eu2iii—Si—Eu2v | 117.09 (13) |
O—Eu1—Eu2viii | 44.833 (12) | Eu2iv—Si—Eu2v | 65.46 (5) |
Siii—Eu1—Eu2viii | 62.43 (4) | Eu1x—Si—Eu2v | 63.97 (7) |
Siiii—Eu1—Eu2viii | 120.30 (3) | Eu2—Si—Eu2v | 78.26 (9) |
Eu2iv—Eu1—Eu2viii | 162.02 (2) | Eu1xi—Si—Eu2xii | 65.45 (7) |
Eu2iii—Eu1—Eu2viii | 89.998 (13) | Eu2iii—Si—Eu2xii | 168.53 (12) |
Eu2v—Eu1—Eu2viii | 117.04 (2) | Eu2iv—Si—Eu2xii | 82.410 (16) |
Eu2—Eu1—Eu2viii | 60.340 (10) | Eu1x—Si—Eu2xii | 63.34 (6) |
Eu2vi—Eu1—Eu2viii | 59.426 (11) | Eu2—Si—Eu2xii | 123.96 (12) |
Eu2i—Eu1—Eu2viii | 136.84 (2) | Eu2v—Si—Eu2xii | 62.69 (4) |
Eu2vii—Eu1—Eu2viii | 103.55 (2) | Eu1xi—Si—Eu2ix | 65.45 (7) |
O—Eu2—Oix | 158.95 (2) | Eu2iii—Si—Eu2ix | 82.410 (16) |
O—Eu2—Six | 103.58 (8) | Eu2iv—Si—Eu2ix | 168.53 (12) |
Oix—Eu2—Six | 97.46 (8) | Eu1x—Si—Eu2ix | 63.34 (6) |
O—Eu2—Si | 90.54 (7) | Eu2—Si—Eu2ix | 62.68 (4) |
Oix—Eu2—Si | 87.53 (7) | Eu2v—Si—Eu2ix | 123.96 (12) |
Six—Eu2—Si | 97.06 (7) | Eu2xii—Si—Eu2ix | 107.43 (11) |
O—Eu2—Siviii | 85.94 (7) | Eu2vi—O—Eu2 | 180.0 |
Oix—Eu2—Siviii | 90.67 (7) | Eu2vi—O—Eu2iii | 90.768 (9) |
Six—Eu2—Siviii | 97.589 (17) | Eu2—O—Eu2iii | 89.231 (9) |
Si—Eu2—Siviii | 165.35 (7) | Eu2vi—O—Eu2viii | 89.232 (9) |
O—Eu2—Eu2iii | 45.418 (11) | Eu2—O—Eu2viii | 90.769 (9) |
Oix—Eu2—Eu2iii | 119.96 (2) | Eu2iii—O—Eu2viii | 180.000 (18) |
Six—Eu2—Eu2iii | 127.17 (7) | Eu2vi—O—Eu1vi | 89.95 (2) |
Si—Eu2—Eu2iii | 53.31 (6) | Eu2—O—Eu1vi | 90.05 (2) |
Siviii—Eu2—Eu2iii | 116.22 (7) | Eu2iii—O—Eu1vi | 90.33 (2) |
O—Eu2—Eu2x | 149.13 (3) | Eu2viii—O—Eu1vi | 89.67 (2) |
Oix—Eu2—Eu2x | 45.350 (13) | Eu2vi—O—Eu1 | 90.05 (2) |
Six—Eu2—Eu2x | 61.22 (8) | Eu2—O—Eu1 | 89.95 (2) |
Si—Eu2—Eu2x | 116.76 (7) | Eu2iii—O—Eu1 | 89.67 (2) |
Siviii—Eu2—Eu2x | 70.99 (7) | Eu2viii—O—Eu1 | 90.33 (2) |
Eu2iii—Eu2—Eu2x | 165.11 (3) | Eu1vi—O—Eu1 | 180.00 (3) |
O—Eu2—Eu1x | 144.44 (2) |
Symmetry codes: (i) −x, −y, z+1/2; (ii) x−1, y, z; (iii) −x+1/2, y−1/2, z; (iv) −x+1/2, y−1/2, −z+1/2; (v) x, y, −z+1/2; (vi) −x, −y, −z; (vii) x−1/2, −y+1/2, z+1/2; (viii) x−1/2, −y+1/2, −z; (ix) x+1/2, −y+1/2, −z; (x) −x+1/2, y+1/2, z; (xi) x+1, y, z; (xii) x+1/2, −y+1/2, z+1/2. |
Ca3SiO | Dx = 2.620 Mg m−3 |
Mr = 164.33 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbnm | Cell parameters from 759 reflections |
a = 6.660 (2) Å | θ = 4.3–34.7° |
b = 6.646 (2) Å | µ = 4.05 mm−1 |
c = 9.411 (3) Å | T = 100 K |
V = 416.5 (2) Å3 | Block, grey |
Z = 4 | 0.02 × 0.02 × 0.01 mm |
F(000) = 328 |
SMART APEX I, Bruker AXS diffractometer | 818 reflections with I > 2σ(I) |
ωscan | Rint = 0.073 |
Absorption correction: multi-scan Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany. | θmax = 35.2°, θmin = 2.2° |
Tmin = 0.188, Tmax = 0.272 | h = −10→10 |
6539 measured reflections | k = −10→10 |
1020 independent reflections | l = −15→14 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.071 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.196 | w = 1/[σ2(Fo2) + (0.0608P)2 + 5.6205P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
1020 reflections | Δρmax = 2.11 e Å−3 |
29 parameters | Δρmin = −1.46 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
Ca1 | −0.0323 (2) | −0.0010 (2) | 0.2500 | 0.0090 (3) | |
Ca2 | 0.23856 (15) | 0.26138 (15) | 0.01633 (11) | 0.0114 (3) | |
Si | 0.4972 (3) | 0.0036 (3) | 0.2500 | 0.0062 (4) | |
O | 0.0000 | 0.0000 | 0.0000 | 0.0061 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.0064 (6) | 0.0137 (7) | 0.0069 (5) | −0.0004 (4) | 0.000 | 0.000 |
Ca2 | 0.0114 (4) | 0.0106 (5) | 0.0120 (4) | −0.0053 (3) | −0.0004 (3) | 0.0002 (3) |
Si | 0.0063 (7) | 0.0064 (8) | 0.0058 (7) | −0.0004 (5) | 0.000 | 0.000 |
O | 0.0080 (19) | 0.009 (2) | 0.0016 (17) | 0.0014 (16) | 0.0007 (14) | −0.0002 (12) |
Ca1—Oi | 2.3625 (8) | Ca2—Ca1x | 3.3402 (16) |
Ca1—O | 2.3625 (8) | Ca2—Ca1viii | 3.3414 (15) |
Ca1—Siii | 3.134 (3) | Ca2—Ca2ix | 3.3475 (12) |
Ca1—Siiii | 3.301 (3) | Ca2—Ca2vi | 3.3475 (12) |
Ca1—Ca2iv | 3.3360 (16) | Si—Ca1xi | 3.134 (3) |
Ca1—Ca2 | 3.3360 (16) | Si—Ca2iii | 3.1452 (18) |
Ca1—Ca2v | 3.3388 (15) | Si—Ca2vii | 3.1452 (18) |
Ca1—Ca2vi | 3.3388 (15) | Si—Ca2iv | 3.2769 (18) |
Ca1—Ca2vii | 3.3402 (16) | Si—Ca1x | 3.301 (3) |
Ca1—Ca2iii | 3.3402 (16) | Si—Ca1iii | 3.361 (3) |
Ca1—Ca2viii | 3.3414 (15) | Si—Ca2xii | 3.3625 (17) |
Ca1—Ca2i | 3.3414 (15) | Si—Ca2ix | 3.3625 (17) |
Ca2—O | 2.3591 (11) | Si—Ca2xiii | 3.5327 (18) |
Ca2—Oix | 2.3602 (11) | Si—Ca2xiv | 3.5327 (18) |
Ca2—Six | 3.1452 (18) | O—Ca2viii | 2.3591 (11) |
Ca2—Si | 3.2769 (18) | O—Ca2iii | 2.3602 (11) |
Ca2—Ca2x | 3.3265 (11) | O—Ca2vi | 2.3602 (11) |
Ca2—Ca2iii | 3.3265 (12) | O—Ca1viii | 2.3625 (8) |
Ca2—Ca1ix | 3.3388 (15) | ||
Oi—Ca1—O | 169.56 (7) | Ca2iii—Ca2—Ca1viii | 60.10 (3) |
Oi—Ca1—Siii | 95.22 (3) | Ca1—Ca2—Ca1viii | 90.08 (3) |
O—Ca1—Siii | 95.22 (3) | Ca1ix—Ca2—Ca1viii | 82.64 (4) |
Oi—Ca1—Siiii | 89.79 (3) | Ca1x—Ca2—Ca1viii | 168.40 (6) |
O—Ca1—Siiii | 89.79 (3) | O—Ca2—Ca2ix | 129.10 (5) |
Siii—Ca1—Siiii | 94.61 (6) | Oix—Ca2—Ca2ix | 44.81 (3) |
Oi—Ca1—Ca2iv | 45.00 (3) | Six—Ca2—Ca2ix | 125.72 (6) |
O—Ca1—Ca2iv | 127.29 (5) | Si—Ca2—Ca2ix | 60.99 (4) |
Siii—Ca1—Ca2iv | 122.38 (4) | Ca2x—Ca2—Ca2ix | 89.97 (5) |
Siiii—Ca1—Ca2iv | 118.89 (4) | Ca2iii—Ca2—Ca2ix | 84.80 (5) |
Oi—Ca1—Ca2 | 127.29 (5) | Ca1—Ca2—Ca2ix | 125.08 (5) |
O—Ca1—Ca2 | 45.00 (3) | Ca1ix—Ca2—Ca2ix | 59.86 (4) |
Siii—Ca1—Ca2 | 122.38 (4) | Ca1x—Ca2—Ca2ix | 59.95 (4) |
Siiii—Ca1—Ca2 | 118.89 (4) | Ca1viii—Ca2—Ca2ix | 108.47 (5) |
Ca2iv—Ca1—Ca2 | 82.48 (5) | O—Ca2—Ca2vi | 44.83 (3) |
Oi—Ca1—Ca2v | 44.98 (3) | Oix—Ca2—Ca2vi | 139.31 (5) |
O—Ca1—Ca2v | 141.99 (6) | Six—Ca2—Ca2vi | 65.84 (5) |
Siii—Ca1—Ca2v | 62.50 (3) | Si—Ca2—Ca2vi | 124.12 (6) |
Siiii—Ca1—Ca2v | 120.54 (4) | Ca2x—Ca2—Ca2vi | 95.20 (5) |
Ca2iv—Ca1—Ca2v | 60.20 (3) | Ca2iii—Ca2—Ca2vi | 90.03 (5) |
Ca2—Ca1—Ca2v | 119.52 (5) | Ca1—Ca2—Ca2vi | 59.94 (4) |
Oi—Ca1—Ca2vi | 141.99 (6) | Ca1ix—Ca2—Ca2vi | 114.04 (5) |
O—Ca1—Ca2vi | 44.98 (3) | Ca1x—Ca2—Ca2vi | 131.63 (5) |
Siii—Ca1—Ca2vi | 62.50 (3) | Ca1viii—Ca2—Ca2vi | 59.92 (4) |
Siiii—Ca1—Ca2vi | 120.54 (4) | Ca2ix—Ca2—Ca2vi | 168.26 (7) |
Ca2iv—Ca1—Ca2vi | 119.52 (5) | Ca1xi—Si—Ca2iii | 119.62 (5) |
Ca2—Ca1—Ca2vi | 60.20 (3) | Ca1xi—Si—Ca2vii | 119.62 (5) |
Ca2v—Ca1—Ca2vi | 97.30 (5) | Ca2iii—Si—Ca2vii | 88.72 (7) |
Oi—Ca1—Ca2vii | 44.96 (3) | Ca1xi—Si—Ca2iv | 122.05 (5) |
O—Ca1—Ca2vii | 127.13 (6) | Ca2iii—Si—Ca2iv | 118.32 (7) |
Siii—Ca1—Ca2vii | 126.17 (4) | Ca2vii—Si—Ca2iv | 62.35 (4) |
Siiii—Ca1—Ca2vii | 59.13 (4) | Ca1xi—Si—Ca2 | 122.05 (5) |
Ca2iv—Ca1—Ca2vii | 59.77 (3) | Ca2iii—Si—Ca2 | 62.35 (4) |
Ca2—Ca1—Ca2vii | 111.38 (5) | Ca2vii—Si—Ca2 | 118.32 (7) |
Ca2v—Ca1—Ca2vii | 89.94 (3) | Ca2iv—Si—Ca2 | 84.30 (6) |
Ca2vi—Ca1—Ca2vii | 170.92 (4) | Ca1xi—Si—Ca1x | 86.50 (6) |
Oi—Ca1—Ca2iii | 127.13 (6) | Ca2iii—Si—Ca1x | 123.08 (5) |
O—Ca1—Ca2iii | 44.96 (3) | Ca2vii—Si—Ca1x | 123.08 (5) |
Siii—Ca1—Ca2iii | 126.17 (4) | Ca2iv—Si—Ca1x | 61.03 (4) |
Siiii—Ca1—Ca2iii | 59.13 (4) | Ca2—Si—Ca1x | 61.03 (4) |
Ca2iv—Ca1—Ca2iii | 111.38 (5) | Ca1xi—Si—Ca1iii | 85.46 (6) |
Ca2—Ca1—Ca2iii | 59.77 (3) | Ca2iii—Si—Ca1iii | 61.58 (4) |
Ca2v—Ca1—Ca2iii | 170.92 (4) | Ca2vii—Si—Ca1iii | 61.58 (4) |
Ca2vi—Ca1—Ca2iii | 89.94 (3) | Ca2iv—Si—Ca1iii | 123.92 (5) |
Ca2vii—Ca1—Ca2iii | 82.35 (5) | Ca2—Si—Ca1iii | 123.92 (5) |
Oi—Ca1—Ca2viii | 141.79 (6) | Ca1x—Si—Ca1iii | 171.96 (9) |
O—Ca1—Ca2viii | 44.91 (3) | Ca1xi—Si—Ca2xii | 61.73 (4) |
Siii—Ca1—Ca2viii | 66.04 (4) | Ca2iii—Si—Ca2xii | 176.02 (5) |
Siiii—Ca1—Ca2viii | 60.82 (3) | Ca2vii—Si—Ca2xii | 87.43 (3) |
Ca2iv—Ca1—Ca2viii | 170.92 (4) | Ca2iv—Si—Ca2xii | 60.54 (3) |
Ca2—Ca1—Ca2viii | 89.92 (3) | Ca2—Si—Ca2xii | 120.57 (6) |
Ca2v—Ca1—Ca2viii | 128.47 (5) | Ca1x—Si—Ca2xii | 60.18 (4) |
Ca2vi—Ca1—Ca2viii | 59.73 (3) | Ca1iii—Si—Ca2xii | 115.48 (5) |
Ca2vii—Ca1—Ca2viii | 119.32 (5) | Ca1xi—Si—Ca2ix | 61.73 (4) |
Ca2iii—Ca1—Ca2viii | 60.13 (3) | Ca2iii—Si—Ca2ix | 87.43 (3) |
Oi—Ca1—Ca2i | 44.91 (3) | Ca2vii—Si—Ca2ix | 176.02 (5) |
O—Ca1—Ca2i | 141.79 (6) | Ca2iv—Si—Ca2ix | 120.57 (6) |
Siii—Ca1—Ca2i | 66.04 (4) | Ca2—Si—Ca2ix | 60.54 (3) |
Siiii—Ca1—Ca2i | 60.82 (3) | Ca1x—Si—Ca2ix | 60.18 (4) |
Ca2iv—Ca1—Ca2i | 89.92 (3) | Ca1iii—Si—Ca2ix | 115.48 (5) |
Ca2—Ca1—Ca2i | 170.92 (4) | Ca2xii—Si—Ca2ix | 96.39 (6) |
Ca2v—Ca1—Ca2i | 59.73 (3) | Ca1xi—Si—Ca1 | 178.96 (8) |
Ca2vi—Ca1—Ca2i | 128.47 (5) | Ca2iii—Si—Ca1 | 59.76 (4) |
Ca2vii—Ca1—Ca2i | 60.13 (3) | Ca2vii—Si—Ca1 | 59.76 (4) |
Ca2iii—Ca1—Ca2i | 119.32 (5) | Ca2iv—Si—Ca1 | 58.59 (4) |
Ca2viii—Ca1—Ca2i | 97.20 (6) | Ca2—Si—Ca1 | 58.59 (4) |
O—Ca2—Oix | 170.89 (5) | Ca1x—Si—Ca1 | 94.55 (6) |
O—Ca2—Six | 94.95 (5) | Ca1iii—Si—Ca1 | 93.49 (6) |
Oix—Ca2—Six | 94.01 (5) | Ca2xii—Si—Ca1 | 118.82 (5) |
O—Ca2—Si | 90.73 (5) | Ca2ix—Si—Ca1 | 118.82 (5) |
Oix—Ca2—Si | 90.41 (5) | Ca1xi—Si—Ca2xiii | 59.80 (4) |
Six—Ca2—Si | 93.48 (5) | Ca2iii—Si—Ca2xiii | 59.83 (3) |
O—Ca2—Ca2x | 140.03 (5) | Ca2vii—Si—Ca2xiii | 119.32 (6) |
Oix—Ca2—Ca2x | 45.17 (3) | Ca2iv—Si—Ca2xiii | 176.96 (5) |
Six—Ca2—Ca2x | 60.77 (4) | Ca2—Si—Ca2xiii | 92.66 (3) |
Si—Ca2—Ca2x | 119.88 (4) | Ca1x—Si—Ca2xiii | 117.51 (5) |
O—Ca2—Ca2iii | 45.19 (3) | Ca1iii—Si—Ca2xiii | 57.87 (4) |
Oix—Ca2—Ca2iii | 129.60 (5) | Ca2xii—Si—Ca2xiii | 121.48 (7) |
Six—Ca2—Ca2iii | 122.29 (4) | Ca2ix—Si—Ca2xiii | 57.63 (3) |
Si—Ca2—Ca2iii | 56.88 (4) | Ca1—Si—Ca2xiii | 119.60 (5) |
Ca2x—Ca2—Ca2iii | 174.75 (7) | Ca1xi—Si—Ca2xiv | 59.80 (4) |
O—Ca2—Ca1 | 45.09 (3) | Ca2iii—Si—Ca2xiv | 119.32 (6) |
Oix—Ca2—Ca1 | 142.46 (4) | Ca2vii—Si—Ca2xiv | 59.83 (3) |
Six—Ca2—Ca1 | 62.40 (5) | Ca2iv—Si—Ca2xiv | 92.66 (3) |
Si—Ca2—Ca1 | 64.44 (5) | Ca2—Si—Ca2xiv | 176.96 (5) |
Ca2x—Ca2—Ca1 | 123.15 (4) | Ca1x—Si—Ca2xiv | 117.51 (5) |
Ca2iii—Ca2—Ca1 | 60.18 (3) | Ca1iii—Si—Ca2xiv | 57.87 (4) |
O—Ca2—Ca1ix | 127.60 (4) | Ca2xii—Si—Ca2xiv | 57.63 (3) |
Oix—Ca2—Ca1ix | 45.04 (3) | Ca2ix—Si—Ca2xiv | 121.48 (7) |
Six—Ca2—Ca1ix | 120.60 (5) | Ca1—Si—Ca2xiv | 119.60 (5) |
Si—Ca2—Ca1ix | 120.85 (5) | Ca2xiii—Si—Ca2xiv | 90.39 (6) |
Ca2x—Ca2—Ca1ix | 60.17 (3) | Ca2viii—O—Ca2 | 180.00 (3) |
Ca2iii—Ca2—Ca1ix | 117.10 (4) | Ca2viii—O—Ca2iii | 90.36 (3) |
Ca1—Ca2—Ca1ix | 172.43 (4) | Ca2—O—Ca2iii | 89.64 (3) |
O—Ca2—Ca1x | 141.76 (5) | Ca2viii—O—Ca2vi | 89.64 (3) |
Oix—Ca2—Ca1x | 45.02 (3) | Ca2—O—Ca2vi | 90.36 (3) |
Six—Ca2—Ca1x | 65.79 (5) | Ca2iii—O—Ca2vi | 180.00 (3) |
Si—Ca2—Ca1x | 59.84 (5) | Ca2viii—O—Ca1viii | 89.91 (4) |
Ca2x—Ca2—Ca1x | 60.05 (3) | Ca2—O—Ca1viii | 90.09 (4) |
Ca2iii—Ca2—Ca1x | 116.46 (4) | Ca2iii—O—Ca1viii | 89.98 (4) |
Ca1—Ca2—Ca1x | 97.45 (4) | Ca2vi—O—Ca1viii | 90.02 (4) |
Ca1ix—Ca2—Ca1x | 90.06 (3) | Ca2viii—O—Ca1 | 90.09 (4) |
O—Ca2—Ca1viii | 45.00 (3) | Ca2—O—Ca1 | 89.91 (4) |
Oix—Ca2—Ca1viii | 127.05 (5) | Ca2iii—O—Ca1 | 90.02 (4) |
Six—Ca2—Ca1viii | 125.75 (6) | Ca2vi—O—Ca1 | 89.98 (4) |
Si—Ca2—Ca1viii | 116.66 (5) | Ca1viii—O—Ca1 | 180.0 |
Ca2x—Ca2—Ca1viii | 122.43 (3) |
Symmetry codes: (i) −x, −y, z+1/2; (ii) x−1, y, z; (iii) −x+1/2, y−1/2, z; (iv) x, y, −z+1/2; (v) x−1/2, −y+1/2, z+1/2; (vi) x−1/2, −y+1/2, −z; (vii) −x+1/2, y−1/2, −z+1/2; (viii) −x, −y, −z; (ix) x+1/2, −y+1/2, −z; (x) −x+1/2, y+1/2, z; (xi) x+1, y, z; (xii) x+1/2, −y+1/2, z+1/2; (xiii) −x+1, −y, −z; (xiv) −x+1, −y, z+1/2. |
Ca3SiO | Mo Kα radiation, λ = 0.71073 Å |
Mr = 164.33 | Cell parameters from 4.29 reflections |
Cubic, Pm3m | θ = 34.1° |
a = 4.741 (6) Å | µ = 3.95 mm−1 |
V = 106.6 (4) Å3 | T = 500 K |
Z = 1 | Block, grey |
F(000) = 82 | 0.02 × 0.02 × 0.01 mm |
Dx = 2.561 Mg m−3 |
SMART APEX I, Bruker AXS diffractometer | 58 reflections with I > 2σ(I) |
ωscan | Rint = 0.045 |
Absorption correction: multi-scan Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany. | θmax = 35.2°, θmin = 4.3° |
Tmin = 0.171, Tmax = 0.272 | h = −7→7 |
1699 measured reflections | k = −7→7 |
73 independent reflections | l = −7→7 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | w = 1/[σ2(Fo2) + (0.0092P)2 + 0.0492P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.041 | (Δ/σ)max < 0.001 |
S = 1.12 | Δρmax = 0.45 e Å−3 |
73 reflections | Δρmin = −0.53 e Å−3 |
6 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.046 (14) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ca | 0.5000 | 0.0000 | 0.0000 | 0.0302 (3) | |
Si | 0.5000 | 0.5000 | 0.5000 | 0.0189 (4) | |
O | 0.0000 | 0.0000 | 0.0000 | 0.0167 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca | 0.0128 (4) | 0.0390 (4) | 0.0390 (4) | 0.000 | 0.000 | 0.000 |
Si | 0.0189 (4) | 0.0189 (4) | 0.0189 (4) | 0.000 | 0.000 | 0.000 |
O | 0.0167 (8) | 0.0167 (8) | 0.0167 (8) | 0.000 | 0.000 | 0.000 |
Ca—Oi | 2.370 (3) | Si—Caxii | 3.352 (4) |
Ca—O | 2.370 (3) | Si—Caxiii | 3.352 (4) |
Ca—Si | 3.352 (4) | Si—Cax | 3.352 (4) |
Ca—Caii | 3.352 (4) | Si—Caxiv | 3.352 (4) |
Ca—Siiii | 3.352 (4) | Si—Caxv | 3.352 (4) |
Ca—Caiv | 3.352 (4) | Si—Cav | 3.352 (4) |
Ca—Cav | 3.352 (4) | Si—Caxvi | 3.352 (4) |
Ca—Cavi | 3.352 (4) | Si—Caiv | 3.352 (4) |
Ca—Cavii | 3.352 (4) | Si—Caxvii | 3.352 (4) |
Ca—Caviii | 3.352 (4) | O—Caviii | 2.370 (3) |
Ca—Caix | 3.352 (4) | O—Caxviii | 2.370 (3) |
Ca—Cax | 3.352 (4) | O—Caii | 2.370 (3) |
Si—Caxi | 3.352 (4) | O—Cax | 2.370 (3) |
Si—Caviii | 3.352 (4) | O—Cavi | 2.370 (3) |
Oi—Ca—O | 180.0 | Caviii—Si—Caxiii | 120.0 |
Oi—Ca—Si | 90.0 | Caxii—Si—Caxiii | 60.0 |
O—Ca—Si | 90.0 | Caxi—Si—Cax | 120.0 |
Oi—Ca—Caii | 135.0 | Ca—Si—Cax | 60.0 |
O—Ca—Caii | 45.0 | Caviii—Si—Cax | 60.0 |
Si—Ca—Caii | 120.0 | Caxii—Si—Cax | 180.0 |
Oi—Ca—Siiii | 90.0 | Caxiii—Si—Cax | 120.0 |
O—Ca—Siiii | 90.0 | Caxi—Si—Caxiv | 60.0 |
Si—Ca—Siiii | 180.0 | Ca—Si—Caxiv | 90.0 |
Caii—Ca—Siiii | 60.0 | Caviii—Si—Caxiv | 120.0 |
Oi—Ca—Caiv | 45.0 | Caxii—Si—Caxiv | 120.0 |
O—Ca—Caiv | 135.0 | Caxiii—Si—Caxiv | 90.0 |
Si—Ca—Caiv | 60.0 | Cax—Si—Caxiv | 60.0 |
Caii—Ca—Caiv | 120.0 | Caxi—Si—Caxv | 120.0 |
Siiii—Ca—Caiv | 120.0 | Ca—Si—Caxv | 120.0 |
Oi—Ca—Cav | 45.0 | Caviii—Si—Caxv | 60.0 |
O—Ca—Cav | 135.0 | Caxii—Si—Caxv | 90.0 |
Si—Ca—Cav | 60.0 | Caxiii—Si—Caxv | 60.0 |
Caii—Ca—Cav | 180.0 | Cax—Si—Caxv | 90.0 |
Siiii—Ca—Cav | 120.0 | Caxiv—Si—Caxv | 120.0 |
Caiv—Ca—Cav | 60.0 | Caxi—Si—Cav | 60.0 |
Oi—Ca—Cavi | 135.0 | Ca—Si—Cav | 60.0 |
O—Ca—Cavi | 45.0 | Caviii—Si—Cav | 120.0 |
Si—Ca—Cavi | 120.0 | Caxii—Si—Cav | 90.0 |
Caii—Ca—Cavi | 60.0 | Caxiii—Si—Cav | 120.0 |
Siiii—Ca—Cavi | 60.0 | Cax—Si—Cav | 90.0 |
Caiv—Ca—Cavi | 180.0 | Caxiv—Si—Cav | 60.0 |
Cav—Ca—Cavi | 120.0 | Caxv—Si—Cav | 180.0 |
Oi—Ca—Cavii | 45.0 | Caxi—Si—Caxvi | 120.0 |
O—Ca—Cavii | 135.0 | Ca—Si—Caxvi | 90.0 |
Si—Ca—Cavii | 120.0 | Caviii—Si—Caxvi | 60.0 |
Caii—Ca—Cavii | 90.0 | Caxii—Si—Caxvi | 60.0 |
Siiii—Ca—Cavii | 60.0 | Caxiii—Si—Caxvi | 90.0 |
Caiv—Ca—Cavii | 60.0 | Cax—Si—Caxvi | 120.0 |
Cav—Ca—Cavii | 90.0 | Caxiv—Si—Caxvi | 180.0 |
Cavi—Ca—Cavii | 120.0 | Caxv—Si—Caxvi | 60.0 |
Oi—Ca—Caviii | 135.0 | Cav—Si—Caxvi | 120.0 |
O—Ca—Caviii | 45.0 | Caxi—Si—Caiv | 90.0 |
Si—Ca—Caviii | 60.0 | Ca—Si—Caiv | 60.0 |
Caii—Ca—Caviii | 60.0 | Caviii—Si—Caiv | 90.0 |
Siiii—Ca—Caviii | 120.0 | Caxii—Si—Caiv | 60.0 |
Caiv—Ca—Caviii | 90.0 | Caxiii—Si—Caiv | 120.0 |
Cav—Ca—Caviii | 120.0 | Cax—Si—Caiv | 120.0 |
Cavi—Ca—Caviii | 90.0 | Caxiv—Si—Caiv | 120.0 |
Cavii—Ca—Caviii | 120.0 | Caxv—Si—Caiv | 120.0 |
Oi—Ca—Caix | 45.0 | Cav—Si—Caiv | 60.0 |
O—Ca—Caix | 135.0 | Caxvi—Si—Caiv | 60.0 |
Si—Ca—Caix | 120.0 | Caxi—Si—Caxvii | 90.0 |
Caii—Ca—Caix | 120.0 | Ca—Si—Caxvii | 120.0 |
Siiii—Ca—Caix | 60.0 | Caviii—Si—Caxvii | 90.0 |
Caiv—Ca—Caix | 90.0 | Caxii—Si—Caxvii | 120.0 |
Cav—Ca—Caix | 60.0 | Caxiii—Si—Caxvii | 60.0 |
Cavi—Ca—Caix | 90.0 | Cax—Si—Caxvii | 60.0 |
Cavii—Ca—Caix | 60.0 | Caxiv—Si—Caxvii | 60.0 |
Caviii—Ca—Caix | 180.0 | Caxv—Si—Caxvii | 60.0 |
Oi—Ca—Cax | 135.0 | Cav—Si—Caxvii | 120.0 |
O—Ca—Cax | 45.0 | Caxvi—Si—Caxvii | 120.0 |
Si—Ca—Cax | 60.0 | Caiv—Si—Caxvii | 180.0 |
Caii—Ca—Cax | 90.0 | Caviii—O—Ca | 90.0 |
Siiii—Ca—Cax | 120.0 | Caviii—O—Caxviii | 90.0 |
Caiv—Ca—Cax | 120.0 | Ca—O—Caxviii | 180.0 |
Cav—Ca—Cax | 90.0 | Caviii—O—Caii | 90.0 |
Cavi—Ca—Cax | 60.0 | Ca—O—Caii | 90.0 |
Cavii—Ca—Cax | 180.0 | Caxviii—O—Caii | 90.0 |
Caviii—Ca—Cax | 60.0 | Caviii—O—Cax | 90.0 |
Caix—Ca—Cax | 120.0 | Ca—O—Cax | 90.0 |
Caxi—Si—Ca | 120.0 | Caxviii—O—Cax | 90.0 |
Caxi—Si—Caviii | 180.0 | Caii—O—Cax | 180.0 |
Ca—Si—Caviii | 60.0 | Caviii—O—Cavi | 180.0 |
Caxi—Si—Caxii | 60.0 | Ca—O—Cavi | 90.0 |
Ca—Si—Caxii | 120.0 | Caxviii—O—Cavi | 90.0 |
Caviii—Si—Caxii | 120.0 | Caii—O—Cavi | 90.0 |
Caxi—Si—Caxiii | 60.0 | Cax—O—Cavi | 90.0 |
Ca—Si—Caxiii | 180.0 |
Symmetry codes: (i) x+1, y, z; (ii) z, x−1, y; (iii) x, y−1, z−1; (iv) y+1, z, x; (v) z+1, x, y; (vi) y, z, x−1; (vii) z+1, x−1, y; (viii) y, z, x; (ix) y+1, z, x−1; (x) z, x, y; (xi) y+1, z+1, x; (xii) z+1, x, y+1; (xiii) x, y+1, z+1; (xiv) x, y+1, z; (xv) z, x, y+1; (xvi) x, y, z+1; (xvii) y, z+1, x; (xviii) x−1, y, z. |
Ca3GeO | Mo Kα radiation, λ = 0.71073 Å |
Mr = 208.83 | Cell parameters from 687 reflections |
Cubic, Pm3m | θ = 4.3–35.1° |
a = 4.7452 (13) Å | µ = 10.56 mm−1 |
V = 106.85 (9) Å3 | T = 500 K |
Z = 1 | Block, grey |
F(000) = 100 | 0.03 × 0.02 × 0.02 mm |
Dx = 3.245 Mg m−3 |
SMART APEX I, Bruker AXS diffractometer | 73 reflections with I > 2σ(I) |
ωscan | Rint = 0.030 |
Absorption correction: multi-scan Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany. | θmax = 35.1°, θmin = 4.3° |
Tmin = 0.194, Tmax = 0.272 | h = −7→7 |
1694 measured reflections | k = −7→7 |
74 independent reflections | l = −7→7 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.016 | w = 1/[σ2(Fo2) + (0.0153P)2 + 0.0516P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.041 | (Δ/σ)max = 0.002 |
S = 1.26 | Δρmax = 0.40 e Å−3 |
74 reflections | Δρmin = −0.24 e Å−3 |
6 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.007 (9) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ca | 0.5000 | 0.0000 | 0.0000 | 0.0265 (2) | |
Ge | 0.5000 | 0.5000 | 0.5000 | 0.0197 (3) | |
O | 0.0000 | 0.0000 | 0.0000 | 0.0133 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca | 0.0119 (3) | 0.0338 (3) | 0.0338 (3) | 0.000 | 0.000 | 0.000 |
Ge | 0.0197 (3) | 0.0197 (3) | 0.0197 (3) | 0.000 | 0.000 | 0.000 |
O | 0.0133 (7) | 0.0133 (7) | 0.0133 (7) | 0.000 | 0.000 | 0.000 |
Ca—Oi | 2.3726 (6) | Ge—Caxii | 3.3554 (9) |
Ca—O | 2.3726 (6) | Ge—Caxiii | 3.3554 (9) |
Ca—Ge | 3.3554 (9) | Ge—Cax | 3.3554 (9) |
Ca—Caii | 3.3554 (9) | Ge—Caxiv | 3.3554 (9) |
Ca—Geiii | 3.3554 (9) | Ge—Caxv | 3.3554 (9) |
Ca—Caiv | 3.3554 (9) | Ge—Cav | 3.3554 (9) |
Ca—Cav | 3.3554 (9) | Ge—Caxvi | 3.3554 (9) |
Ca—Cavi | 3.3554 (9) | Ge—Caiv | 3.3554 (9) |
Ca—Cavii | 3.3554 (9) | Ge—Caxvii | 3.3554 (9) |
Ca—Caviii | 3.3554 (9) | O—Caviii | 2.3726 (6) |
Ca—Caix | 3.3554 (9) | O—Caxviii | 2.3726 (6) |
Ca—Cax | 3.3554 (9) | O—Caii | 2.3726 (6) |
Ge—Caxi | 3.3554 (9) | O—Cax | 2.3726 (6) |
Ge—Caviii | 3.3554 (9) | O—Cavi | 2.3726 (6) |
Oi—Ca—O | 180.0 | Caviii—Ge—Caxiii | 120.0 |
Oi—Ca—Ge | 90.0 | Caxii—Ge—Caxiii | 60.0 |
O—Ca—Ge | 90.0 | Caxi—Ge—Cax | 120.0 |
Oi—Ca—Caii | 135.0 | Ca—Ge—Cax | 60.0 |
O—Ca—Caii | 45.0 | Caviii—Ge—Cax | 60.0 |
Ge—Ca—Caii | 120.0 | Caxii—Ge—Cax | 180.0 |
Oi—Ca—Geiii | 90.0 | Caxiii—Ge—Cax | 120.0 |
O—Ca—Geiii | 90.0 | Caxi—Ge—Caxiv | 60.0 |
Ge—Ca—Geiii | 180.0 | Ca—Ge—Caxiv | 90.0 |
Caii—Ca—Geiii | 60.0 | Caviii—Ge—Caxiv | 120.0 |
Oi—Ca—Caiv | 45.0 | Caxii—Ge—Caxiv | 120.0 |
O—Ca—Caiv | 135.0 | Caxiii—Ge—Caxiv | 90.0 |
Ge—Ca—Caiv | 60.0 | Cax—Ge—Caxiv | 60.0 |
Caii—Ca—Caiv | 120.0 | Caxi—Ge—Caxv | 120.0 |
Geiii—Ca—Caiv | 120.0 | Ca—Ge—Caxv | 120.0 |
Oi—Ca—Cav | 45.0 | Caviii—Ge—Caxv | 60.0 |
O—Ca—Cav | 135.0 | Caxii—Ge—Caxv | 90.0 |
Ge—Ca—Cav | 60.0 | Caxiii—Ge—Caxv | 60.0 |
Caii—Ca—Cav | 180.0 | Cax—Ge—Caxv | 90.0 |
Geiii—Ca—Cav | 120.0 | Caxiv—Ge—Caxv | 120.0 |
Caiv—Ca—Cav | 60.0 | Caxi—Ge—Cav | 60.0 |
Oi—Ca—Cavi | 135.0 | Ca—Ge—Cav | 60.0 |
O—Ca—Cavi | 45.0 | Caviii—Ge—Cav | 120.0 |
Ge—Ca—Cavi | 120.0 | Caxii—Ge—Cav | 90.0 |
Caii—Ca—Cavi | 60.0 | Caxiii—Ge—Cav | 120.0 |
Geiii—Ca—Cavi | 60.0 | Cax—Ge—Cav | 90.0 |
Caiv—Ca—Cavi | 180.0 | Caxiv—Ge—Cav | 60.0 |
Cav—Ca—Cavi | 120.0 | Caxv—Ge—Cav | 180.0 |
Oi—Ca—Cavii | 45.0 | Caxi—Ge—Caxvi | 120.0 |
O—Ca—Cavii | 135.0 | Ca—Ge—Caxvi | 90.0 |
Ge—Ca—Cavii | 120.0 | Caviii—Ge—Caxvi | 60.0 |
Caii—Ca—Cavii | 90.0 | Caxii—Ge—Caxvi | 60.0 |
Geiii—Ca—Cavii | 60.0 | Caxiii—Ge—Caxvi | 90.0 |
Caiv—Ca—Cavii | 60.0 | Cax—Ge—Caxvi | 120.0 |
Cav—Ca—Cavii | 90.0 | Caxiv—Ge—Caxvi | 180.0 |
Cavi—Ca—Cavii | 120.0 | Caxv—Ge—Caxvi | 60.0 |
Oi—Ca—Caviii | 135.0 | Cav—Ge—Caxvi | 120.0 |
O—Ca—Caviii | 45.0 | Caxi—Ge—Caiv | 90.0 |
Ge—Ca—Caviii | 60.0 | Ca—Ge—Caiv | 60.0 |
Caii—Ca—Caviii | 60.0 | Caviii—Ge—Caiv | 90.0 |
Geiii—Ca—Caviii | 120.0 | Caxii—Ge—Caiv | 60.0 |
Caiv—Ca—Caviii | 90.0 | Caxiii—Ge—Caiv | 120.0 |
Cav—Ca—Caviii | 120.0 | Cax—Ge—Caiv | 120.0 |
Cavi—Ca—Caviii | 90.0 | Caxiv—Ge—Caiv | 120.0 |
Cavii—Ca—Caviii | 120.0 | Caxv—Ge—Caiv | 120.0 |
Oi—Ca—Caix | 45.0 | Cav—Ge—Caiv | 60.0 |
O—Ca—Caix | 135.0 | Caxvi—Ge—Caiv | 60.0 |
Ge—Ca—Caix | 120.0 | Caxi—Ge—Caxvii | 90.0 |
Caii—Ca—Caix | 120.0 | Ca—Ge—Caxvii | 120.0 |
Geiii—Ca—Caix | 60.0 | Caviii—Ge—Caxvii | 90.0 |
Caiv—Ca—Caix | 90.0 | Caxii—Ge—Caxvii | 120.0 |
Cav—Ca—Caix | 60.0 | Caxiii—Ge—Caxvii | 60.0 |
Cavi—Ca—Caix | 90.0 | Cax—Ge—Caxvii | 60.0 |
Cavii—Ca—Caix | 60.0 | Caxiv—Ge—Caxvii | 60.0 |
Caviii—Ca—Caix | 180.0 | Caxv—Ge—Caxvii | 60.0 |
Oi—Ca—Cax | 135.0 | Cav—Ge—Caxvii | 120.0 |
O—Ca—Cax | 45.0 | Caxvi—Ge—Caxvii | 120.0 |
Ge—Ca—Cax | 60.0 | Caiv—Ge—Caxvii | 180.0 |
Caii—Ca—Cax | 90.0 | Caviii—O—Ca | 90.0 |
Geiii—Ca—Cax | 120.0 | Caviii—O—Caxviii | 90.0 |
Caiv—Ca—Cax | 120.0 | Ca—O—Caxviii | 180.0 |
Cav—Ca—Cax | 90.0 | Caviii—O—Caii | 90.0 |
Cavi—Ca—Cax | 60.0 | Ca—O—Caii | 90.0 |
Cavii—Ca—Cax | 180.0 | Caxviii—O—Caii | 90.0 |
Caviii—Ca—Cax | 60.0 | Caviii—O—Cax | 90.0 |
Caix—Ca—Cax | 120.0 | Ca—O—Cax | 90.0 |
Caxi—Ge—Ca | 120.0 | Caxviii—O—Cax | 90.0 |
Caxi—Ge—Caviii | 180.0 | Caii—O—Cax | 180.0 |
Ca—Ge—Caviii | 60.0 | Caviii—O—Cavi | 180.0 |
Caxi—Ge—Caxii | 60.0 | Ca—O—Cavi | 90.0 |
Ca—Ge—Caxii | 120.0 | Caxviii—O—Cavi | 90.0 |
Caviii—Ge—Caxii | 120.0 | Caii—O—Cavi | 90.0 |
Caxi—Ge—Caxiii | 60.0 | Cax—O—Cavi | 90.0 |
Ca—Ge—Caxiii | 180.0 |
Symmetry codes: (i) x+1, y, z; (ii) z, x−1, y; (iii) x, y−1, z−1; (iv) y+1, z, x; (v) z+1, x, y; (vi) y, z, x−1; (vii) z+1, x−1, y; (viii) y, z, x; (ix) y+1, z, x−1; (x) z, x, y; (xi) y+1, z+1, x; (xii) z+1, x, y+1; (xiii) x, y+1, z+1; (xiv) x, y+1, z; (xv) z, x, y+1; (xvi) x, y, z+1; (xvii) y, z+1, x; (xviii) x−1, y, z. |
Ba3PbO | F(000) = 1032 |
Mr = 635.2 | Dx = 6.553 Mg m−3 |
Orthorhombic, Ibmm | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -I -2xc;-2y;-2zc | Cell parameters from 1917 reflections |
a = 7.693 (2) Å | θ = 3.8–36.8° |
b = 7.693 (2) Å | µ = 44.03 mm−1 |
c = 10.880 (3) Å | T = 100 K |
V = 643.9 (3) Å3 | Block, grey |
Z = 4 | 0.05 × 0.03 × 0.02 mm |
SMART APEX II, Bruker AXS diffractometer | 3005 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ωscan | θmax = 37.0°, θmin = 3.2° |
Absorption correction: multi-scan Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany. | h = −13→13 |
Tmin = 0.132, Tmax = 0.275 | k = −12→12 |
6195 measured reflections | l = −18→18 |
3139 independent reflections |
Refinement on F | 0 constraints |
R[F > 3σ(F)] = 0.032 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F) = 0.035 | (Δ/σ)max = 0.008 |
S = 1.17 | Δρmax = 1.37 e Å−3 |
3139 reflections | Δρmin = −2.23 e Å−3 |
24 parameters | Extinction correction: B-C type 2 (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: 86E1 (3) |
x | y | z | Uiso*/Ueq | ||
Ba1 | −0.01880 (12) | 0 | 0.25 | 0.0101 (2) | |
Ba2 | 0.25 | 0.25 | 0.00941 (7) | 0.0118 (3) | |
Pb | 0.49967 (11) | 0 | 0.25 | 0.00608 (17) | |
O | 0 | 0 | 0 | 0.008 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.0079 (3) | 0.0151 (5) | 0.0072 (4) | 0 | 0 | 0 |
Ba2 | 0.0114 (5) | 0.0115 (5) | 0.0126 (3) | −0.00595 (15) | 0 | 0 |
Pb | 0.0045 (3) | 0.0059 (3) | 0.0078 (3) | 0 | 0 | 0 |
O | 0.004 (6) | 0.011 (7) | 0.010 (6) | 0 | 0.001 (4) | 0 |
Ba1—Ba2 | 3.8506 (14) | Ba1—O | 2.7238 (15) |
Ba1—Ba2i | 3.8507 (15) | Ba1—Oxi | 2.7238 (15) |
Ba1—Ba2ii | 3.8507 (15) | Ba2—Ba2ii | 3.852 (2) |
Ba1—Ba2iii | 3.8506 (14) | Ba2—Ba2xii | 3.852 (2) |
Ba1—Ba2iv | 3.8507 (15) | Ba2—Ba2vi | 3.846 (2) |
Ba1—Ba2v | 3.8506 (14) | Ba2—Ba2xiii | 3.846 (2) |
Ba1—Ba2vi | 3.8506 (14) | Ba2—Pb | 3.7736 (14) |
Ba1—Ba2vii | 3.8507 (15) | Ba2—Pbxiv | 3.9208 (15) |
Ba1—Pbviii | 3.704 (2) | Ba2—Pbxv | 3.9208 (15) |
Ba1—Pb | 3.989 (2) | Ba2—Pbx | 3.7736 (14) |
Ba1—Pbix | 3.849 (2) | Ba2—O | 2.7218 (10) |
Ba1—Pbx | 3.849 (2) | Ba2—Ox | 2.7218 (10) |
Ba2—Ba1—Ba2i | 174.73 (2) | Ba1x—Ba2—Pbxiv | 120.538 (17) |
Ba2—Ba1—Ba2ii | 60.022 (17) | Ba1x—Ba2—Pbxv | 118.07 (2) |
Ba2—Ba1—Ba2iii | 115.04 (3) | Ba1x—Ba2—Pbx | 63.08 (3) |
Ba2—Ba1—Ba2iv | 89.96 (2) | Ba1x—Ba2—O | 139.28 (3) |
Ba2—Ba1—Ba2v | 85.66 (3) | Ba1x—Ba2—Ox | 45.022 (14) |
Ba2—Ba1—Ba2vi | 59.929 (19) | Ba2ii—Ba2—Ba2xii | 173.91 (3) |
Ba2—Ba1—Ba2vii | 119.792 (18) | Ba2ii—Ba2—Ba2vi | 90.0000 (8) |
Ba2—Ba1—Pbviii | 122.481 (15) | Ba2ii—Ba2—Ba2xiii | 90.0000 (8) |
Ba2—Ba1—Pb | 57.519 (15) | Ba2ii—Ba2—Pb | 123.03 (2) |
Ba2—Ba1—Pbix | 118.592 (18) | Ba2ii—Ba2—Pbxiv | 58.081 (16) |
Ba2—Ba1—Pbx | 58.693 (13) | Ba2ii—Ba2—Pbxv | 116.89 (2) |
Ba2—Ba1—O | 44.979 (14) | Ba2ii—Ba2—Pbx | 61.874 (17) |
Ba2—Ba1—Oxi | 130.57 (3) | Ba2ii—Ba2—O | 44.959 (11) |
Ba2i—Ba1—Ba2ii | 124.98 (3) | Ba2ii—Ba2—Ox | 134.717 (11) |
Ba2i—Ba1—Ba2iii | 60.022 (17) | Ba2xii—Ba2—Ba2vi | 90.0000 (8) |
Ba2i—Ba1—Ba2iv | 94.27 (3) | Ba2xii—Ba2—Ba2xiii | 90.0000 (8) |
Ba2i—Ba1—Ba2v | 89.96 (2) | Ba2xii—Ba2—Pb | 61.874 (17) |
Ba2i—Ba1—Ba2vi | 119.792 (18) | Ba2xii—Ba2—Pbxiv | 116.89 (2) |
Ba2i—Ba1—Ba2vii | 59.928 (19) | Ba2xii—Ba2—Pbxv | 58.081 (16) |
Ba2i—Ba1—Pbviii | 62.491 (15) | Ba2xii—Ba2—Pbx | 123.03 (2) |
Ba2i—Ba1—Pb | 117.509 (15) | Ba2xii—Ba2—O | 134.717 (11) |
Ba2i—Ba1—Pbix | 61.221 (12) | Ba2xii—Ba2—Ox | 44.959 (11) |
Ba2i—Ba1—Pbx | 121.114 (16) | Ba2vi—Ba2—Ba2xiii | 180.0 (5) |
Ba2i—Ba1—O | 139.15 (2) | Ba2vi—Ba2—Pb | 59.359 (13) |
Ba2i—Ba1—Oxi | 44.978 (14) | Ba2vi—Ba2—Pbxiv | 119.375 (18) |
Ba2ii—Ba1—Ba2iii | 174.73 (2) | Ba2vi—Ba2—Pbxv | 60.625 (13) |
Ba2ii—Ba1—Ba2iv | 59.928 (19) | Ba2vi—Ba2—Pbx | 120.641 (18) |
Ba2ii—Ba1—Ba2v | 119.792 (18) | Ba2vi—Ba2—O | 45.041 (11) |
Ba2ii—Ba1—Ba2vi | 89.96 (2) | Ba2vi—Ba2—Ox | 134.960 (11) |
Ba2ii—Ba1—Ba2vii | 94.27 (3) | Ba2xiii—Ba2—Pb | 120.641 (18) |
Ba2ii—Ba1—Pbviii | 62.491 (15) | Ba2xiii—Ba2—Pbxiv | 60.625 (13) |
Ba2ii—Ba1—Pb | 117.509 (15) | Ba2xiii—Ba2—Pbxv | 119.375 (18) |
Ba2ii—Ba1—Pbix | 121.114 (16) | Ba2xiii—Ba2—Pbx | 59.359 (13) |
Ba2ii—Ba1—Pbx | 61.221 (12) | Ba2xiii—Ba2—O | 134.960 (11) |
Ba2ii—Ba1—O | 44.978 (14) | Ba2xiii—Ba2—Ox | 45.041 (11) |
Ba2ii—Ba1—Oxi | 139.15 (2) | Pb—Ba2—Pbxiv | 177.880 (18) |
Ba2iii—Ba1—Ba2iv | 119.792 (18) | Pb—Ba2—Pbxv | 89.96 (2) |
Ba2iii—Ba1—Ba2v | 59.929 (19) | Pb—Ba2—Pbx | 92.16 (3) |
Ba2iii—Ba1—Ba2vi | 85.66 (3) | Pb—Ba2—O | 91.47 (2) |
Ba2iii—Ba1—Ba2vii | 89.96 (2) | Pb—Ba2—Ox | 91.52 (2) |
Ba2iii—Ba1—Pbviii | 122.481 (15) | Pbxiv—Ba2—Pbxv | 87.92 (3) |
Ba2iii—Ba1—Pb | 57.519 (15) | Pbxiv—Ba2—Pbx | 89.96 (2) |
Ba2iii—Ba1—Pbix | 58.693 (13) | Pbxiv—Ba2—O | 88.42 (2) |
Ba2iii—Ba1—Pbx | 118.592 (18) | Pbxiv—Ba2—Ox | 88.48 (2) |
Ba2iii—Ba1—O | 130.57 (3) | Pbxv—Ba2—Pbx | 177.880 (18) |
Ba2iii—Ba1—Oxi | 44.979 (14) | Pbxv—Ba2—O | 88.48 (2) |
Ba2iv—Ba1—Ba2v | 174.73 (2) | Pbxv—Ba2—Ox | 88.42 (2) |
Ba2iv—Ba1—Ba2vi | 60.022 (17) | Pbx—Ba2—O | 91.52 (2) |
Ba2iv—Ba1—Ba2vii | 124.98 (3) | Pbx—Ba2—Ox | 91.47 (2) |
Ba2iv—Ba1—Pbviii | 62.491 (15) | O—Ba2—Ox | 175.69 (3) |
Ba2iv—Ba1—Pb | 117.509 (15) | Ba1—Pb—Ba1xviii | 180.0 (5) |
Ba2iv—Ba1—Pbix | 61.221 (12) | Ba1—Pb—Ba1ix | 92.191 (19) |
Ba2iv—Ba1—Pbx | 121.114 (16) | Ba1—Pb—Ba1x | 92.191 (19) |
Ba2iv—Ba1—O | 44.978 (14) | Ba1—Pb—Ba2 | 59.404 (15) |
Ba2iv—Ba1—Oxi | 139.15 (2) | Ba1—Pb—Ba2xix | 119.417 (14) |
Ba2v—Ba1—Ba2vi | 115.04 (3) | Ba1—Pb—Ba2xii | 119.417 (14) |
Ba2v—Ba1—Ba2vii | 60.022 (17) | Ba1—Pb—Ba2iii | 59.404 (15) |
Ba2v—Ba1—Pbviii | 122.481 (15) | Ba1—Pb—Ba2xx | 119.417 (14) |
Ba2v—Ba1—Pb | 57.519 (15) | Ba1—Pb—Ba2v | 59.404 (15) |
Ba2v—Ba1—Pbix | 118.592 (18) | Ba1—Pb—Ba2vi | 59.404 (15) |
Ba2v—Ba1—Pbx | 58.693 (13) | Ba1—Pb—Ba2xxi | 119.417 (14) |
Ba2v—Ba1—O | 130.57 (3) | Ba1xviii—Pb—Ba1ix | 87.809 (19) |
Ba2v—Ba1—Oxi | 44.979 (14) | Ba1xviii—Pb—Ba1x | 87.809 (19) |
Ba2vi—Ba1—Ba2vii | 174.73 (2) | Ba1xviii—Pb—Ba2 | 120.596 (15) |
Ba2vi—Ba1—Pbviii | 122.481 (15) | Ba1xviii—Pb—Ba2xix | 60.583 (14) |
Ba2vi—Ba1—Pb | 57.519 (15) | Ba1xviii—Pb—Ba2xii | 60.583 (14) |
Ba2vi—Ba1—Pbix | 58.693 (13) | Ba1xviii—Pb—Ba2iii | 120.596 (15) |
Ba2vi—Ba1—Pbx | 118.592 (18) | Ba1xviii—Pb—Ba2xx | 60.583 (14) |
Ba2vi—Ba1—O | 44.979 (14) | Ba1xviii—Pb—Ba2v | 120.596 (15) |
Ba2vi—Ba1—Oxi | 130.57 (3) | Ba1xviii—Pb—Ba2vi | 120.596 (15) |
Ba2vii—Ba1—Pbviii | 62.491 (15) | Ba1xviii—Pb—Ba2xxi | 60.583 (14) |
Ba2vii—Ba1—Pb | 117.509 (15) | Ba1ix—Pb—Ba1x | 175.62 (3) |
Ba2vii—Ba1—Pbix | 121.114 (16) | Ba1ix—Pb—Ba2 | 121.920 (17) |
Ba2vii—Ba1—Pbx | 61.221 (12) | Ba1ix—Pb—Ba2xix | 59.407 (13) |
Ba2vii—Ba1—O | 139.15 (2) | Ba1ix—Pb—Ba2xii | 118.124 (17) |
Ba2vii—Ba1—Oxi | 44.978 (14) | Ba1ix—Pb—Ba2iii | 60.671 (13) |
Pbviii—Ba1—Pb | 180.0 (5) | Ba1ix—Pb—Ba2xx | 59.407 (13) |
Pbviii—Ba1—Pbix | 92.191 (19) | Ba1ix—Pb—Ba2v | 121.920 (17) |
Pbviii—Ba1—Pbx | 92.191 (19) | Ba1ix—Pb—Ba2vi | 60.671 (13) |
Pbviii—Ba1—O | 93.04 (2) | Ba1ix—Pb—Ba2xxi | 118.124 (17) |
Pbviii—Ba1—Oxi | 93.04 (2) | Ba1x—Pb—Ba2 | 60.671 (13) |
Pb—Ba1—Pbix | 87.809 (19) | Ba1x—Pb—Ba2xix | 118.124 (17) |
Pb—Ba1—Pbx | 87.809 (19) | Ba1x—Pb—Ba2xii | 59.407 (13) |
Pb—Ba1—O | 86.96 (2) | Ba1x—Pb—Ba2iii | 121.920 (17) |
Pb—Ba1—Oxi | 86.96 (2) | Ba1x—Pb—Ba2xx | 118.124 (17) |
Pbix—Ba1—Pbx | 175.62 (3) | Ba1x—Pb—Ba2v | 60.671 (13) |
Pbix—Ba1—O | 89.8837 (17) | Ba1x—Pb—Ba2vi | 121.920 (17) |
Pbix—Ba1—Oxi | 89.8837 (17) | Ba1x—Pb—Ba2xxi | 59.407 (13) |
Pbx—Ba1—O | 89.8837 (17) | Ba2—Pb—Ba2xix | 177.880 (16) |
Pbx—Ba1—Oxi | 89.8837 (17) | Ba2—Pb—Ba2xii | 60.045 (18) |
O—Ba1—Oxi | 173.91 (4) | Ba2—Pb—Ba2iii | 118.81 (3) |
Ba1—Ba2—Ba1xvi | 174.73 (2) | Ba2—Pb—Ba2xx | 90.04 (2) |
Ba1—Ba2—Ba1xvii | 90.04 (2) | Ba2—Pb—Ba2v | 87.84 (3) |
Ba1—Ba2—Ba1x | 94.34 (3) | Ba2—Pb—Ba2vi | 61.282 (19) |
Ba1—Ba2—Ba2ii | 59.990 (18) | Ba2—Pb—Ba2xxi | 119.955 (18) |
Ba1—Ba2—Ba2xii | 124.92 (2) | Ba2xix—Pb—Ba2xii | 121.17 (3) |
Ba1—Ba2—Ba2vi | 60.035 (13) | Ba2xix—Pb—Ba2iii | 60.045 (18) |
Ba1—Ba2—Ba2xiii | 119.965 (18) | Ba2xix—Pb—Ba2xx | 92.08 (3) |
Ba1—Ba2—Pb | 63.08 (3) | Ba2xix—Pb—Ba2v | 90.04 (2) |
Ba1—Ba2—Pbxiv | 118.07 (2) | Ba2xix—Pb—Ba2vi | 119.955 (18) |
Ba1—Ba2—Pbxv | 120.538 (17) | Ba2xix—Pb—Ba2xxi | 58.749 (19) |
Ba1—Ba2—Pbx | 60.637 (19) | Ba2xii—Pb—Ba2iii | 177.880 (16) |
Ba1—Ba2—O | 45.022 (14) | Ba2xii—Pb—Ba2xx | 58.749 (19) |
Ba1—Ba2—Ox | 139.28 (3) | Ba2xii—Pb—Ba2v | 119.955 (18) |
Ba1xvi—Ba2—Ba1xvii | 85.73 (3) | Ba2xii—Pb—Ba2vi | 90.04 (2) |
Ba1xvi—Ba2—Ba1x | 90.04 (2) | Ba2xii—Pb—Ba2xxi | 92.08 (3) |
Ba1xvi—Ba2—Ba2ii | 114.98 (2) | Ba2iii—Pb—Ba2xx | 119.955 (18) |
Ba1xvi—Ba2—Ba2xii | 59.988 (17) | Ba2iii—Pb—Ba2v | 61.282 (19) |
Ba1xvi—Ba2—Ba2vi | 119.964 (19) | Ba2iii—Pb—Ba2vi | 87.84 (3) |
Ba1xvi—Ba2—Ba2xiii | 60.036 (14) | Ba2iii—Pb—Ba2xxi | 90.04 (2) |
Ba1xvi—Ba2—Pb | 121.86 (2) | Ba2xx—Pb—Ba2v | 177.880 (16) |
Ba1xvi—Ba2—Pbxiv | 56.93 (2) | Ba2xx—Pb—Ba2vi | 60.045 (18) |
Ba1xvi—Ba2—Pbxv | 59.372 (19) | Ba2xx—Pb—Ba2xxi | 121.17 (3) |
Ba1xvi—Ba2—Pbx | 119.273 (17) | Ba2v—Pb—Ba2vi | 118.81 (3) |
Ba1xvi—Ba2—O | 130.67 (3) | Ba2v—Pb—Ba2xxi | 60.045 (18) |
Ba1xvi—Ba2—Ox | 45.021 (14) | Ba2vi—Pb—Ba2xxi | 177.880 (16) |
Ba1xvii—Ba2—Ba1x | 174.73 (2) | Ba1—O—Ba1xvii | 180.0 (5) |
Ba1xvii—Ba2—Ba2ii | 59.988 (17) | Ba1—O—Ba2 | 90.00 (2) |
Ba1xvii—Ba2—Ba2xii | 114.98 (2) | Ba1—O—Ba2ii | 90.00 (2) |
Ba1xvii—Ba2—Ba2vi | 60.036 (14) | Ba1—O—Ba2iv | 90.00 (2) |
Ba1xvii—Ba2—Ba2xiii | 119.964 (19) | Ba1—O—Ba2vi | 90.00 (2) |
Ba1xvii—Ba2—Pb | 119.273 (17) | Ba1xvii—O—Ba2 | 90.00 (2) |
Ba1xvii—Ba2—Pbxiv | 59.372 (19) | Ba1xvii—O—Ba2ii | 90.00 (2) |
Ba1xvii—Ba2—Pbxv | 56.93 (2) | Ba1xvii—O—Ba2iv | 90.00 (2) |
Ba1xvii—Ba2—Pbx | 121.86 (2) | Ba1xvii—O—Ba2vi | 90.00 (2) |
Ba1xvii—Ba2—O | 45.021 (14) | Ba2—O—Ba2ii | 90.08 (2) |
Ba1xvii—Ba2—Ox | 130.67 (3) | Ba2—O—Ba2iv | 180.0 (5) |
Ba1x—Ba2—Ba2ii | 124.92 (2) | Ba2—O—Ba2vi | 89.92 (2) |
Ba1x—Ba2—Ba2xii | 59.990 (18) | Ba2ii—O—Ba2iv | 89.92 (2) |
Ba1x—Ba2—Ba2vi | 119.965 (18) | Ba2ii—O—Ba2vi | 180.0 (5) |
Ba1x—Ba2—Ba2xiii | 60.035 (13) | Ba2iv—O—Ba2vi | 90.08 (2) |
Ba1x—Ba2—Pb | 60.637 (19) |
Symmetry codes: (i) x−1/2, y−1/2, z+1/2; (ii) −x, y, −z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x, −y, −z; (v) −x+1/2, −y+1/2, −z+1/2; (vi) x, −y, z; (vii) x−1/2, −y+1/2, z+1/2; (viii) x−1, y, z; (ix) −x+1/2, −y−1/2, z; (x) −x+1/2, −y+1/2, z; (xi) −x, −y, z+1/2; (xii) −x+1, y, −z; (xiii) x, −y+1, z; (xiv) x−1/2, y+1/2, z−1/2; (xv) −x+1, −y, z−1/2; (xvi) x+1/2, y+1/2, z−1/2; (xvii) −x, −y, z−1/2; (xviii) x+1, y, z; (xix) x+1/2, y−1/2, z+1/2; (xx) −x+1, −y, −z; (xxi) x+1/2, −y+1/2, z+1/2. |
Ba3SnO | F(000) = 904 |
Mr = 546.7 | Dx = 5.677 Mg m−3 |
Orthorhombic, Ibmm | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -I -2xc;-2y;-2zc | Cell parameters from 3194 reflections |
a = 7.676 (1) Å | θ = 3.3–37.1° |
b = 7.676 (1) Å | µ = 21.95 mm−1 |
c = 10.8560 (13) Å | T = 100 K |
V = 639.65 (14) Å3 | Block, grey |
Z = 4 | 0.08 × 0.06 × 0.05 mm |
SMART APEX II, Bruker AXS diffractometer | 2514 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ωscan | θmax = 37.1°, θmin = 3.3° |
Absorption correction: multi-scan Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany. | h = −12→12 |
Tmin = 0.094, Tmax = 0.167 | k = −12→12 |
5161 measured reflections | l = −18→18 |
2658 independent reflections |
Refinement on F | 0 constraints |
R[F > 3σ(F)] = 0.029 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F) = 0.035 | (Δ/σ)max = 0.005 |
S = 1.19 | Δρmax = 0.99 e Å−3 |
2658 reflections | Δρmin = −1.22 e Å−3 |
24 parameters | Extinction correction: B-C type 2 (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: 77E1 (4) |
x | y | z | Uiso*/Ueq | ||
Ba1 | −0.02222 (7) | 0 | 0.25 | 0.00813 (17) | |
Ba2 | 0.25 | 0.25 | 0.01133 (5) | 0.01269 (16) | |
Sn | 0.50010 (10) | 0 | 0.25 | 0.0078 (2) | |
O | 0 | 0 | 0 | 0.0132 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ba1 | 0.0087 (2) | 0.0099 (3) | 0.0058 (4) | 0 | 0 | 0 |
Ba2 | 0.0099 (2) | 0.0181 (3) | 0.0100 (3) | −0.00607 (14) | 0 | 0 |
Sn | 0.0038 (3) | 0.0089 (4) | 0.0106 (5) | 0 | 0 | 0 |
O | 0.017 (2) | 0.023 (4) | −0.001 (3) | 0 | 0.001 (3) | 0 |
Ba1—Ba2 | 3.8421 (7) | Ba1—Oxi | 2.7194 (6) |
Ba1—Ba2i | 3.8456 (7) | Ba2—Ba2ii | 3.8459 (10) |
Ba1—Ba2ii | 3.8456 (7) | Ba2—Ba2xii | 3.8459 (10) |
Ba1—Ba2iii | 3.8421 (7) | Ba2—Ba2vi | 3.8380 (10) |
Ba1—Ba2iv | 3.8456 (7) | Ba2—Ba2xiii | 3.8380 (10) |
Ba1—Ba2v | 3.8421 (7) | Ba2—Sn | 3.7525 (8) |
Ba1—Ba2vi | 3.8421 (7) | Ba2—Snxiv | 3.9257 (8) |
Ba1—Ba2vii | 3.8456 (7) | Ba2—Snxv | 3.9257 (8) |
Ba1—Snviii | 3.6667 (14) | Ba2—Snx | 3.7525 (8) |
Ba1—Snix | 3.8418 (10) | Ba2—O | 2.7167 (5) |
Ba1—Snx | 3.8418 (10) | Ba2—Ox | 2.7167 (5) |
Ba1—O | 2.7194 (6) | ||
Ba2—Ba1—Ba2i | 173.727 (15) | Ba1x—Ba2—Snxv | 117.759 (15) |
Ba2—Ba1—Ba2ii | 60.035 (9) | Ba1x—Ba2—Snx | 63.717 (16) |
Ba2—Ba1—Ba2iii | 114.107 (17) | Ba1x—Ba2—O | 140.132 (17) |
Ba2—Ba1—Ba2iv | 89.943 (11) | Ba1x—Ba2—Ox | 45.054 (8) |
Ba2—Ba1—Ba2v | 84.808 (14) | Ba2ii—Ba2—Ba2xii | 172.663 (18) |
Ba2—Ba1—Ba2vi | 59.929 (10) | Ba2ii—Ba2—Ba2vi | 90.0000 (7) |
Ba2—Ba1—Ba2vii | 119.705 (9) | Ba2ii—Ba2—Ba2xiii | 90.0000 (7) |
Ba2—Ba1—Snviii | 122.947 (9) | Ba2ii—Ba2—Sn | 123.692 (15) |
Ba2—Ba1—Snix | 118.355 (12) | Ba2ii—Ba2—Snxiv | 57.732 (13) |
Ba2—Ba1—Snx | 58.465 (9) | Ba2ii—Ba2—Snxv | 116.193 (16) |
Ba2—Ba1—O | 44.997 (8) | Ba2ii—Ba2—Snx | 62.201 (13) |
Ba2—Ba1—Oxi | 129.711 (15) | Ba2ii—Ba2—O | 44.941 (5) |
Ba2i—Ba1—Ba2ii | 125.914 (17) | Ba2ii—Ba2—Ox | 134.591 (6) |
Ba2i—Ba1—Ba2iii | 60.035 (9) | Ba2xii—Ba2—Ba2vi | 90.0000 (7) |
Ba2i—Ba1—Ba2iv | 95.079 (14) | Ba2xii—Ba2—Ba2xiii | 90.0000 (7) |
Ba2i—Ba1—Ba2v | 89.943 (11) | Ba2xii—Ba2—Sn | 62.201 (13) |
Ba2i—Ba1—Ba2vi | 119.705 (9) | Ba2xii—Ba2—Snxiv | 116.193 (16) |
Ba2i—Ba1—Ba2vii | 59.870 (10) | Ba2xii—Ba2—Snxv | 57.732 (13) |
Ba2i—Ba1—Snviii | 62.957 (9) | Ba2xii—Ba2—Snx | 123.692 (15) |
Ba2i—Ba1—Snix | 61.417 (8) | Ba2xii—Ba2—O | 134.591 (6) |
Ba2i—Ba1—Snx | 121.240 (10) | Ba2xii—Ba2—Ox | 44.941 (5) |
Ba2i—Ba1—O | 139.890 (13) | Ba2vi—Ba2—Ba2xiii | 180.0 (5) |
Ba2i—Ba1—Oxi | 44.946 (8) | Ba2vi—Ba2—Sn | 59.243 (9) |
Ba2ii—Ba1—Ba2iii | 173.727 (15) | Ba2vi—Ba2—Snxiv | 119.264 (12) |
Ba2ii—Ba1—Ba2iv | 59.870 (10) | Ba2vi—Ba2—Snxv | 60.736 (9) |
Ba2ii—Ba1—Ba2v | 119.705 (9) | Ba2vi—Ba2—Snx | 120.757 (12) |
Ba2ii—Ba1—Ba2vi | 89.943 (11) | Ba2vi—Ba2—O | 45.059 (5) |
Ba2ii—Ba1—Ba2vii | 95.079 (14) | Ba2vi—Ba2—Ox | 134.941 (5) |
Ba2ii—Ba1—Snviii | 62.957 (9) | Ba2xiii—Ba2—Sn | 120.757 (12) |
Ba2ii—Ba1—Snix | 121.240 (10) | Ba2xiii—Ba2—Snxiv | 60.736 (9) |
Ba2ii—Ba1—Snx | 61.417 (8) | Ba2xiii—Ba2—Snxv | 119.264 (12) |
Ba2ii—Ba1—O | 44.946 (8) | Ba2xiii—Ba2—Snx | 59.243 (9) |
Ba2ii—Ba1—Oxi | 139.890 (13) | Ba2xiii—Ba2—O | 134.941 (5) |
Ba2iii—Ba1—Ba2iv | 119.705 (9) | Ba2xiii—Ba2—Ox | 45.059 (5) |
Ba2iii—Ba1—Ba2v | 59.929 (10) | Sn—Ba2—Snxiv | 177.390 (13) |
Ba2iii—Ba1—Ba2vi | 84.808 (14) | Sn—Ba2—Snxv | 89.944 (12) |
Ba2iii—Ba1—Ba2vii | 89.943 (11) | Sn—Ba2—Snx | 92.666 (16) |
Ba2iii—Ba1—Snviii | 122.947 (9) | Sn—Ba2—O | 91.800 (13) |
Ba2iii—Ba1—Snix | 58.465 (9) | Sn—Ba2—Ox | 91.784 (14) |
Ba2iii—Ba1—Snx | 118.355 (12) | Snxiv—Ba2—Snxv | 87.447 (16) |
Ba2iii—Ba1—O | 129.711 (15) | Snxiv—Ba2—Snx | 89.944 (12) |
Ba2iii—Ba1—Oxi | 44.997 (8) | Snxiv—Ba2—O | 88.132 (13) |
Ba2iv—Ba1—Ba2v | 173.727 (15) | Snxiv—Ba2—Ox | 88.117 (13) |
Ba2iv—Ba1—Ba2vi | 60.035 (9) | Snxv—Ba2—Snx | 177.390 (13) |
Ba2iv—Ba1—Ba2vii | 125.914 (17) | Snxv—Ba2—O | 88.117 (13) |
Ba2iv—Ba1—Snviii | 62.957 (9) | Snxv—Ba2—Ox | 88.132 (13) |
Ba2iv—Ba1—Snix | 61.417 (8) | Snx—Ba2—O | 91.784 (14) |
Ba2iv—Ba1—Snx | 121.240 (10) | Snx—Ba2—Ox | 91.800 (13) |
Ba2iv—Ba1—O | 44.946 (8) | O—Ba2—Ox | 174.81 (2) |
Ba2iv—Ba1—Oxi | 139.890 (13) | Ba1xviii—Sn—Ba1ix | 87.466 (14) |
Ba2v—Ba1—Ba2vi | 114.107 (17) | Ba1xviii—Sn—Ba1x | 87.466 (14) |
Ba2v—Ba1—Ba2vii | 60.035 (9) | Ba1xviii—Sn—Ba2 | 120.770 (11) |
Ba2v—Ba1—Snviii | 122.947 (9) | Ba1xviii—Sn—Ba2xix | 60.749 (11) |
Ba2v—Ba1—Snix | 118.355 (12) | Ba1xviii—Sn—Ba2xii | 60.749 (11) |
Ba2v—Ba1—Snx | 58.465 (9) | Ba1xviii—Sn—Ba2iii | 120.770 (11) |
Ba2v—Ba1—O | 129.711 (15) | Ba1xviii—Sn—Ba2xx | 60.749 (11) |
Ba2v—Ba1—Oxi | 44.997 (8) | Ba1xviii—Sn—Ba2v | 120.770 (11) |
Ba2vi—Ba1—Ba2vii | 173.727 (15) | Ba1xviii—Sn—Ba2vi | 120.770 (11) |
Ba2vi—Ba1—Snviii | 122.947 (9) | Ba1xviii—Sn—Ba2xxi | 60.749 (11) |
Ba2vi—Ba1—Snix | 58.465 (9) | Ba1ix—Sn—Ba1x | 174.93 (3) |
Ba2vi—Ba1—Snx | 118.355 (12) | Ba1ix—Sn—Ba2 | 122.243 (12) |
Ba2vi—Ba1—O | 44.997 (8) | Ba1ix—Sn—Ba2xix | 59.339 (8) |
Ba2vi—Ba1—Oxi | 129.711 (15) | Ba1ix—Sn—Ba2xii | 117.824 (12) |
Ba2vii—Ba1—Snviii | 62.957 (9) | Ba1ix—Sn—Ba2iii | 60.772 (8) |
Ba2vii—Ba1—Snix | 121.240 (10) | Ba1ix—Sn—Ba2xx | 59.339 (8) |
Ba2vii—Ba1—Snx | 61.417 (8) | Ba1ix—Sn—Ba2v | 122.243 (12) |
Ba2vii—Ba1—O | 139.890 (13) | Ba1ix—Sn—Ba2vi | 60.772 (8) |
Ba2vii—Ba1—Oxi | 44.946 (8) | Ba1ix—Sn—Ba2xxi | 117.824 (12) |
Snviii—Ba1—Snix | 92.534 (14) | Ba1x—Sn—Ba2 | 60.772 (8) |
Snviii—Ba1—Snx | 92.534 (14) | Ba1x—Sn—Ba2xix | 117.824 (12) |
Snviii—Ba1—O | 93.596 (12) | Ba1x—Sn—Ba2xii | 59.339 (8) |
Snviii—Ba1—Oxi | 93.596 (12) | Ba1x—Sn—Ba2iii | 122.243 (12) |
Snix—Ba1—Snx | 174.93 (2) | Ba1x—Sn—Ba2xx | 117.824 (12) |
Snix—Ba1—O | 89.8411 (13) | Ba1x—Sn—Ba2v | 60.772 (8) |
Snix—Ba1—Oxi | 89.8411 (13) | Ba1x—Sn—Ba2vi | 122.243 (12) |
Snx—Ba1—O | 89.8411 (13) | Ba1x—Sn—Ba2xxi | 59.339 (8) |
Snx—Ba1—Oxi | 89.8411 (13) | Ba2—Sn—Ba2xix | 177.390 (14) |
O—Ba1—Oxi | 172.81 (2) | Ba2—Sn—Ba2xii | 60.067 (9) |
Ba1—Ba2—Ba1xvi | 173.727 (13) | Ba2—Sn—Ba2iii | 118.46 (2) |
Ba1—Ba2—Ba1xvii | 90.057 (10) | Ba2—Sn—Ba2xx | 90.056 (11) |
Ba1—Ba2—Ba1x | 95.192 (15) | Ba2—Sn—Ba2v | 87.334 (16) |
Ba1—Ba2—Ba2ii | 60.027 (11) | Ba2—Sn—Ba2vi | 61.514 (12) |
Ba1—Ba2—Ba2xii | 125.866 (13) | Ba2—Sn—Ba2xxi | 119.933 (9) |
Ba1—Ba2—Ba2vi | 60.036 (8) | Ba2xix—Sn—Ba2xii | 121.50 (2) |
Ba1—Ba2—Ba2xiii | 119.965 (11) | Ba2xix—Sn—Ba2iii | 60.067 (9) |
Ba1—Ba2—Sn | 63.717 (16) | Ba2xix—Sn—Ba2xx | 92.553 (16) |
Ba1—Ba2—Snxiv | 117.759 (15) | Ba2xix—Sn—Ba2v | 90.056 (11) |
Ba1—Ba2—Snxv | 120.594 (9) | Ba2xix—Sn—Ba2vi | 119.933 (9) |
Ba1—Ba2—Snx | 60.762 (11) | Ba2xix—Sn—Ba2xxi | 58.528 (11) |
Ba1—Ba2—O | 45.054 (8) | Ba2xii—Sn—Ba2iii | 177.390 (14) |
Ba1—Ba2—Ox | 140.132 (17) | Ba2xii—Sn—Ba2xx | 58.528 (11) |
Ba1xvi—Ba2—Ba1xvii | 84.921 (14) | Ba2xii—Sn—Ba2v | 119.933 (9) |
Ba1xvi—Ba2—Ba1x | 90.057 (10) | Ba2xii—Sn—Ba2vi | 90.056 (11) |
Ba1xvi—Ba2—Ba2ii | 113.987 (14) | Ba2xii—Sn—Ba2xxi | 92.553 (16) |
Ba1xvi—Ba2—Ba2xii | 59.938 (11) | Ba2iii—Sn—Ba2xx | 119.933 (9) |
Ba1xvi—Ba2—Ba2vi | 119.935 (12) | Ba2iii—Sn—Ba2v | 61.514 (12) |
Ba1xvi—Ba2—Ba2xiii | 60.065 (8) | Ba2iii—Sn—Ba2vi | 87.334 (16) |
Ba1xvi—Ba2—Sn | 122.139 (15) | Ba2iii—Sn—Ba2xxi | 90.056 (11) |
Ba1xvi—Ba2—Snxiv | 56.294 (16) | Ba2xx—Sn—Ba2v | 177.390 (14) |
Ba1xvi—Ba2—Snxv | 59.244 (11) | Ba2xx—Sn—Ba2vi | 60.067 (9) |
Ba1xvi—Ba2—Snx | 119.130 (9) | Ba2xx—Sn—Ba2xxi | 121.50 (2) |
Ba1xvi—Ba2—O | 129.810 (17) | Ba2v—Sn—Ba2vi | 118.46 (2) |
Ba1xvi—Ba2—Ox | 45.003 (8) | Ba2v—Sn—Ba2xxi | 60.067 (9) |
Ba1xvii—Ba2—Ba1x | 173.727 (13) | Ba2vi—Sn—Ba2xxi | 177.390 (14) |
Ba1xvii—Ba2—Ba2ii | 59.938 (11) | Ba1—O—Ba1xvii | 180.0 (5) |
Ba1xvii—Ba2—Ba2xii | 113.987 (14) | Ba1—O—Ba2 | 89.949 (13) |
Ba1xvii—Ba2—Ba2vi | 60.065 (8) | Ba1—O—Ba2ii | 90.051 (13) |
Ba1xvii—Ba2—Ba2xiii | 119.935 (12) | Ba1—O—Ba2iv | 90.051 (13) |
Ba1xvii—Ba2—Sn | 119.130 (9) | Ba1—O—Ba2vi | 89.949 (13) |
Ba1xvii—Ba2—Snxiv | 59.244 (11) | Ba1xvii—O—Ba2 | 90.051 (13) |
Ba1xvii—Ba2—Snxv | 56.294 (16) | Ba1xvii—O—Ba2ii | 89.949 (13) |
Ba1xvii—Ba2—Snx | 122.139 (15) | Ba1xvii—O—Ba2iv | 89.949 (13) |
Ba1xvii—Ba2—O | 45.003 (8) | Ba1xvii—O—Ba2vi | 90.051 (13) |
Ba1xvii—Ba2—Ox | 129.810 (17) | Ba2—O—Ba2ii | 90.118 (11) |
Ba1x—Ba2—Ba2ii | 125.866 (13) | Ba2—O—Ba2iv | 180.0 (5) |
Ba1x—Ba2—Ba2xii | 60.027 (11) | Ba2—O—Ba2vi | 89.882 (11) |
Ba1x—Ba2—Ba2vi | 119.965 (11) | Ba2ii—O—Ba2iv | 89.882 (11) |
Ba1x—Ba2—Ba2xiii | 60.036 (8) | Ba2ii—O—Ba2vi | 180.0 (5) |
Ba1x—Ba2—Sn | 60.762 (11) | Ba2iv—O—Ba2vi | 90.118 (11) |
Ba1x—Ba2—Snxiv | 120.594 (9) |
Symmetry codes: (i) x−1/2, y−1/2, z+1/2; (ii) −x, y, −z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x, −y, −z; (v) −x+1/2, −y+1/2, −z+1/2; (vi) x, −y, z; (vii) x−1/2, −y+1/2, z+1/2; (viii) x−1, y, z; (ix) −x+1/2, −y−1/2, z; (x) −x+1/2, −y+1/2, z; (xi) −x, −y, z+1/2; (xii) −x+1, y, −z; (xiii) x, −y+1, z; (xiv) x−1/2, y+1/2, z−1/2; (xv) −x+1, −y, z−1/2; (xvi) x+1/2, y+1/2, z−1/2; (xvii) −x, −y, z−1/2; (xviii) x+1, y, z; (xix) x+1/2, y−1/2, z+1/2; (xx) −x+1, −y, −z; (xxi) x+1/2, −y+1/2, z+1/2. |
Eu3GeO | F(000) = 916 |
Mr = 544.5 | Dx = 7.314 Mg m−3 |
Orthorhombic, Pbnm | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P -2xab;-2yabc;-2zc | Cell parameters from 9414 reflections |
a = 7.0448 (4) Å | θ = 3.5–35.1° |
b = 7.0448 (4) Å | µ = 43.37 mm−1 |
c = 9.9628 (6) Å | T = 100 K |
V = 494.45 (5) Å3 | Block, grey |
Z = 4 | 0.05 × 0.04 × 0.02 mm |
SMART APEX II, Bruker AXS diffractometer | 2886 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.066 |
ωscan | θmax = 35.2°, θmin = 4.1° |
Absorption correction: multi-scan Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany. | h = −11→11 |
Tmin = 0.035, Tmax = 0.108 | k = −11→11 |
10331 measured reflections | l = −16→15 |
2934 independent reflections |
Refinement on F | 0 constraints |
R[F > 3σ(F)] = 0.049 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F) = 0.063 | (Δ/σ)max = 0.011 |
S = 1.46 | Δρmax = 2.87 e Å−3 |
2934 reflections | Δρmin = −4.17 e Å−3 |
34 parameters | Extinction correction: B-C type 2 (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: 44E1 (6) |
x | y | z | Uiso*/Ueq | ||
Eu1 | −0.06223 (11) | −0.00835 (6) | 0.25 | 0.00695 (17) | |
Eu2 | 0.21950 (6) | 0.28019 (7) | 0.03219 (4) | 0.00815 (11) | |
Ge | 0.4942 (3) | 9.02340 (16) | 0.25 | 0.0080 (3) | |
O | 0 | 0 | 0 | 0.007 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu1 | 0.0075 (3) | 0.0090 (3) | 0.0043 (3) | 0.00005 (12) | 0 | 0 |
Eu2 | 0.0083 (2) | 0.00808 (19) | 0.00809 (17) | −0.00188 (13) | 0.00024 (12) | −0.00009 (11) |
Ge | 0.0066 (5) | 0.0096 (4) | 0.0078 (6) | −0.0010 (5) | 0 | 0 |
O | 0.009 (5) | 0.006 (5) | 0.006 (7) | 0.0040 (19) | −0.002 (3) | −0.001 (2) |
Eu1—Eu2 | 3.5749 (7) | Eu1—O | 2.5297 (3) |
Eu1—Eu2i | 3.5775 (6) | Eu1—Oi | 2.5297 (3) |
Eu1—Eu2ii | 3.5718 (7) | Eu2—Eu2iii | 3.6055 (7) |
Eu1—Eu2iii | 3.5849 (6) | Eu2—Eu2viii | 3.6055 (7) |
Eu1—Eu2iv | 3.5775 (6) | Eu2—Eu2vii | 3.5485 (8) |
Eu1—Eu2v | 3.5749 (7) | Eu2—Eu2ix | 3.5485 (8) |
Eu1—Eu2vi | 3.5849 (6) | Eu2—Ge | 3.4246 (13) |
Eu1—Eu2vii | 3.5718 (7) | Eu2—Ge | 3.1483 (12) |
Eu1—Ge | 3.133 (2) | Eu2—Ge | 3.5123 (11) |
Eu1—Ge | 3.927 (2) | Eu2—O | 2.5279 (5) |
Eu1—Ge | 3.3334 (13) | Eu2—Oviii | 2.5309 (5) |
Eu1—Ge | 3.7765 (13) | ||
Eu2—Eu1—Eu2i | 162.43 (2) | Eu1xi—Eu2—Eu2iii | 144.853 (17) |
Eu2—Eu1—Eu2ii | 103.34 (2) | Eu1xi—Eu2—Eu2viii | 59.793 (14) |
Eu2—Eu1—Eu2iii | 60.473 (11) | Eu1xi—Eu2—Eu2vii | 109.398 (15) |
Eu2—Eu1—Eu2iv | 89.959 (10) | Eu1xi—Eu2—Eu2ix | 60.273 (12) |
Eu2—Eu1—Eu2v | 74.749 (16) | Eu1xi—Eu2—Ge | 56.86 (2) |
Eu2—Eu1—Eu2vi | 117.338 (16) | Eu1xi—Eu2—Ge | 71.19 (3) |
Eu2—Eu1—Eu2vii | 59.540 (14) | Eu1xi—Eu2—Ge | 128.86 (3) |
Eu2—Eu1—Ge | 120.88 (2) | Eu1xi—Eu2—O | 144.710 (16) |
Eu2—Eu1—Ge | 54.080 (16) | Eu1xi—Eu2—Oviii | 45.090 (9) |
Eu2—Eu1—Ge | 118.88 (3) | Eu1viii—Eu2—Eu2iii | 109.418 (16) |
Eu2—Eu1—Ge | 50.62 (2) | Eu1viii—Eu2—Eu2viii | 59.626 (14) |
Eu2—Eu1—O | 45.001 (10) | Eu1viii—Eu2—Eu2vii | 113.147 (14) |
Eu2—Eu1—Oi | 119.23 (2) | Eu1viii—Eu2—Eu2ix | 60.198 (11) |
Eu2i—Eu1—Eu2ii | 60.571 (11) | Eu1viii—Eu2—Ge | 119.43 (3) |
Eu2i—Eu1—Eu2iii | 136.34 (2) | Eu1viii—Eu2—Ge | 120.11 (2) |
Eu2i—Eu1—Eu2iv | 103.596 (17) | Eu1viii—Eu2—Ge | 52.37 (3) |
Eu2i—Eu1—Eu2v | 89.959 (10) | Eu1viii—Eu2—O | 120.864 (15) |
Eu2i—Eu1—Eu2vi | 59.396 (12) | Eu1viii—Eu2—Oviii | 44.881 (11) |
Eu2i—Eu1—Eu2vii | 117.614 (17) | Eu2iii—Eu2—Eu2viii | 155.351 (15) |
Eu2i—Eu1—Ge | 74.295 (19) | Eu2iii—Eu2—Eu2vii | 90.069 (14) |
Eu2i—Eu1—Ge | 109.857 (17) | Eu2iii—Eu2—Eu2ix | 103.618 (15) |
Eu2i—Eu1—Ge | 60.971 (18) | Eu2iii—Eu2—Ge | 127.05 (3) |
Eu2i—Eu1—Ge | 124.769 (13) | Eu2iii—Eu2—Ge | 73.71 (3) |
Eu2i—Eu1—O | 147.123 (18) | Eu2iii—Eu2—Ge | 57.50 (3) |
Eu2i—Eu1—Oi | 44.959 (9) | Eu2iii—Eu2—O | 44.578 (10) |
Eu2ii—Eu1—Eu2iii | 162.44 (2) | Eu2iii—Eu2—Oviii | 144.334 (17) |
Eu2ii—Eu1—Eu2iv | 117.614 (17) | Eu2viii—Eu2—Eu2vii | 76.382 (13) |
Eu2ii—Eu1—Eu2v | 59.540 (14) | Eu2viii—Eu2—Eu2ix | 89.931 (14) |
Eu2ii—Eu1—Eu2vi | 90.029 (10) | Eu2viii—Eu2—Ge | 59.88 (3) |
Eu2ii—Eu1—Eu2vii | 74.824 (17) | Eu2viii—Eu2—Ge | 130.85 (3) |
Eu2ii—Eu1—Ge | 134.751 (17) | Eu2viii—Eu2—Ge | 110.21 (3) |
Eu2ii—Eu1—Ge | 49.373 (15) | Eu2viii—Eu2—O | 118.876 (17) |
Eu2ii—Eu1—Ge | 59.34 (3) | Eu2viii—Eu2—Oviii | 44.510 (10) |
Eu2ii—Eu1—Ge | 109.15 (3) | Eu2vii—Eu2—Eu2ix | 166.087 (16) |
Eu2ii—Eu1—O | 119.39 (2) | Eu2vii—Eu2—Ge | 53.64 (2) |
Eu2ii—Eu1—Oi | 45.119 (11) | Eu2vii—Eu2—Ge | 126.74 (2) |
Eu2iii—Eu1—Eu2iv | 59.396 (12) | Eu2vii—Eu2—Ge | 116.47 (2) |
Eu2iii—Eu1—Eu2v | 117.338 (16) | Eu2vii—Eu2—O | 45.491 (10) |
Eu2iii—Eu1—Eu2vi | 103.297 (19) | Eu2vii—Eu2—Oviii | 120.848 (16) |
Eu2iii—Eu1—Eu2vii | 90.029 (10) | Eu2ix—Eu2—Ge | 117.12 (2) |
Eu2iii—Eu1—Ge | 62.623 (16) | Eu2ix—Eu2—Ge | 61.17 (2) |
Eu2iii—Eu1—Ge | 113.747 (16) | Eu2ix—Eu2—Ge | 70.35 (2) |
Eu2iii—Eu1—Ge | 120.353 (18) | Eu2ix—Eu2—O | 148.124 (17) |
Eu2iii—Eu1—Ge | 67.025 (18) | Eu2ix—Eu2—Oviii | 45.421 (10) |
Eu2iii—Eu1—O | 44.909 (9) | Ge—Eu2—Ge | 96.95 (3) |
Eu2iii—Eu1—Oi | 146.73 (2) | Ge—Eu2—Ge | 166.08 (3) |
Eu2iv—Eu1—Eu2v | 162.43 (2) | Ge—Eu2—O | 90.78 (3) |
Eu2iv—Eu1—Eu2vi | 136.34 (2) | Ge—Eu2—Oviii | 87.83 (3) |
Eu2iv—Eu1—Eu2vii | 60.571 (11) | Ge—Eu2—Ge | 96.96 (3) |
Eu2iv—Eu1—Ge | 74.295 (19) | Ge—Eu2—O | 102.70 (3) |
Eu2iv—Eu1—Ge | 109.857 (17) | Ge—Eu2—Oviii | 97.34 (3) |
Eu2iv—Eu1—Ge | 60.971 (18) | Ge—Eu2—O | 85.97 (3) |
Eu2iv—Eu1—Ge | 124.769 (13) | Ge—Eu2—Oviii | 90.59 (3) |
Eu2iv—Eu1—O | 44.959 (9) | O—Eu2—Oviii | 159.931 (18) |
Eu2iv—Eu1—Oi | 147.123 (18) | Eu1—Ge—Eu1 | 172.64 (4) |
Eu2v—Eu1—Eu2vi | 60.473 (11) | Eu1—Ge—Eu1 | 94.02 (4) |
Eu2v—Eu1—Eu2vii | 103.34 (2) | Eu1—Ge—Eu1 | 101.53 (4) |
Eu2v—Eu1—Ge | 120.88 (2) | Eu1—Ge—Eu2 | 57.71 (3) |
Eu2v—Eu1—Ge | 54.080 (16) | Eu1—Ge—Eu2 | 59.44 (3) |
Eu2v—Eu1—Ge | 118.88 (3) | Eu1—Ge—Eu2 | 118.26 (3) |
Eu2v—Eu1—Ge | 50.62 (2) | Eu1—Ge—Eu2 | 57.71 (3) |
Eu2v—Eu1—O | 119.23 (2) | Eu1—Ge—Eu2 | 118.26 (3) |
Eu2v—Eu1—Oi | 45.001 (10) | Eu1—Ge—Eu2 | 59.44 (3) |
Eu2vi—Eu1—Eu2vii | 162.44 (2) | Eu1—Ge—Eu1 | 78.62 (4) |
Eu2vi—Eu1—Ge | 62.623 (16) | Eu1—Ge—Eu1 | 85.83 (4) |
Eu2vi—Eu1—Ge | 113.747 (16) | Eu1—Ge—Eu2 | 126.97 (3) |
Eu2vi—Eu1—Ge | 120.353 (18) | Eu1—Ge—Eu2 | 115.99 (4) |
Eu2vi—Eu1—Ge | 67.025 (18) | Eu1—Ge—Eu2 | 65.01 (3) |
Eu2vi—Eu1—O | 146.73 (2) | Eu1—Ge—Eu2 | 126.97 (3) |
Eu2vi—Eu1—Oi | 44.909 (9) | Eu1—Ge—Eu2 | 65.01 (3) |
Eu2vii—Eu1—Ge | 134.751 (17) | Eu1—Ge—Eu2 | 115.99 (4) |
Eu2vii—Eu1—Ge | 49.373 (15) | Eu1—Ge—Eu1 | 164.45 (6) |
Eu2vii—Eu1—Ge | 59.34 (3) | Eu1—Ge—Eu2 | 126.56 (3) |
Eu2vii—Eu1—Ge | 109.15 (3) | Eu1—Ge—Eu2 | 61.37 (2) |
Eu2vii—Eu1—O | 45.119 (11) | Eu1—Ge—Eu2 | 109.48 (3) |
Eu2vii—Eu1—Oi | 119.39 (2) | Eu1—Ge—Eu2 | 126.56 (3) |
Ge—Eu1—Ge | 172.64 (3) | Eu1—Ge—Eu2 | 109.48 (3) |
Ge—Eu1—Ge | 102.35 (4) | Eu1—Ge—Eu2 | 61.37 (2) |
Ge—Eu1—Ge | 93.19 (4) | Eu1—Ge—Eu2 | 63.80 (2) |
Ge—Eu1—O | 99.857 (17) | Eu1—Ge—Eu2 | 127.39 (3) |
Ge—Eu1—Oi | 99.857 (17) | Eu1—Ge—Eu2 | 62.95 (2) |
Ge—Eu1—Ge | 85.00 (4) | Eu1—Ge—Eu2 | 63.80 (2) |
Ge—Eu1—Ge | 79.45 (4) | Eu1—Ge—Eu2 | 62.95 (2) |
Ge—Eu1—O | 79.960 (17) | Eu1—Ge—Eu2 | 127.39 (3) |
Ge—Eu1—Oi | 79.960 (17) | Eu2—Ge—Eu2 | 117.00 (6) |
Ge—Eu1—Ge | 164.45 (5) | Eu2—Ge—Eu2 | 62.616 (15) |
Ge—Eu1—O | 89.891 (12) | Eu2—Ge—Eu2 | 78.64 (4) |
Ge—Eu1—Oi | 89.891 (12) | Eu2—Ge—Eu2 | 123.67 (3) |
Ge—Eu1—O | 87.419 (12) | Eu2—Ge—Eu2 | 65.19 (3) |
Ge—Eu1—Oi | 87.419 (12) | Eu2—Ge—Eu2 | 169.17 (3) |
O—Eu1—Oi | 159.86 (3) | Eu2—Ge—Eu2 | 65.19 (3) |
Eu1—Eu2—Eu1x | 90.041 (14) | Eu2—Ge—Eu2 | 83.036 (11) |
Eu1—Eu2—Eu1xi | 104.102 (14) | Eu2—Ge—Eu2 | 87.15 (4) |
Eu1—Eu2—Eu1viii | 165.720 (16) | Eu2—Ge—Eu2 | 123.67 (3) |
Eu1—Eu2—Eu2iii | 59.901 (14) | Eu2—Ge—Eu2 | 106.34 (4) |
Eu1—Eu2—Eu2viii | 125.681 (18) | Eu2—Ge—Eu2 | 83.036 (11) |
Eu1—Eu2—Eu2vii | 60.187 (13) | Eu2—Ge—Eu2 | 62.616 (15) |
Eu1—Eu2—Eu2ix | 129.172 (15) | Eu2—Ge—Eu2 | 117.00 (6) |
Eu1—Eu2—Ge | 68.21 (3) | Eu2—Ge—Eu2 | 169.17 (3) |
Eu1—Eu2—Ge | 68.01 (2) | Eu1—O—Eu1x | 180.0 (5) |
Eu1—Eu2—Ge | 117.33 (3) | Eu1—O—Eu2 | 89.958 (16) |
Eu1—Eu2—O | 45.041 (9) | Eu1—O—Eu2iii | 90.210 (17) |
Eu1—Eu2—Oviii | 149.122 (16) | Eu1—O—Eu2iv | 90.042 (16) |
Eu1x—Eu2—Eu1xi | 155.51 (2) | Eu1—O—Eu2vii | 89.790 (17) |
Eu1x—Eu2—Eu1viii | 75.911 (13) | Eu1x—O—Eu2 | 90.042 (16) |
Eu1x—Eu2—Eu2iii | 59.636 (15) | Eu1x—O—Eu2iii | 89.790 (17) |
Eu1x—Eu2—Eu2viii | 95.717 (17) | Eu1x—O—Eu2iv | 89.958 (16) |
Eu1x—Eu2—Eu2vii | 60.405 (12) | Eu1x—O—Eu2vii | 90.210 (17) |
Eu1x—Eu2—Eu2ix | 124.672 (14) | Eu2—O—Eu2iii | 90.912 (15) |
Eu1x—Eu2—Ge | 112.97 (2) | Eu2—O—Eu2iv | 180.0 (5) |
Eu1x—Eu2—Ge | 133.22 (4) | Eu2—O—Eu2vii | 89.088 (15) |
Eu1x—Eu2—Ge | 56.08 (2) | Eu2iii—O—Eu2iv | 89.088 (15) |
Eu1x—Eu2—O | 44.999 (10) | Eu2iii—O—Eu2vii | 180.0 (5) |
Eu1x—Eu2—Oviii | 118.018 (16) | Eu2iv—O—Eu2vii | 90.912 (15) |
Eu1xi—Eu2—Eu1viii | 89.971 (15) |
Symmetry codes: (i) −x, −y, z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) x−1/2, −y+1/2, −z; (iv) −x, −y, −z; (v) x, y, −z+1/2; (vi) x−1/2, −y+1/2, z+1/2; (vii) −x+1/2, y−1/2, z; (viii) x+1/2, −y+1/2, −z; (ix) −x+1/2, y+1/2, z; (x) −x, −y, z−1/2; (xi) −x+1/2, y+1/2, −z+1/2. |
Ca3SiO | F(000) = 328 |
Mr = 164.3 | Dx = 2.603 Mg m−3 |
Orthorhombic, Ibmm | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -I -2xc;-2y;-2zc | Cell parameters from 502 reflections |
a = 6.6679 (16) Å | θ = 4.3–34.3° |
b = 6.6679 (16) Å | µ = 4.02 mm−1 |
c = 9.430 (2) Å | T = 295 K |
V = 419.26 (17) Å3 | Block, grey |
Z = 4 | 0.02 × 0.02 × 0.01 mm |
SMART APEX I, Bruker AXS diffractometer | 991 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ωscan | θmax = 35.4°, θmin = 3.7° |
Absorption correction: multi-scan Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany. | h = −10→10 |
Tmin = 0.143, Tmax = 0.273 | k = −10→10 |
2722 measured reflections | l = −15→14 |
1444 independent reflections |
Refinement on F | 0 constraints |
R[F > 3σ(F)] = 0.090 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F) = 0.087 | (Δ/σ)max = 0.001 |
S = 1.40 | Δρmax = 0.97 e Å−3 |
1444 reflections | Δρmin = −1.19 e Å−3 |
19 parameters | Extinction correction: B-C type 2 (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: 109E2 (5) |
x | y | z | Uiso*/Ueq | ||
Ca1 | −0.0182 (10) | 0 | 0.25 | 0.0287 (17) | |
Ca2 | 0.25 | 0.25 | 0.01433 (18) | 0.0196 (7) | |
Si | 0.5113 (13) | 0 | 0.25 | 0.0118 (14) | |
O | 0 | 0 | 0 | 0.0143 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.028 (3) | 0.056 (4) | 0.0020 (7) | 0 | 0 | 0 |
Ca2 | 0.0114 (9) | 0.0244 (17) | 0.0230 (6) | −0.0032 (6) | 0 | 0 |
Si | 0.008 (3) | 0.011 (3) | 0.0168 (13) | 0 | 0 | 0 |
Ca1—Ca2 | 3.304 (4) | Ca1—O | 2.3606 (11) |
Ca1—Ca2i | 3.373 (3) | Ca1—Oxi | 2.3606 (11) |
Ca1—Ca2ii | 3.373 (3) | Ca2—Ca2ii | 3.3449 (16) |
Ca1—Ca2iii | 3.304 (4) | Ca2—Ca2xii | 3.3449 (16) |
Ca1—Ca2iv | 3.373 (3) | Ca2—Ca2vi | 3.3340 (16) |
Ca1—Ca2v | 3.304 (4) | Ca2—Ca2xiii | 3.3340 (16) |
Ca1—Ca2vi | 3.304 (4) | Ca2—Si | 3.279 (5) |
Ca1—Ca2vii | 3.373 (3) | Ca2—Sixiv | 3.395 (4) |
Ca1—Siviii | 3.137 (11) | Ca2—Sixv | 3.395 (4) |
Ca1—Si | 3.531 (11) | Ca2—Six | 3.279 (5) |
Ca1—Siix | 3.3343 (16) | Ca2—O | 2.3613 (8) |
Ca1—Six | 3.3343 (16) | Ca2—Ox | 2.3613 (8) |
Ca2—Ca1—Ca2i | 173.88 (17) | Ca1x—Ca2—Sixiv | 119.99 (6) |
Ca2—Ca1—Ca2ii | 60.11 (2) | Ca1x—Ca2—Sixv | 119.20 (16) |
Ca2—Ca1—Ca2iii | 114.46 (19) | Ca1x—Ca2—Six | 64.87 (16) |
Ca2—Ca1—Ca2iv | 90.02 (3) | Ca1x—Ca2—O | 140.97 (8) |
Ca2—Ca1—Ca2v | 84.54 (11) | Ca1x—Ca2—Ox | 45.59 (5) |
Ca2—Ca1—Ca2vi | 60.60 (7) | Ca2ii—Ca2—Ca2xii | 170.73 (7) |
Ca2—Ca1—Ca2vii | 119.71 (3) | Ca2ii—Ca2—Ca2vi | 90.000 (3) |
Ca2—Ca1—Siviii | 122.77 (9) | Ca2ii—Ca2—Ca2xiii | 90.000 (3) |
Ca2—Ca1—Si | 57.23 (9) | Ca2ii—Ca2—Si | 125.76 (14) |
Ca2—Ca1—Siix | 119.80 (14) | Ca2ii—Ca2—Sixiv | 58.22 (13) |
Ca2—Ca1—Six | 59.21 (10) | Ca2ii—Ca2—Sixv | 114.08 (14) |
Ca2—Ca1—O | 45.61 (6) | Ca2ii—Ca2—Six | 61.65 (13) |
Ca2—Ca1—Oxi | 130.08 (18) | Ca2ii—Ca2—O | 44.906 (10) |
Ca2i—Ca1—Ca2ii | 125.47 (19) | Ca2ii—Ca2—Ox | 134.348 (16) |
Ca2i—Ca1—Ca2iii | 60.11 (2) | Ca2xii—Ca2—Ca2vi | 90.000 (3) |
Ca2i—Ca1—Ca2iv | 95.27 (11) | Ca2xii—Ca2—Ca2xiii | 90.000 (3) |
Ca2i—Ca1—Ca2v | 90.02 (3) | Ca2xii—Ca2—Si | 61.65 (13) |
Ca2i—Ca1—Ca2vi | 119.71 (3) | Ca2xii—Ca2—Sixiv | 114.08 (14) |
Ca2i—Ca1—Ca2vii | 59.23 (6) | Ca2xii—Ca2—Sixv | 58.22 (13) |
Ca2i—Ca1—Siviii | 62.73 (10) | Ca2xii—Ca2—Six | 125.76 (14) |
Ca2i—Ca1—Si | 117.27 (10) | Ca2xii—Ca2—O | 134.348 (16) |
Ca2i—Ca1—Siix | 60.81 (9) | Ca2xii—Ca2—Ox | 44.906 (10) |
Ca2i—Ca1—Six | 120.03 (12) | Ca2vi—Ca2—Ca2xiii | 180.0 (5) |
Ca2i—Ca1—O | 139.59 (15) | Ca2vi—Ca2—Si | 59.45 (5) |
Ca2i—Ca1—Oxi | 44.41 (5) | Ca2vi—Ca2—Sixiv | 119.41 (6) |
Ca2ii—Ca1—Ca2iii | 173.88 (17) | Ca2vi—Ca2—Sixv | 60.59 (5) |
Ca2ii—Ca1—Ca2iv | 59.23 (6) | Ca2vi—Ca2—Six | 120.55 (6) |
Ca2ii—Ca1—Ca2v | 119.71 (3) | Ca2vi—Ca2—O | 45.094 (10) |
Ca2ii—Ca1—Ca2vi | 90.02 (3) | Ca2vi—Ca2—Ox | 134.906 (11) |
Ca2ii—Ca1—Ca2vii | 95.27 (11) | Ca2xiii—Ca2—Si | 120.55 (6) |
Ca2ii—Ca1—Siviii | 62.73 (10) | Ca2xiii—Ca2—Sixiv | 60.59 (5) |
Ca2ii—Ca1—Si | 117.27 (10) | Ca2xiii—Ca2—Sixv | 119.41 (6) |
Ca2ii—Ca1—Siix | 120.03 (12) | Ca2xiii—Ca2—Six | 59.45 (5) |
Ca2ii—Ca1—Six | 60.81 (9) | Ca2xiii—Ca2—O | 134.906 (11) |
Ca2ii—Ca1—O | 44.41 (5) | Ca2xiii—Ca2—Ox | 45.094 (10) |
Ca2ii—Ca1—Oxi | 139.59 (15) | Si—Ca2—Sixiv | 175.07 (16) |
Ca2iii—Ca1—Ca2iv | 119.71 (3) | Si—Ca2—Sixv | 89.94 (11) |
Ca2iii—Ca1—Ca2v | 60.60 (7) | Si—Ca2—Six | 94.67 (12) |
Ca2iii—Ca1—Ca2vi | 84.54 (11) | Si—Ca2—O | 93.15 (11) |
Ca2iii—Ca1—Ca2vii | 90.02 (3) | Si—Ca2—Ox | 91.29 (11) |
Ca2iii—Ca1—Siviii | 122.77 (9) | Sixiv—Ca2—Sixv | 85.51 (11) |
Ca2iii—Ca1—Si | 57.23 (9) | Sixiv—Ca2—Six | 89.94 (11) |
Ca2iii—Ca1—Siix | 59.21 (10) | Sixiv—Ca2—O | 88.49 (11) |
Ca2iii—Ca1—Six | 119.80 (14) | Sixiv—Ca2—Ox | 86.69 (11) |
Ca2iii—Ca1—O | 130.08 (18) | Sixv—Ca2—Six | 175.07 (16) |
Ca2iii—Ca1—Oxi | 45.61 (6) | Sixv—Ca2—O | 86.69 (11) |
Ca2iv—Ca1—Ca2v | 173.88 (17) | Sixv—Ca2—Ox | 88.49 (11) |
Ca2iv—Ca1—Ca2vi | 60.11 (2) | Six—Ca2—O | 91.29 (11) |
Ca2iv—Ca1—Ca2vii | 125.47 (19) | Six—Ca2—Ox | 93.15 (11) |
Ca2iv—Ca1—Siviii | 62.73 (10) | O—Ca2—Ox | 173.44 (8) |
Ca2iv—Ca1—Si | 117.27 (10) | Ca1—Si—Ca1xviii | 180.0 (5) |
Ca2iv—Ca1—Siix | 60.81 (9) | Ca1—Si—Ca1ix | 90.79 (19) |
Ca2iv—Ca1—Six | 120.03 (12) | Ca1—Si—Ca1x | 90.79 (19) |
Ca2iv—Ca1—O | 44.41 (5) | Ca1—Si—Ca2 | 57.90 (13) |
Ca2iv—Ca1—Oxi | 139.59 (15) | Ca1—Si—Ca2xix | 117.96 (13) |
Ca2v—Ca1—Ca2vi | 114.46 (19) | Ca1—Si—Ca2xii | 117.96 (13) |
Ca2v—Ca1—Ca2vii | 60.11 (2) | Ca1—Si—Ca2iii | 57.90 (13) |
Ca2v—Ca1—Siviii | 122.77 (9) | Ca1—Si—Ca2xx | 117.96 (13) |
Ca2v—Ca1—Si | 57.23 (9) | Ca1—Si—Ca2v | 57.90 (13) |
Ca2v—Ca1—Siix | 119.80 (14) | Ca1—Si—Ca2vi | 57.90 (13) |
Ca2v—Ca1—Six | 59.21 (10) | Ca1—Si—Ca2xxi | 117.96 (13) |
Ca2v—Ca1—O | 130.08 (18) | Ca1xviii—Si—Ca1ix | 89.21 (19) |
Ca2v—Ca1—Oxi | 45.61 (6) | Ca1xviii—Si—Ca1x | 89.21 (19) |
Ca2vi—Ca1—Ca2vii | 173.88 (17) | Ca1xviii—Si—Ca2 | 122.10 (13) |
Ca2vi—Ca1—Siviii | 122.77 (9) | Ca1xviii—Si—Ca2xix | 62.04 (13) |
Ca2vi—Ca1—Si | 57.23 (9) | Ca1xviii—Si—Ca2xii | 62.04 (13) |
Ca2vi—Ca1—Siix | 59.21 (10) | Ca1xviii—Si—Ca2iii | 122.10 (13) |
Ca2vi—Ca1—Six | 119.80 (14) | Ca1xviii—Si—Ca2xx | 62.04 (13) |
Ca2vi—Ca1—O | 45.61 (6) | Ca1xviii—Si—Ca2v | 122.10 (13) |
Ca2vi—Ca1—Oxi | 130.08 (18) | Ca1xviii—Si—Ca2vi | 122.10 (13) |
Ca2vii—Ca1—Siviii | 62.73 (10) | Ca1xviii—Si—Ca2xxi | 62.04 (13) |
Ca2vii—Ca1—Si | 117.27 (10) | Ca1ix—Si—Ca1x | 178.4 (3) |
Ca2vii—Ca1—Siix | 120.03 (12) | Ca1ix—Si—Ca2 | 121.04 (15) |
Ca2vii—Ca1—Six | 60.81 (9) | Ca1ix—Si—Ca2xix | 60.17 (7) |
Ca2vii—Ca1—O | 139.59 (15) | Ca1ix—Si—Ca2xii | 118.98 (14) |
Ca2vii—Ca1—Oxi | 44.41 (5) | Ca1ix—Si—Ca2iii | 59.94 (8) |
Siviii—Ca1—Si | 180.0 (5) | Ca1ix—Si—Ca2xx | 60.17 (7) |
Siviii—Ca1—Siix | 90.79 (19) | Ca1ix—Si—Ca2v | 121.04 (15) |
Siviii—Ca1—Six | 90.79 (19) | Ca1ix—Si—Ca2vi | 59.94 (8) |
Siviii—Ca1—O | 92.95 (15) | Ca1ix—Si—Ca2xxi | 118.98 (14) |
Siviii—Ca1—Oxi | 92.95 (15) | Ca1x—Si—Ca2 | 59.94 (8) |
Si—Ca1—Siix | 89.21 (19) | Ca1x—Si—Ca2xix | 118.98 (14) |
Si—Ca1—Six | 89.21 (19) | Ca1x—Si—Ca2xii | 60.17 (7) |
Si—Ca1—O | 87.05 (15) | Ca1x—Si—Ca2iii | 121.04 (15) |
Si—Ca1—Oxi | 87.05 (15) | Ca1x—Si—Ca2xx | 118.98 (14) |
Siix—Ca1—Six | 178.4 (3) | Ca1x—Si—Ca2v | 59.94 (8) |
Siix—Ca1—O | 89.959 (11) | Ca1x—Si—Ca2vi | 121.04 (15) |
Siix—Ca1—Oxi | 89.959 (11) | Ca1x—Si—Ca2xxi | 60.17 (7) |
Six—Ca1—O | 89.959 (11) | Ca2—Si—Ca2xix | 175.1 (2) |
Six—Ca1—Oxi | 89.959 (11) | Ca2—Si—Ca2xii | 60.13 (2) |
O—Ca1—Oxi | 174.1 (3) | Ca2—Si—Ca2iii | 115.8 (3) |
Ca1—Ca2—Ca1xvi | 173.88 (13) | Ca2—Si—Ca2xx | 90.06 (3) |
Ca1—Ca2—Ca1xvii | 89.98 (8) | Ca2—Si—Ca2v | 85.33 (15) |
Ca1—Ca2—Ca1x | 95.46 (9) | Ca2—Si—Ca2vi | 61.11 (10) |
Ca1—Ca2—Ca2ii | 60.98 (10) | Ca2—Si—Ca2xxi | 119.81 (3) |
Ca1—Ca2—Ca2xii | 126.43 (10) | Ca2xix—Si—Ca2xii | 124.1 (3) |
Ca1—Ca2—Ca2vi | 59.70 (4) | Ca2xix—Si—Ca2iii | 60.13 (2) |
Ca1—Ca2—Ca2xiii | 120.30 (5) | Ca2xix—Si—Ca2xx | 94.49 (15) |
Ca1—Ca2—Si | 64.87 (16) | Ca2xix—Si—Ca2v | 90.06 (3) |
Ca1—Ca2—Sixiv | 119.20 (16) | Ca2xix—Si—Ca2vi | 119.81 (3) |
Ca1—Ca2—Sixv | 119.99 (6) | Ca2xix—Si—Ca2xxi | 58.82 (8) |
Ca1—Ca2—Six | 60.86 (7) | Ca2xii—Si—Ca2iii | 175.1 (2) |
Ca1—Ca2—O | 45.59 (5) | Ca2xii—Si—Ca2xx | 58.82 (8) |
Ca1—Ca2—Ox | 140.97 (8) | Ca2xii—Si—Ca2v | 119.81 (3) |
Ca1xvi—Ca2—Ca1xvii | 84.73 (9) | Ca2xii—Si—Ca2vi | 90.06 (3) |
Ca1xvi—Ca2—Ca1x | 89.98 (8) | Ca2xii—Si—Ca2xxi | 94.49 (15) |
Ca1xvi—Ca2—Ca2ii | 113.39 (11) | Ca2iii—Si—Ca2xx | 119.81 (3) |
Ca1xvi—Ca2—Ca2xii | 58.91 (10) | Ca2iii—Si—Ca2v | 61.11 (10) |
Ca1xvi—Ca2—Ca2vi | 119.61 (5) | Ca2iii—Si—Ca2vi | 85.33 (15) |
Ca1xvi—Ca2—Ca2xiii | 60.39 (4) | Ca2iii—Si—Ca2xxi | 90.06 (3) |
Ca1xvi—Ca2—Si | 120.56 (16) | Ca2xx—Si—Ca2v | 175.1 (2) |
Ca1xvi—Ca2—Sixiv | 55.22 (16) | Ca2xx—Si—Ca2vi | 60.13 (2) |
Ca1xvi—Ca2—Sixv | 59.03 (5) | Ca2xx—Si—Ca2xxi | 124.1 (3) |
Ca1xvi—Ca2—Six | 119.54 (5) | Ca2v—Si—Ca2vi | 115.8 (3) |
Ca1xvi—Ca2—O | 129.05 (8) | Ca2v—Si—Ca2xxi | 60.13 (2) |
Ca1xvi—Ca2—Ox | 44.39 (6) | Ca2vi—Si—Ca2xxi | 175.1 (2) |
Ca1xvii—Ca2—Ca1x | 173.88 (13) | Ca1—O—Ca1xvii | 180.0 (5) |
Ca1xvii—Ca2—Ca2ii | 58.91 (10) | Ca1—O—Ca2 | 88.81 (12) |
Ca1xvii—Ca2—Ca2xii | 113.39 (11) | Ca1—O—Ca2ii | 91.19 (12) |
Ca1xvii—Ca2—Ca2vi | 60.39 (4) | Ca1—O—Ca2iv | 91.19 (12) |
Ca1xvii—Ca2—Ca2xiii | 119.61 (5) | Ca1—O—Ca2vi | 88.81 (12) |
Ca1xvii—Ca2—Si | 119.54 (5) | Ca1xvii—O—Ca2 | 91.19 (12) |
Ca1xvii—Ca2—Sixiv | 59.03 (5) | Ca1xvii—O—Ca2ii | 88.81 (12) |
Ca1xvii—Ca2—Sixv | 55.22 (16) | Ca1xvii—O—Ca2iv | 88.81 (12) |
Ca1xvii—Ca2—Six | 120.56 (16) | Ca1xvii—O—Ca2vi | 91.19 (12) |
Ca1xvii—Ca2—O | 44.39 (6) | Ca2—O—Ca2ii | 90.19 (2) |
Ca1xvii—Ca2—Ox | 129.05 (8) | Ca2—O—Ca2iv | 180.0 (5) |
Ca1x—Ca2—Ca2ii | 126.43 (10) | Ca2—O—Ca2vi | 89.81 (2) |
Ca1x—Ca2—Ca2xii | 60.98 (10) | Ca2ii—O—Ca2iv | 89.81 (2) |
Ca1x—Ca2—Ca2vi | 120.30 (5) | Ca2ii—O—Ca2vi | 180.0 (5) |
Ca1x—Ca2—Ca2xiii | 59.70 (4) | Ca2iv—O—Ca2vi | 90.19 (2) |
Ca1x—Ca2—Si | 60.86 (7) |
Symmetry codes: (i) x−1/2, y−1/2, z+1/2; (ii) −x, y, −z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x, −y, −z; (v) −x+1/2, −y+1/2, −z+1/2; (vi) x, −y, z; (vii) x−1/2, −y+1/2, z+1/2; (viii) x−1, y, z; (ix) −x+1/2, −y−1/2, z; (x) −x+1/2, −y+1/2, z; (xi) −x, −y, z+1/2; (xii) −x+1, y, −z; (xiii) x, −y+1, z; (xiv) x−1/2, y+1/2, z−1/2; (xv) −x+1, −y, z−1/2; (xvi) x+1/2, y+1/2, z−1/2; (xvii) −x, −y, z−1/2; (xviii) x+1, y, z; (xix) x+1/2, y−1/2, z+1/2; (xx) −x+1, −y, −z; (xxi) x+1/2, −y+1/2, z+1/2. |
Ca3GeO | F(000) = 400 |
Mr = 208.8 | Dx = 3.296 Mg m−3 |
Orthorhombic, Ibmm | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -I -2xc;-2y;-2zc | Cell parameters from 1561 reflections |
a = 6.6761 (7) Å | θ = 4.3–35.3° |
b = 6.6761 (7) Å | µ = 10.73 mm−1 |
c = 9.4414 (5) Å | T = 100 K |
V = 420.81 (7) Å3 | Block, grey |
Z = 4 | 0.03 × 0.02 × 0.02 mm |
SMART APEX I, Bruker AXS diffractometer | 1601 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
ωscan | θmax = 35.3°, θmin = 3.7° |
Absorption correction: multi-scan Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany. | h = −10→10 |
Tmin = 0.192, Tmax = 0.273 | k = −10→10 |
3170 measured reflections | l = −14→14 |
1650 independent reflections |
Refinement on F | 0 constraints |
R[F > 3σ(F)] = 0.026 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F) = 0.029 | (Δ/σ)max = 0.002 |
S = 1.05 | Δρmax = 0.37 e Å−3 |
1650 reflections | Δρmin = −0.36 e Å−3 |
23 parameters | Extinction correction: B-C type 2 (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: −18E1 (6) |
x | y | z | Uiso*/Ueq | ||
Ca1 | −0.02827 (11) | 0 | 0.25 | 0.01110 (19) | |
Ca2 | 0.25 | 0.25 | 0.01402 (6) | 0.01119 (15) | |
Ge | 0.49974 (8) | 0 | 0.25 | 0.00971 (12) | |
O | 0 | 0 | 0 | 0.0090 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ca1 | 0.0128 (3) | 0.0137 (4) | 0.0068 (2) | 0 | 0 | 0 |
Ca2 | 0.0104 (3) | 0.0105 (3) | 0.01262 (19) | −0.00307 (12) | 0 | 0 |
Ge | 0.0103 (2) | 0.0103 (3) | 0.00852 (15) | 0 | 0 | 0 |
O | 0.0082 (13) | 0.0091 (15) | 0.0097 (9) | 0 | −0.0009 (8) | 0 |
Ca1—Ca2 | 3.3468 (6) | Ca1—O | 2.3679 (3) |
Ca1—Ca2i | 3.3452 (6) | Ca1—Oxi | 2.3679 (3) |
Ca1—Ca2ii | 3.3452 (6) | Ca2—Ca2ii | 3.3485 (7) |
Ca1—Ca2iii | 3.3468 (6) | Ca2—Ca2xii | 3.3485 (7) |
Ca1—Ca2iv | 3.3452 (6) | Ca2—Ca2vi | 3.3380 (7) |
Ca1—Ca2v | 3.3468 (6) | Ca2—Ca2xiii | 3.3380 (7) |
Ca1—Ca2vi | 3.3468 (6) | Ca2—Ge | 3.2449 (5) |
Ca1—Ca2vii | 3.3452 (6) | Ca2—Gexiv | 3.4338 (5) |
Ca1—Geviii | 3.1511 (11) | Ca2—Gexv | 3.4338 (5) |
Ca1—Ge | 3.5250 (12) | Ca2—Gex | 3.2449 (5) |
Ca1—Geix | 3.3435 (7) | Ca2—O | 2.3641 (4) |
Ca1—Gex | 3.3435 (7) | Ca2—Ox | 2.3641 (4) |
Ca2—Ca1—Ca2i | 172.10 (2) | Ca1x—Ca2—Gexiv | 120.728 (7) |
Ca2—Ca1—Ca2ii | 60.050 (8) | Ca1x—Ca2—Gexv | 117.102 (14) |
Ca2—Ca1—Ca2iii | 112.57 (2) | Ca1x—Ca2—Gex | 64.635 (16) |
Ca2—Ca1—Ca2iv | 89.908 (10) | Ca1x—Ca2—O | 141.37 (2) |
Ca2—Ca1—Ca2v | 83.474 (16) | Ca1x—Ca2—Ox | 45.033 (9) |
Ca2—Ca1—Ca2vi | 59.828 (11) | Ca2ii—Ca2—Ca2xii | 170.93 (2) |
Ca2—Ca1—Ca2vii | 119.530 (8) | Ca2ii—Ca2—Ca2vi | 90.0000 (10) |
Ca2—Ca1—Geviii | 123.717 (12) | Ca2ii—Ca2—Ca2xiii | 90.0000 (10) |
Ca2—Ca1—Ge | 56.283 (12) | Ca2ii—Ca2—Ge | 124.506 (15) |
Ca2—Ca1—Geix | 117.792 (15) | Ca2ii—Ca2—Gexiv | 57.150 (11) |
Ca2—Ca1—Gex | 58.027 (8) | Ca2ii—Ca2—Gexv | 115.319 (16) |
Ca2—Ca1—O | 44.941 (10) | Ca2ii—Ca2—Gex | 62.747 (12) |
Ca2—Ca1—Oxi | 128.27 (2) | Ca2ii—Ca2—O | 44.910 (4) |
Ca2i—Ca1—Ca2ii | 127.47 (2) | Ca2ii—Ca2—Ox | 134.376 (6) |
Ca2i—Ca1—Ca2iii | 60.050 (8) | Ca2xii—Ca2—Ca2vi | 90.0000 (10) |
Ca2i—Ca1—Ca2iv | 96.345 (16) | Ca2xii—Ca2—Ca2xiii | 90.0000 (10) |
Ca2i—Ca1—Ca2v | 89.908 (10) | Ca2xii—Ca2—Ge | 62.747 (12) |
Ca2i—Ca1—Ca2vi | 119.530 (8) | Ca2xii—Ca2—Gexiv | 115.319 (16) |
Ca2i—Ca1—Ca2vii | 59.858 (10) | Ca2xii—Ca2—Gexv | 57.150 (11) |
Ca2i—Ca1—Geviii | 63.736 (12) | Ca2xii—Ca2—Gex | 124.506 (15) |
Ca2i—Ca1—Ge | 116.264 (12) | Ca2xii—Ca2—O | 134.376 (6) |
Ca2i—Ca1—Geix | 61.777 (7) | Ca2xii—Ca2—Ox | 44.910 (4) |
Ca2i—Ca1—Gex | 121.556 (11) | Ca2vi—Ca2—Ca2xiii | 180.0 (5) |
Ca2i—Ca1—O | 141.083 (17) | Ca2vi—Ca2—Ge | 59.046 (9) |
Ca2i—Ca1—Oxi | 44.967 (9) | Ca2vi—Ca2—Gexiv | 119.082 (14) |
Ca2ii—Ca1—Ca2iii | 172.10 (2) | Ca2vi—Ca2—Gexv | 60.918 (9) |
Ca2ii—Ca1—Ca2iv | 59.858 (10) | Ca2vi—Ca2—Gex | 120.954 (14) |
Ca2ii—Ca1—Ca2v | 119.530 (8) | Ca2vi—Ca2—O | 45.090 (4) |
Ca2ii—Ca1—Ca2vi | 89.908 (10) | Ca2vi—Ca2—Ox | 134.910 (5) |
Ca2ii—Ca1—Ca2vii | 96.345 (16) | Ca2xiii—Ca2—Ge | 120.954 (14) |
Ca2ii—Ca1—Geviii | 63.736 (12) | Ca2xiii—Ca2—Gexiv | 60.918 (9) |
Ca2ii—Ca1—Ge | 116.264 (12) | Ca2xiii—Ca2—Gexv | 119.082 (14) |
Ca2ii—Ca1—Geix | 121.556 (11) | Ca2xiii—Ca2—Gex | 59.046 (9) |
Ca2ii—Ca1—Gex | 61.777 (7) | Ca2xiii—Ca2—O | 134.910 (5) |
Ca2ii—Ca1—O | 44.967 (9) | Ca2xiii—Ca2—Ox | 45.090 (4) |
Ca2ii—Ca1—Oxi | 141.083 (17) | Ge—Ca2—Gexiv | 176.815 (14) |
Ca2iii—Ca1—Ca2iv | 119.530 (8) | Ge—Ca2—Gexv | 89.910 (8) |
Ca2iii—Ca1—Ca2v | 59.828 (11) | Ge—Ca2—Gex | 93.275 (16) |
Ca2iii—Ca1—Ca2vi | 83.474 (16) | Ge—Ca2—O | 92.181 (12) |
Ca2iii—Ca1—Ca2vii | 89.908 (10) | Ge—Ca2—Ox | 92.225 (12) |
Ca2iii—Ca1—Geviii | 123.717 (12) | Gexiv—Ca2—Gexv | 86.906 (14) |
Ca2iii—Ca1—Ge | 56.283 (12) | Gexiv—Ca2—Gex | 89.910 (8) |
Ca2iii—Ca1—Geix | 58.027 (8) | Gexiv—Ca2—O | 87.650 (12) |
Ca2iii—Ca1—Gex | 117.792 (15) | Gexiv—Ca2—Ox | 87.691 (13) |
Ca2iii—Ca1—O | 128.27 (2) | Gexv—Ca2—Gex | 176.815 (14) |
Ca2iii—Ca1—Oxi | 44.941 (10) | Gexv—Ca2—O | 87.691 (13) |
Ca2iv—Ca1—Ca2v | 172.10 (2) | Gexv—Ca2—Ox | 87.650 (12) |
Ca2iv—Ca1—Ca2vi | 60.050 (8) | Gex—Ca2—O | 92.225 (12) |
Ca2iv—Ca1—Ca2vii | 127.47 (2) | Gex—Ca2—Ox | 92.181 (12) |
Ca2iv—Ca1—Geviii | 63.736 (12) | O—Ca2—Ox | 173.58 (3) |
Ca2iv—Ca1—Ge | 116.264 (12) | Ca1—Ge—Ca1xviii | 180.0 (5) |
Ca2iv—Ca1—Geix | 61.777 (7) | Ca1—Ge—Ca1ix | 93.266 (15) |
Ca2iv—Ca1—Gex | 121.556 (11) | Ca1—Ge—Ca1x | 93.266 (15) |
Ca2iv—Ca1—O | 44.967 (9) | Ca1—Ge—Ca2 | 59.082 (9) |
Ca2iv—Ca1—Oxi | 141.083 (17) | Ca1—Ge—Ca2xix | 119.116 (9) |
Ca2v—Ca1—Ca2vi | 112.57 (2) | Ca1—Ge—Ca2xii | 119.116 (9) |
Ca2v—Ca1—Ca2vii | 60.050 (8) | Ca1—Ge—Ca2iii | 59.082 (9) |
Ca2v—Ca1—Geviii | 123.717 (12) | Ca1—Ge—Ca2xx | 119.116 (9) |
Ca2v—Ca1—Ge | 56.283 (12) | Ca1—Ge—Ca2v | 59.082 (9) |
Ca2v—Ca1—Geix | 117.792 (15) | Ca1—Ge—Ca2vi | 59.082 (9) |
Ca2v—Ca1—Gex | 58.027 (8) | Ca1—Ge—Ca2xxi | 119.116 (9) |
Ca2v—Ca1—O | 128.27 (2) | Ca1xviii—Ge—Ca1ix | 86.734 (15) |
Ca2v—Ca1—Oxi | 44.941 (10) | Ca1xviii—Ge—Ca1x | 86.734 (15) |
Ca2vi—Ca1—Ca2vii | 172.10 (2) | Ca1xviii—Ge—Ca2 | 120.918 (9) |
Ca2vi—Ca1—Geviii | 123.717 (12) | Ca1xviii—Ge—Ca2xix | 60.884 (9) |
Ca2vi—Ca1—Ge | 56.283 (12) | Ca1xviii—Ge—Ca2xii | 60.884 (9) |
Ca2vi—Ca1—Geix | 58.027 (8) | Ca1xviii—Ge—Ca2iii | 120.918 (9) |
Ca2vi—Ca1—Gex | 117.792 (15) | Ca1xviii—Ge—Ca2xx | 60.884 (9) |
Ca2vi—Ca1—O | 44.941 (10) | Ca1xviii—Ge—Ca2v | 120.918 (9) |
Ca2vi—Ca1—Oxi | 128.27 (2) | Ca1xviii—Ge—Ca2vi | 120.918 (9) |
Ca2vii—Ca1—Geviii | 63.736 (12) | Ca1xviii—Ge—Ca2xxi | 60.884 (9) |
Ca2vii—Ca1—Ge | 116.264 (12) | Ca1ix—Ge—Ca1x | 173.47 (2) |
Ca2vii—Ca1—Geix | 121.556 (11) | Ca1ix—Ge—Ca2 | 122.874 (11) |
Ca2vii—Ca1—Gex | 61.777 (7) | Ca1ix—Ge—Ca2xix | 59.137 (9) |
Ca2vii—Ca1—O | 141.083 (17) | Ca1ix—Ge—Ca2xii | 117.229 (11) |
Ca2vii—Ca1—Oxi | 44.967 (9) | Ca1ix—Ge—Ca2iii | 61.037 (9) |
Geviii—Ca1—Ge | 180.0 (5) | Ca1ix—Ge—Ca2xx | 59.137 (9) |
Geviii—Ca1—Geix | 93.266 (15) | Ca1ix—Ge—Ca2v | 122.874 (11) |
Geviii—Ca1—Gex | 93.266 (15) | Ca1ix—Ge—Ca2vi | 61.037 (9) |
Geviii—Ca1—O | 94.571 (18) | Ca1ix—Ge—Ca2xxi | 117.229 (11) |
Geviii—Ca1—Oxi | 94.571 (18) | Ca1x—Ge—Ca2 | 61.037 (9) |
Ge—Ca1—Geix | 86.734 (15) | Ca1x—Ge—Ca2xix | 117.229 (11) |
Ge—Ca1—Gex | 86.734 (15) | Ca1x—Ge—Ca2xii | 59.137 (9) |
Ge—Ca1—O | 85.429 (18) | Ca1x—Ge—Ca2iii | 122.874 (11) |
Ge—Ca1—Oxi | 85.429 (18) | Ca1x—Ge—Ca2xx | 117.229 (11) |
Geix—Ca1—Gex | 173.47 (3) | Ca1x—Ge—Ca2v | 61.037 (9) |
Geix—Ca1—O | 89.740 (2) | Ca1x—Ge—Ca2vi | 122.874 (11) |
Geix—Ca1—Oxi | 89.740 (2) | Ca1x—Ge—Ca2xxi | 59.137 (9) |
Gex—Ca1—O | 89.740 (2) | Ca2—Ge—Ca2xix | 176.815 (12) |
Gex—Ca1—Oxi | 89.740 (2) | Ca2—Ge—Ca2xii | 60.103 (8) |
O—Ca1—Oxi | 170.86 (4) | Ca2—Ge—Ca2iii | 118.164 (17) |
Ca1—Ca2—Ca1xvi | 172.099 (18) | Ca2—Ge—Ca2xx | 90.090 (10) |
Ca1—Ca2—Ca1xvii | 90.092 (10) | Ca2—Ge—Ca2v | 86.725 (14) |
Ca1—Ca2—Ca1x | 96.526 (17) | Ca2—Ge—Ca2vi | 61.909 (10) |
Ca1—Ca2—Ca2ii | 59.952 (13) | Ca2—Ge—Ca2xxi | 119.897 (8) |
Ca1—Ca2—Ca2xii | 127.300 (17) | Ca2xix—Ge—Ca2xii | 121.769 (17) |
Ca1—Ca2—Ca2vi | 60.086 (9) | Ca2xix—Ge—Ca2iii | 60.103 (8) |
Ca1—Ca2—Ca2xiii | 119.914 (13) | Ca2xix—Ge—Ca2xx | 93.094 (13) |
Ca1—Ca2—Ge | 64.635 (16) | Ca2xix—Ge—Ca2v | 90.090 (10) |
Ca1—Ca2—Gexiv | 117.102 (14) | Ca2xix—Ge—Ca2vi | 119.897 (8) |
Ca1—Ca2—Gexv | 120.728 (7) | Ca2xix—Ge—Ca2xxi | 58.164 (9) |
Ca1—Ca2—Gex | 60.936 (10) | Ca2xii—Ge—Ca2iii | 176.815 (12) |
Ca1—Ca2—O | 45.033 (9) | Ca2xii—Ge—Ca2xx | 58.164 (9) |
Ca1—Ca2—Ox | 141.37 (2) | Ca2xii—Ge—Ca2v | 119.897 (8) |
Ca1xvi—Ca2—Ca1xvii | 83.655 (16) | Ca2xii—Ge—Ca2vi | 90.090 (10) |
Ca1xvi—Ca2—Ca1x | 90.092 (10) | Ca2xii—Ge—Ca2xxi | 93.094 (13) |
Ca1xvi—Ca2—Ca2ii | 112.471 (18) | Ca2iii—Ge—Ca2xx | 119.897 (8) |
Ca1xvi—Ca2—Ca2xii | 59.998 (14) | Ca2iii—Ge—Ca2v | 61.909 (10) |
Ca1xvi—Ca2—Ca2vi | 119.929 (14) | Ca2iii—Ge—Ca2vi | 86.725 (14) |
Ca1xvi—Ca2—Ca2xiii | 60.071 (10) | Ca2iii—Ge—Ca2xxi | 90.090 (10) |
Ca1xvi—Ca2—Ge | 122.744 (15) | Ca2xx—Ge—Ca2v | 176.815 (12) |
Ca1xvi—Ca2—Gexiv | 55.380 (16) | Ca2xx—Ge—Ca2vi | 60.103 (8) |
Ca1xvi—Ca2—Gexv | 59.086 (10) | Ca2xx—Ge—Ca2xxi | 121.769 (17) |
Ca1xvi—Ca2—Gex | 118.841 (8) | Ca2v—Ge—Ca2vi | 118.164 (17) |
Ca1xvi—Ca2—O | 128.53 (2) | Ca2v—Ge—Ca2xxi | 60.103 (8) |
Ca1xvi—Ca2—Ox | 45.059 (10) | Ca2vi—Ge—Ca2xxi | 176.815 (12) |
Ca1xvii—Ca2—Ca1x | 172.099 (18) | Ca1—O—Ca1xvii | 180.0 (5) |
Ca1xvii—Ca2—Ca2ii | 59.998 (14) | Ca1—O—Ca2 | 90.026 (18) |
Ca1xvii—Ca2—Ca2xii | 112.471 (18) | Ca1—O—Ca2ii | 89.974 (18) |
Ca1xvii—Ca2—Ca2vi | 60.071 (10) | Ca1—O—Ca2iv | 89.974 (18) |
Ca1xvii—Ca2—Ca2xiii | 119.929 (14) | Ca1—O—Ca2vi | 90.026 (18) |
Ca1xvii—Ca2—Ge | 118.841 (8) | Ca1xvii—O—Ca2 | 89.974 (18) |
Ca1xvii—Ca2—Gexiv | 59.086 (10) | Ca1xvii—O—Ca2ii | 90.026 (18) |
Ca1xvii—Ca2—Gexv | 55.380 (16) | Ca1xvii—O—Ca2iv | 90.026 (18) |
Ca1xvii—Ca2—Gex | 122.744 (15) | Ca1xvii—O—Ca2vi | 89.974 (18) |
Ca1xvii—Ca2—O | 45.059 (10) | Ca2—O—Ca2ii | 90.180 (9) |
Ca1xvii—Ca2—Ox | 128.53 (2) | Ca2—O—Ca2iv | 180.0 (5) |
Ca1x—Ca2—Ca2ii | 127.300 (17) | Ca2—O—Ca2vi | 89.820 (9) |
Ca1x—Ca2—Ca2xii | 59.952 (13) | Ca2ii—O—Ca2iv | 89.820 (9) |
Ca1x—Ca2—Ca2vi | 119.914 (13) | Ca2ii—O—Ca2vi | 180.0 (5) |
Ca1x—Ca2—Ca2xiii | 60.086 (9) | Ca2iv—O—Ca2vi | 90.180 (9) |
Ca1x—Ca2—Ge | 60.936 (10) |
Symmetry codes: (i) x−1/2, y−1/2, z+1/2; (ii) −x, y, −z; (iii) −x+1/2, y−1/2, −z+1/2; (iv) −x, −y, −z; (v) −x+1/2, −y+1/2, −z+1/2; (vi) x, −y, z; (vii) x−1/2, −y+1/2, z+1/2; (viii) x−1, y, z; (ix) −x+1/2, −y−1/2, z; (x) −x+1/2, −y+1/2, z; (xi) −x, −y, z+1/2; (xii) −x+1, y, −z; (xiii) x, −y+1, z; (xiv) x−1/2, y+1/2, z−1/2; (xv) −x+1, −y, z−1/2; (xvi) x+1/2, y+1/2, z−1/2; (xvii) −x, −y, z−1/2; (xviii) x+1, y, z; (xix) x+1/2, y−1/2, z+1/2; (xx) −x+1, −y, −z; (xxi) x+1/2, −y+1/2, z+1/2. |