Download citation
Download citation
link to html
Single-crystal X-ray diffraction experiments were performed for a series of inverse perovskites, M3TtO (M = Ca, Sr, Ba, Eu; Tt = tetrel element: Si, Ge, Sn, Pb) in the temperature range 500–50 K. For Tt = Sn, Pb, they crystallize as an `ideal' perovskite-type structure (Pm\bar 3m, cP5); however, all of them show distinct anisotropies of the displacement ellipsoids of the M atoms at room temperature. This behavior vanishes on cooling for M = Ca, Sr, Eu, and the structures can be regarded as `ideal' cubic perovskites at 50 K. The anisotropies of the displacement ellipsoids are much more enhanced in the case of the Ba compounds. Finally, their structures undergo a phase transition at ∼ 150 K. They change from cubic to orthorhombic (Ibmm, oI20) upon cooling, with slightly tilted OBa6 octahedra, and bonding angles O—Ba—O ≃ 174° (100 K). For the larger Ba2+ cations, the structural changes are in agreement with smaller tolerance factors (t) as defined by Goldschmidt. Similar structural behavior is observed for Ca3TtO. Smaller Tt4− anions (Si, Ge) introduce reduced tolerance factors. Both compounds Ca3SiO and Ca3GeO with cubic structures at 500 K, change into orthorhombic (Ibmm) at room temperature. Whereby, Ca3SiO is the only representative within the M3TtO family where three polymorphs can be found within the temperature range 500–50 K: Pm\bar 3mIbmmPbnm. They show tiny differences in the tilting of the OCa6 octahedra, expressed by O—Ca—O bond angles of 180° (500 K), ∼ 174° (295 K) and 170° (100 K). For larger M (Sr, Eu, Ba), together with smaller Tt (Si, Ge) atoms, pronounced tilting of the OM6 octahedra, and bonding angles of O—M—O ≃ 160° (295 K) are observed. They crystallize in the anti-GdFeO3 type of structure (Pbnm, oP20), and no phase transitions occur between 500 and 50 K. The observed phase transitions are all accompanied by multiple twinning, in terms of pseudo-merohedry or reticular pseudo-merohedry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520615006150/dk5032sup1.cif
Contains datablocks Ca3SnO_295K, Sr3SnO_295K, Eu3SnO_295K, Ba3SnO_295K, Ca3PbO_295K, Sr3PbO_295K, Eu3PbO_295K, Ba3PbO_295K, Eu3SiO_100K, Ca3SiO_100K, Ca3SiO_500K, Ca3GeO_500K, Ba3PbO_100K, publication_text, Ba3SnO_100K, Eu3GeO_100K, Ca3SiO_295K, Ca3GeO_100K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Ca3SnO_295Ksup2.hkl
Contains datablock Ca3SnO_295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Sr3SnO_295Ksup3.hkl
Contains datablock Sr3SnO_295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Eu3SnO_295Ksup4.hkl
Contains datablock Eu3SnO_295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Ba3SnO_295Ksup5.hkl
Contains datablock Ba3SnO_295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Ca3PbO_295Ksup6.hkl
Contains datablock Ca3PbO_295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Sr3PbO_295Ksup7.hkl
Contains datablock Sr3PbO_295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Eu3PbO_295Ksup8.hkl
Contains datablock Eu3PbO_295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Ba3PbO_295Ksup9.hkl
Contains datablock Ba3PbO_295K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Eu3SiO_100Ksup10.hkl
Contains datablock Eu3SiO_100K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Ca3SiO_100Ksup11.hkl
Contains datablock Ca3SiO_100K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Ca3SiO_500Ksup12.hkl
Contains datablock Ca3SiO_500K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520615006150/dk5032Ca3GeO_500Ksup13.hkl
Contains datablock Ca3GeO_500K

CCDC references: 1056257; 1062668; 1062669; 1062670; 1062671; 1062672; 1062673; 1062674; 1062675; 1062676; 1062677; 1062678; 1062679; 1062680; 1062681; 1062682; 1062683

Computing details top

For all compounds, data collection: Bruker Suite (Bruker AXS, 2013); cell refinement: Bruker Suite (Bruker AXS, 2013); data reduction: Bruker Suite (Bruker AXS, 2013). Program(s) used to solve structure: SHELXL (Sheldrick, 2008) for Ca3SnO_295K, Sr3SnO_295K, Eu3SnO_295K, Ba3SnO_295K, Ca3PbO_295K, Sr3PbO_295K, Eu3PbO_295K, Ba3PbO_295K, Eu3SiO_100K, Ca3SiO_100K, Ca3SiO_500K, Ca3GeO_500K. Program(s) used to refine structure: SHELXL (Sheldrick, 2008) for Ca3SnO_295K, Sr3SnO_295K, Eu3SnO_295K, Ba3SnO_295K, Ca3PbO_295K, Sr3PbO_295K, Eu3PbO_295K, Ba3PbO_295K, Eu3SiO_100K, Ca3SiO_100K, Ca3SiO_500K, Ca3GeO_500K; JANA2006 (Petricek, 2006) for Ba3PbO_100K, Ba3SnO_100K, Eu3GeO_100K, Ca3SiO_295K, Ca3GeO_100K.

(Ca3SnO_295K) top
Crystal data top
Cs3SnOMo Kα radiation, λ = 0.71073 Å
Mr = 254.93Cell parameters from 2160 reflections
Cubic, Pm3mθ = 4.2–37.1°
a = 4.827 (3) ŵ = 8.91 mm1
V = 112.44 (18) Å3T = 295 K
Z = 1Block, dark grey metallic
F(000) = 1180.12 × 0.10 × 0.06 mm
Dx = 3.765 Mg m3
Data collection top
SMART APEX II, Bruker AXS
diffractometer
85 reflections with I > 2σ(I)
ωscanRint = 0.026
Absorption correction: multi-scan
Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany.
θmax = 36.7°, θmin = 4.2°
Tmin = 0.175, Tmax = 0.275h = 88
2145 measured reflectionsk = 88
85 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.008 w = 1/[σ2(Fo2) + (0.0142P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.022(Δ/σ)max < 0.001
S = 1.38Δρmax = 0.39 e Å3
85 reflectionsΔρmin = 0.38 e Å3
6 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.225 (13)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.50000.50000.50000.00955 (10)
Ca0.50000.00000.00000.01161 (14)
O0.00000.00000.00000.0096 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.00955 (10)0.00955 (10)0.00955 (10)0.0000.0000.000
Ca0.00872 (16)0.01306 (15)0.01306 (15)0.0000.0000.000
O0.0096 (4)0.0096 (4)0.0096 (4)0.0000.0000.000
Geometric parameters (Å, º) top
Sn—Cai3.4129 (18)Ca—Snxiii3.4129 (18)
Sn—Ca3.4129 (18)Ca—Cax3.4129 (18)
Sn—Caii3.4129 (18)Ca—Caxiv3.4129 (18)
Sn—Caiii3.4129 (18)Ca—Caxv3.4129 (18)
Sn—Caiv3.4129 (18)Ca—Caviii3.4129 (18)
Sn—Cav3.4129 (18)Ca—Snxvi3.4129 (18)
Sn—Cavi3.4129 (18)Ca—Cav3.4129 (18)
Sn—Cavii3.4129 (18)Ca—Caxvii3.4129 (18)
Sn—Caviii3.4129 (18)Ca—Caxviii3.4129 (18)
Sn—Caix3.4129 (18)O—Caii2.4133 (13)
Sn—Cax3.4129 (18)O—Caxix2.4133 (13)
Sn—Caxi3.4129 (18)O—Caxv2.4133 (13)
Ca—Oxii2.4133 (13)O—Cav2.4133 (13)
Ca—O2.4133 (13)O—Caxiv2.4133 (13)
Cai—Sn—Ca120.0Sn—Ca—Cax60.0
Cai—Sn—Caii180.0Snxiii—Ca—Cax120.0
Ca—Sn—Caii60.0Oxii—Ca—Caxiv135.0
Cai—Sn—Caiii60.0O—Ca—Caxiv45.0
Ca—Sn—Caiii120.0Sn—Ca—Caxiv120.0
Caii—Sn—Caiii120.0Snxiii—Ca—Caxiv60.0
Cai—Sn—Caiv60.0Cax—Ca—Caxiv180.0
Ca—Sn—Caiv180.0Oxii—Ca—Caxv135.0
Caii—Sn—Caiv120.0O—Ca—Caxv45.0
Caiii—Sn—Caiv60.0Sn—Ca—Caxv120.0
Cai—Sn—Cav120.0Snxiii—Ca—Caxv60.0
Ca—Sn—Cav60.0Cax—Ca—Caxv120.0
Caii—Sn—Cav60.0Caxiv—Ca—Caxv60.0
Caiii—Sn—Cav180.0Oxii—Ca—Caviii45.0
Caiv—Sn—Cav120.0O—Ca—Caviii135.0
Cai—Sn—Cavi60.0Sn—Ca—Caviii60.0
Ca—Sn—Cavi90.0Snxiii—Ca—Caviii120.0
Caii—Sn—Cavi120.0Cax—Ca—Caviii60.0
Caiii—Sn—Cavi120.0Caxiv—Ca—Caviii120.0
Caiv—Sn—Cavi90.0Caxv—Ca—Caviii180.0
Cav—Sn—Cavi60.0Oxii—Ca—Snxvi90.0
Cai—Sn—Cavii120.0O—Ca—Snxvi90.0
Ca—Sn—Cavii120.0Sn—Ca—Snxvi90.0
Caii—Sn—Cavii60.0Snxiii—Ca—Snxvi90.0
Caiii—Sn—Cavii90.0Cax—Ca—Snxvi120.0
Caiv—Sn—Cavii60.0Caxiv—Ca—Snxvi60.0
Cav—Sn—Cavii90.0Caxv—Ca—Snxvi120.0
Cavi—Sn—Cavii120.0Caviii—Ca—Snxvi60.0
Cai—Sn—Caviii60.0Oxii—Ca—Cav135.0
Ca—Sn—Caviii60.0O—Ca—Cav45.0
Caii—Sn—Caviii120.0Sn—Ca—Cav60.0
Caiii—Sn—Caviii90.0Snxiii—Ca—Cav120.0
Caiv—Sn—Caviii120.0Cax—Ca—Cav120.0
Cav—Sn—Caviii90.0Caxiv—Ca—Cav60.0
Cavi—Sn—Caviii60.0Caxv—Ca—Cav90.0
Cavii—Sn—Caviii180.0Caviii—Ca—Cav90.0
Cai—Sn—Caix120.0Snxvi—Ca—Cav60.0
Ca—Sn—Caix90.0Oxii—Ca—Caxvii45.0
Caii—Sn—Caix60.0O—Ca—Caxvii135.0
Caiii—Sn—Caix60.0Sn—Ca—Caxvii120.0
Caiv—Sn—Caix90.0Snxiii—Ca—Caxvii60.0
Cav—Sn—Caix120.0Cax—Ca—Caxvii60.0
Cavi—Sn—Caix180.0Caxiv—Ca—Caxvii120.0
Cavii—Sn—Caix60.0Caxv—Ca—Caxvii90.0
Caviii—Sn—Caix120.0Caviii—Ca—Caxvii90.0
Cai—Sn—Cax90.0Snxvi—Ca—Caxvii120.0
Ca—Sn—Cax60.0Cav—Ca—Caxvii180.0
Caii—Sn—Cax90.0Oxii—Ca—Caxviii45.0
Caiii—Sn—Cax60.0O—Ca—Caxviii135.0
Caiv—Sn—Cax120.0Sn—Ca—Caxviii120.0
Cav—Sn—Cax120.0Snxiii—Ca—Caxviii60.0
Cavi—Sn—Cax120.0Cax—Ca—Caxviii90.0
Cavii—Sn—Cax120.0Caxiv—Ca—Caxviii90.0
Caviii—Sn—Cax60.0Caxv—Ca—Caxviii120.0
Caix—Sn—Cax60.0Caviii—Ca—Caxviii60.0
Cai—Sn—Caxi90.0Snxvi—Ca—Caxviii60.0
Ca—Sn—Caxi120.0Cav—Ca—Caxviii120.0
Caii—Sn—Caxi90.0Caxvii—Ca—Caxviii60.0
Caiii—Sn—Caxi120.0Caii—O—Ca90.0
Caiv—Sn—Caxi60.0Caii—O—Caxix90.0
Cav—Sn—Caxi60.0Ca—O—Caxix180.0
Cavi—Sn—Caxi60.0Caii—O—Caxv90.0
Cavii—Sn—Caxi60.0Ca—O—Caxv90.0
Caviii—Sn—Caxi120.0Caxix—O—Caxv90.0
Caix—Sn—Caxi120.0Caii—O—Cav90.0
Cax—Sn—Caxi180.0Ca—O—Cav90.0
Oxii—Ca—O180.0Caxix—O—Cav90.0
Oxii—Ca—Sn90.0Caxv—O—Cav180.0
O—Ca—Sn90.0Caii—O—Caxiv180.0
Oxii—Ca—Snxiii90.0Ca—O—Caxiv90.0
O—Ca—Snxiii90.0Caxix—O—Caxiv90.0
Sn—Ca—Snxiii180.0Caxv—O—Caxiv90.0
Oxii—Ca—Cax45.0Cav—O—Caxiv90.0
O—Ca—Cax135.0
Symmetry codes: (i) y+1, z+1, x; (ii) y, z, x; (iii) z+1, x, y+1; (iv) x, y+1, z+1; (v) z, x, y; (vi) x, y+1, z; (vii) z, x, y+1; (viii) z+1, x, y; (ix) x, y, z+1; (x) y+1, z, x; (xi) y, z+1, x; (xii) x+1, y, z; (xiii) x, y1, z1; (xiv) y, z, x1; (xv) z, x1, y; (xvi) x, y, z1; (xvii) z+1, x1, y; (xviii) y+1, z, x1; (xix) x1, y, z.
(Sr3SnO_295K) top
Crystal data top
Sr3SnOMo Kα radiation, λ = 0.71073 Å
Mr = 397.55Cell parameters from 899 reflections
Cubic, Pm3mθ = 4.0–37.1°
a = 5.1394 (18) ŵ = 33.70 mm1
V = 135.75 (14) Å3T = 295 K
Z = 1Block, dark grey metallic
F(000) = 1720.10 × 0.07 × 0.03 mm
Dx = 4.863 Mg m3
Data collection top
SMART APEX II, Bruker AXS
diffractometer
98 reflections with I > 2σ(I)
ωscanRint = 0.035
Absorption correction: multi-scan
Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany.
θmax = 36.8°, θmin = 4.0°
Tmin = 0.074, Tmax = 0.167h = 88
2627 measured reflectionsk = 88
99 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.010 w = 1/[σ2(Fo2) + (0.0122P)2 + 0.0362P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.035(Δ/σ)max < 0.001
S = 1.36Δρmax = 0.50 e Å3
99 reflectionsΔρmin = 0.43 e Å3
6 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.104 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.50000.50000.50000.01120 (16)
Sr0.50000.00000.00000.01386 (14)
O0.00000.00000.00000.0117 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01120 (16)0.01120 (16)0.01120 (16)0.0000.0000.000
Sr0.00905 (17)0.01626 (15)0.01626 (15)0.0000.0000.000
O0.0117 (7)0.0117 (7)0.0117 (7)0.0000.0000.000
Geometric parameters (Å, º) top
Sn—Sri3.6341 (13)Sr—Snxiii3.6341 (13)
Sn—Sr3.6341 (13)Sr—Srx3.6341 (13)
Sn—Srii3.6341 (13)Sr—Srxiv3.6341 (13)
Sn—Sriii3.6341 (13)Sr—Srxv3.6341 (13)
Sn—Sriv3.6341 (13)Sr—Srviii3.6341 (13)
Sn—Srv3.6341 (13)Sr—Snxvi3.6341 (13)
Sn—Srvi3.6341 (13)Sr—Srv3.6341 (13)
Sn—Srvii3.6341 (13)Sr—Srxvii3.6341 (13)
Sn—Srviii3.6341 (13)Sr—Srxviii3.6341 (13)
Sn—Srix3.6341 (13)O—Srii2.5697 (9)
Sn—Srx3.6341 (13)O—Srxix2.5697 (9)
Sn—Srxi3.6341 (13)O—Srxv2.5697 (9)
Sr—Oxii2.5697 (9)O—Srv2.5697 (9)
Sr—O2.5697 (9)O—Srxiv2.5697 (9)
Sri—Sn—Sr120.0Sn—Sr—Srx60.0
Sri—Sn—Srii180.0Snxiii—Sr—Srx120.0
Sr—Sn—Srii60.0Oxii—Sr—Srxiv135.0
Sri—Sn—Sriii60.0O—Sr—Srxiv45.0
Sr—Sn—Sriii120.0Sn—Sr—Srxiv120.0
Srii—Sn—Sriii120.0Snxiii—Sr—Srxiv60.0
Sri—Sn—Sriv60.0Srx—Sr—Srxiv180.0
Sr—Sn—Sriv180.0Oxii—Sr—Srxv135.0
Srii—Sn—Sriv120.0O—Sr—Srxv45.0
Sriii—Sn—Sriv60.0Sn—Sr—Srxv120.0
Sri—Sn—Srv120.0Snxiii—Sr—Srxv60.0
Sr—Sn—Srv60.0Srx—Sr—Srxv120.0
Srii—Sn—Srv60.0Srxiv—Sr—Srxv60.0
Sriii—Sn—Srv180.0Oxii—Sr—Srviii45.0
Sriv—Sn—Srv120.0O—Sr—Srviii135.0
Sri—Sn—Srvi60.0Sn—Sr—Srviii60.0
Sr—Sn—Srvi90.0Snxiii—Sr—Srviii120.0
Srii—Sn—Srvi120.0Srx—Sr—Srviii60.0
Sriii—Sn—Srvi120.0Srxiv—Sr—Srviii120.0
Sriv—Sn—Srvi90.0Srxv—Sr—Srviii180.0
Srv—Sn—Srvi60.0Oxii—Sr—Snxvi90.0
Sri—Sn—Srvii120.0O—Sr—Snxvi90.0
Sr—Sn—Srvii120.0Sn—Sr—Snxvi90.0
Srii—Sn—Srvii60.0Snxiii—Sr—Snxvi90.0
Sriii—Sn—Srvii90.0Srx—Sr—Snxvi120.0
Sriv—Sn—Srvii60.0Srxiv—Sr—Snxvi60.0
Srv—Sn—Srvii90.0Srxv—Sr—Snxvi120.0
Srvi—Sn—Srvii120.0Srviii—Sr—Snxvi60.0
Sri—Sn—Srviii60.0Oxii—Sr—Srv135.0
Sr—Sn—Srviii60.0O—Sr—Srv45.0
Srii—Sn—Srviii120.0Sn—Sr—Srv60.0
Sriii—Sn—Srviii90.0Snxiii—Sr—Srv120.0
Sriv—Sn—Srviii120.0Srx—Sr—Srv120.0
Srv—Sn—Srviii90.0Srxiv—Sr—Srv60.0
Srvi—Sn—Srviii60.0Srxv—Sr—Srv90.0
Srvii—Sn—Srviii180.0Srviii—Sr—Srv90.0
Sri—Sn—Srix120.0Snxvi—Sr—Srv60.0
Sr—Sn—Srix90.0Oxii—Sr—Srxvii45.0
Srii—Sn—Srix60.0O—Sr—Srxvii135.0
Sriii—Sn—Srix60.0Sn—Sr—Srxvii120.0
Sriv—Sn—Srix90.0Snxiii—Sr—Srxvii60.0
Srv—Sn—Srix120.0Srx—Sr—Srxvii60.0
Srvi—Sn—Srix180.0Srxiv—Sr—Srxvii120.0
Srvii—Sn—Srix60.0Srxv—Sr—Srxvii90.0
Srviii—Sn—Srix120.0Srviii—Sr—Srxvii90.0
Sri—Sn—Srx90.0Snxvi—Sr—Srxvii120.0
Sr—Sn—Srx60.0Srv—Sr—Srxvii180.0
Srii—Sn—Srx90.0Oxii—Sr—Srxviii45.0
Sriii—Sn—Srx60.0O—Sr—Srxviii135.0
Sriv—Sn—Srx120.0Sn—Sr—Srxviii120.0
Srv—Sn—Srx120.0Snxiii—Sr—Srxviii60.0
Srvi—Sn—Srx120.0Srx—Sr—Srxviii90.0
Srvii—Sn—Srx120.0Srxiv—Sr—Srxviii90.0
Srviii—Sn—Srx60.0Srxv—Sr—Srxviii120.0
Srix—Sn—Srx60.0Srviii—Sr—Srxviii60.0
Sri—Sn—Srxi90.0Snxvi—Sr—Srxviii60.0
Sr—Sn—Srxi120.0Srv—Sr—Srxviii120.0
Srii—Sn—Srxi90.0Srxvii—Sr—Srxviii60.0
Sriii—Sn—Srxi120.0Srii—O—Sr90.0
Sriv—Sn—Srxi60.0Srii—O—Srxix90.0
Srv—Sn—Srxi60.0Sr—O—Srxix180.0
Srvi—Sn—Srxi60.0Srii—O—Srxv90.0
Srvii—Sn—Srxi60.0Sr—O—Srxv90.0
Srviii—Sn—Srxi120.0Srxix—O—Srxv90.0
Srix—Sn—Srxi120.0Srii—O—Srv90.0
Srx—Sn—Srxi180.0Sr—O—Srv90.0
Oxii—Sr—O180.0Srxix—O—Srv90.0
Oxii—Sr—Sn90.0Srxv—O—Srv180.0
O—Sr—Sn90.0Srii—O—Srxiv180.0
Oxii—Sr—Snxiii90.0Sr—O—Srxiv90.0
O—Sr—Snxiii90.0Srxix—O—Srxiv90.0
Sn—Sr—Snxiii180.0Srxv—O—Srxiv90.0
Oxii—Sr—Srx45.0Srv—O—Srxiv90.0
O—Sr—Srx135.0
Symmetry codes: (i) y+1, z+1, x; (ii) y, z, x; (iii) z+1, x, y+1; (iv) x, y+1, z+1; (v) z, x, y; (vi) x, y+1, z; (vii) z, x, y+1; (viii) z+1, x, y; (ix) x, y, z+1; (x) y+1, z, x; (xi) y, z+1, x; (xii) x+1, y, z; (xiii) x, y1, z1; (xiv) y, z, x1; (xv) z, x1, y; (xvi) x, y, z1; (xvii) z+1, x1, y; (xviii) y+1, z, x1; (xix) x1, y, z.
(Eu3SnO_295K) top
Crystal data top
Eu3SnOMo Kα radiation, λ = 0.71073 Å
Mr = 590.57Cell parameters from 704 reflections
Cubic, Pm3mθ = 4.0–36.4°
a = 5.077 (3) ŵ = 40.00 mm1
V = 130.9 (2) Å3T = 295 K
Z = 1Block, dark grey metallic
F(000) = 2470.06 × 0.04 × 0.02 mm
Dx = 7.494 Mg m3
Data collection top
SMART APEX II, Bruker AXS
diffractometer
89 reflections with I > 2σ(I)
ωscanRint = 0.024
Absorption correction: multi-scan
Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany.
θmax = 36.4°, θmin = 4.0°
Tmin = 0.084, Tmax = 0.166h = 88
2477 measured reflectionsk = 88
93 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.012 w = 1/[σ2(Fo2) + (0.0171P)2 + 0.034P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.033(Δ/σ)max < 0.001
S = 1.12Δρmax = 1.10 e Å3
93 reflectionsΔρmin = 0.60 e Å3
6 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.096 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.50000.00000.00000.01524 (15)
Sn10.50000.50000.50000.01222 (14)
O10.00000.00000.00000.0113 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.00971 (15)0.01801 (15)0.01801 (15)0.0000.0000.000
Sn10.01222 (14)0.01222 (14)0.01222 (14)0.0000.0000.000
O10.0113 (7)0.0113 (7)0.0113 (7)0.0000.0000.000
Geometric parameters (Å, º) top
Eu1—O1i2.5385 (14)Sn1—Eu1xii3.590 (2)
Eu1—O12.5385 (14)Sn1—Eu1xiii3.590 (2)
Eu1—Sn13.590 (2)Sn1—Eu1x3.590 (2)
Eu1—Eu1ii3.590 (2)Sn1—Eu1xiv3.590 (2)
Eu1—Sn1iii3.590 (2)Sn1—Eu1xv3.590 (2)
Eu1—Eu1iv3.590 (2)Sn1—Eu1v3.590 (2)
Eu1—Eu1v3.590 (2)Sn1—Eu1xvi3.590 (2)
Eu1—Eu1vi3.590 (2)Sn1—Eu1iv3.590 (2)
Eu1—Eu1vii3.590 (2)Sn1—Eu1xvii3.590 (2)
Eu1—Eu1viii3.590 (2)O1—Eu1viii2.5385 (14)
Eu1—Eu1ix3.590 (2)O1—Eu1xviii2.5385 (14)
Eu1—Eu1x3.590 (2)O1—Eu1ii2.5385 (14)
Sn1—Eu1xi3.590 (2)O1—Eu1x2.5385 (14)
Sn1—Eu1viii3.590 (2)O1—Eu1vi2.5385 (14)
O1i—Eu1—O1180.0Eu1viii—Sn1—Eu1xiii120.0
O1i—Eu1—Sn190.0Eu1xii—Sn1—Eu1xiii60.0
O1—Eu1—Sn190.0Eu1xi—Sn1—Eu1x120.0
O1i—Eu1—Eu1ii135.0Eu1—Sn1—Eu1x60.0
O1—Eu1—Eu1ii45.0Eu1viii—Sn1—Eu1x60.0
Sn1—Eu1—Eu1ii120.0Eu1xii—Sn1—Eu1x180.0
O1i—Eu1—Sn1iii90.0Eu1xiii—Sn1—Eu1x120.0
O1—Eu1—Sn1iii90.0Eu1xi—Sn1—Eu1xiv60.0
Sn1—Eu1—Sn1iii180.0Eu1—Sn1—Eu1xiv90.0
Eu1ii—Eu1—Sn1iii60.0Eu1viii—Sn1—Eu1xiv120.0
O1i—Eu1—Eu1iv45.0Eu1xii—Sn1—Eu1xiv120.0
O1—Eu1—Eu1iv135.0Eu1xiii—Sn1—Eu1xiv90.0
Sn1—Eu1—Eu1iv60.0Eu1x—Sn1—Eu1xiv60.0
Eu1ii—Eu1—Eu1iv120.0Eu1xi—Sn1—Eu1xv120.0
Sn1iii—Eu1—Eu1iv120.0Eu1—Sn1—Eu1xv120.0
O1i—Eu1—Eu1v45.0Eu1viii—Sn1—Eu1xv60.0
O1—Eu1—Eu1v135.0Eu1xii—Sn1—Eu1xv90.0
Sn1—Eu1—Eu1v60.0Eu1xiii—Sn1—Eu1xv60.0
Eu1ii—Eu1—Eu1v180.0Eu1x—Sn1—Eu1xv90.0
Sn1iii—Eu1—Eu1v120.0Eu1xiv—Sn1—Eu1xv120.0
Eu1iv—Eu1—Eu1v60.0Eu1xi—Sn1—Eu1v60.0
O1i—Eu1—Eu1vi135.0Eu1—Sn1—Eu1v60.0
O1—Eu1—Eu1vi45.0Eu1viii—Sn1—Eu1v120.0
Sn1—Eu1—Eu1vi120.0Eu1xii—Sn1—Eu1v90.0
Eu1ii—Eu1—Eu1vi60.0Eu1xiii—Sn1—Eu1v120.0
Sn1iii—Eu1—Eu1vi60.0Eu1x—Sn1—Eu1v90.0
Eu1iv—Eu1—Eu1vi180.0Eu1xiv—Sn1—Eu1v60.0
Eu1v—Eu1—Eu1vi120.0Eu1xv—Sn1—Eu1v180.0
O1i—Eu1—Eu1vii45.0Eu1xi—Sn1—Eu1xvi120.0
O1—Eu1—Eu1vii135.0Eu1—Sn1—Eu1xvi90.0
Sn1—Eu1—Eu1vii120.0Eu1viii—Sn1—Eu1xvi60.0
Eu1ii—Eu1—Eu1vii90.0Eu1xii—Sn1—Eu1xvi60.0
Sn1iii—Eu1—Eu1vii60.0Eu1xiii—Sn1—Eu1xvi90.0
Eu1iv—Eu1—Eu1vii60.0Eu1x—Sn1—Eu1xvi120.0
Eu1v—Eu1—Eu1vii90.0Eu1xiv—Sn1—Eu1xvi180.0
Eu1vi—Eu1—Eu1vii120.0Eu1xv—Sn1—Eu1xvi60.0
O1i—Eu1—Eu1viii135.0Eu1v—Sn1—Eu1xvi120.0
O1—Eu1—Eu1viii45.0Eu1xi—Sn1—Eu1iv90.0
Sn1—Eu1—Eu1viii60.0Eu1—Sn1—Eu1iv60.0
Eu1ii—Eu1—Eu1viii60.0Eu1viii—Sn1—Eu1iv90.0
Sn1iii—Eu1—Eu1viii120.0Eu1xii—Sn1—Eu1iv60.0
Eu1iv—Eu1—Eu1viii90.0Eu1xiii—Sn1—Eu1iv120.0
Eu1v—Eu1—Eu1viii120.0Eu1x—Sn1—Eu1iv120.0
Eu1vi—Eu1—Eu1viii90.0Eu1xiv—Sn1—Eu1iv120.0
Eu1vii—Eu1—Eu1viii120.0Eu1xv—Sn1—Eu1iv120.0
O1i—Eu1—Eu1ix45.0Eu1v—Sn1—Eu1iv60.0
O1—Eu1—Eu1ix135.0Eu1xvi—Sn1—Eu1iv60.0
Sn1—Eu1—Eu1ix120.0Eu1xi—Sn1—Eu1xvii90.0
Eu1ii—Eu1—Eu1ix120.0Eu1—Sn1—Eu1xvii120.0
Sn1iii—Eu1—Eu1ix60.0Eu1viii—Sn1—Eu1xvii90.0
Eu1iv—Eu1—Eu1ix90.0Eu1xii—Sn1—Eu1xvii120.0
Eu1v—Eu1—Eu1ix60.0Eu1xiii—Sn1—Eu1xvii60.0
Eu1vi—Eu1—Eu1ix90.0Eu1x—Sn1—Eu1xvii60.0
Eu1vii—Eu1—Eu1ix60.0Eu1xiv—Sn1—Eu1xvii60.0
Eu1viii—Eu1—Eu1ix180.0Eu1xv—Sn1—Eu1xvii60.0
O1i—Eu1—Eu1x135.0Eu1v—Sn1—Eu1xvii120.0
O1—Eu1—Eu1x45.0Eu1xvi—Sn1—Eu1xvii120.0
Sn1—Eu1—Eu1x60.0Eu1iv—Sn1—Eu1xvii180.0
Eu1ii—Eu1—Eu1x90.0Eu1viii—O1—Eu190.0
Sn1iii—Eu1—Eu1x120.0Eu1viii—O1—Eu1xviii90.0
Eu1iv—Eu1—Eu1x120.0Eu1—O1—Eu1xviii180.0
Eu1v—Eu1—Eu1x90.0Eu1viii—O1—Eu1ii90.0
Eu1vi—Eu1—Eu1x60.0Eu1—O1—Eu1ii90.0
Eu1vii—Eu1—Eu1x180.0Eu1xviii—O1—Eu1ii90.0
Eu1viii—Eu1—Eu1x60.0Eu1viii—O1—Eu1x90.0
Eu1ix—Eu1—Eu1x120.0Eu1—O1—Eu1x90.0
Eu1xi—Sn1—Eu1120.0Eu1xviii—O1—Eu1x90.0
Eu1xi—Sn1—Eu1viii180.0Eu1ii—O1—Eu1x180.0
Eu1—Sn1—Eu1viii60.0Eu1viii—O1—Eu1vi180.0
Eu1xi—Sn1—Eu1xii60.0Eu1—O1—Eu1vi90.0
Eu1—Sn1—Eu1xii120.0Eu1xviii—O1—Eu1vi90.0
Eu1viii—Sn1—Eu1xii120.0Eu1ii—O1—Eu1vi90.0
Eu1xi—Sn1—Eu1xiii60.0Eu1x—O1—Eu1vi90.0
Eu1—Sn1—Eu1xiii180.0
Symmetry codes: (i) x+1, y, z; (ii) z, x1, y; (iii) x, y1, z1; (iv) y+1, z, x; (v) z+1, x, y; (vi) y, z, x1; (vii) z+1, x1, y; (viii) y, z, x; (ix) y+1, z, x1; (x) z, x, y; (xi) y+1, z+1, x; (xii) z+1, x, y+1; (xiii) x, y+1, z+1; (xiv) x, y+1, z; (xv) z, x, y+1; (xvi) x, y, z+1; (xvii) y, z+1, x; (xviii) x1, y, z.
(Ba3SnO_295K) top
Crystal data top
Ba3SnOMo Kα radiation, λ = 0.71073 Å
Mr = 546.71Cell parameters from 852 reflections
Cubic, Pm3mθ = 3.7–36.8°
a = 5.444 (3) ŵ = 21.75 mm1
V = 161.3 (2) Å3T = 295 K
Z = 1Block, dark grey metallic
F(000) = 2260.08 × 0.06 × 0.05 mm
Dx = 5.627 Mg m3
Data collection top
SMART APEX II, Bruker AXS
diffractometer
108 reflections with I > 2σ(I)
ωscanRint = 0.023
Absorption correction: multi-scan
Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany.
θmax = 36.8°, θmin = 3.7°
Tmin = 0.094, Tmax = 0.167h = 99
3126 measured reflectionsk = 99
114 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0275P)2 + 0.1057P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max < 0.001
S = 1.44Δρmax = 1.00 e Å3
114 reflectionsΔρmin = 0.62 e Å3
6 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.072 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.50000.00000.00000.0239 (3)
Sn20.50000.50000.50000.0159 (3)
O30.00000.00000.00000.0146 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0134 (3)0.0291 (3)0.0291 (3)0.0000.0000.000
Sn20.0159 (3)0.0159 (3)0.0159 (3)0.0000.0000.000
O30.0146 (12)0.0146 (12)0.0146 (12)0.0000.0000.000
Geometric parameters (Å, º) top
Ba1—O3i2.7220 (13)Sn2—Ba1xii3.8495 (18)
Ba1—O32.7220 (13)Sn2—Ba1xiii3.8495 (18)
Ba1—Sn23.8495 (18)Sn2—Ba1x3.8495 (18)
Ba1—Ba1ii3.8495 (18)Sn2—Ba1xiv3.8495 (18)
Ba1—Sn2iii3.8495 (18)Sn2—Ba1xv3.8495 (18)
Ba1—Ba1iv3.8495 (18)Sn2—Ba1v3.8495 (18)
Ba1—Ba1v3.8495 (18)Sn2—Ba1xvi3.8495 (18)
Ba1—Ba1vi3.8495 (18)Sn2—Ba1iv3.8495 (18)
Ba1—Ba1vii3.8495 (18)Sn2—Ba1xvii3.8495 (18)
Ba1—Ba1viii3.8495 (18)O3—Ba1viii2.7220 (13)
Ba1—Ba1ix3.8495 (18)O3—Ba1xviii2.7220 (13)
Ba1—Ba1x3.8495 (18)O3—Ba1ii2.7220 (13)
Sn2—Ba1xi3.8495 (18)O3—Ba1x2.7220 (13)
Sn2—Ba1viii3.8495 (18)O3—Ba1vi2.7220 (13)
O3i—Ba1—O3180.0Ba1viii—Sn2—Ba1xiii120.0
O3i—Ba1—Sn290.0Ba1xii—Sn2—Ba1xiii60.0
O3—Ba1—Sn290.0Ba1xi—Sn2—Ba1x120.0
O3i—Ba1—Ba1ii135.0Ba1—Sn2—Ba1x60.0
O3—Ba1—Ba1ii45.0Ba1viii—Sn2—Ba1x60.0
Sn2—Ba1—Ba1ii120.0Ba1xii—Sn2—Ba1x180.0
O3i—Ba1—Sn2iii90.0Ba1xiii—Sn2—Ba1x120.0
O3—Ba1—Sn2iii90.0Ba1xi—Sn2—Ba1xiv60.0
Sn2—Ba1—Sn2iii180.0Ba1—Sn2—Ba1xiv90.0
Ba1ii—Ba1—Sn2iii60.0Ba1viii—Sn2—Ba1xiv120.0
O3i—Ba1—Ba1iv45.0Ba1xii—Sn2—Ba1xiv120.0
O3—Ba1—Ba1iv135.0Ba1xiii—Sn2—Ba1xiv90.0
Sn2—Ba1—Ba1iv60.0Ba1x—Sn2—Ba1xiv60.0
Ba1ii—Ba1—Ba1iv120.0Ba1xi—Sn2—Ba1xv120.0
Sn2iii—Ba1—Ba1iv120.0Ba1—Sn2—Ba1xv120.0
O3i—Ba1—Ba1v45.0Ba1viii—Sn2—Ba1xv60.0
O3—Ba1—Ba1v135.0Ba1xii—Sn2—Ba1xv90.0
Sn2—Ba1—Ba1v60.0Ba1xiii—Sn2—Ba1xv60.0
Ba1ii—Ba1—Ba1v180.0Ba1x—Sn2—Ba1xv90.0
Sn2iii—Ba1—Ba1v120.0Ba1xiv—Sn2—Ba1xv120.0
Ba1iv—Ba1—Ba1v60.0Ba1xi—Sn2—Ba1v60.0
O3i—Ba1—Ba1vi135.0Ba1—Sn2—Ba1v60.0
O3—Ba1—Ba1vi45.0Ba1viii—Sn2—Ba1v120.0
Sn2—Ba1—Ba1vi120.0Ba1xii—Sn2—Ba1v90.0
Ba1ii—Ba1—Ba1vi60.0Ba1xiii—Sn2—Ba1v120.0
Sn2iii—Ba1—Ba1vi60.0Ba1x—Sn2—Ba1v90.0
Ba1iv—Ba1—Ba1vi180.0Ba1xiv—Sn2—Ba1v60.0
Ba1v—Ba1—Ba1vi120.0Ba1xv—Sn2—Ba1v180.0
O3i—Ba1—Ba1vii45.0Ba1xi—Sn2—Ba1xvi120.0
O3—Ba1—Ba1vii135.0Ba1—Sn2—Ba1xvi90.0
Sn2—Ba1—Ba1vii120.0Ba1viii—Sn2—Ba1xvi60.0
Ba1ii—Ba1—Ba1vii90.0Ba1xii—Sn2—Ba1xvi60.0
Sn2iii—Ba1—Ba1vii60.0Ba1xiii—Sn2—Ba1xvi90.0
Ba1iv—Ba1—Ba1vii60.0Ba1x—Sn2—Ba1xvi120.0
Ba1v—Ba1—Ba1vii90.0Ba1xiv—Sn2—Ba1xvi180.0
Ba1vi—Ba1—Ba1vii120.0Ba1xv—Sn2—Ba1xvi60.0
O3i—Ba1—Ba1viii135.0Ba1v—Sn2—Ba1xvi120.0
O3—Ba1—Ba1viii45.0Ba1xi—Sn2—Ba1iv90.0
Sn2—Ba1—Ba1viii60.0Ba1—Sn2—Ba1iv60.0
Ba1ii—Ba1—Ba1viii60.0Ba1viii—Sn2—Ba1iv90.0
Sn2iii—Ba1—Ba1viii120.0Ba1xii—Sn2—Ba1iv60.0
Ba1iv—Ba1—Ba1viii90.0Ba1xiii—Sn2—Ba1iv120.0
Ba1v—Ba1—Ba1viii120.0Ba1x—Sn2—Ba1iv120.0
Ba1vi—Ba1—Ba1viii90.0Ba1xiv—Sn2—Ba1iv120.0
Ba1vii—Ba1—Ba1viii120.0Ba1xv—Sn2—Ba1iv120.0
O3i—Ba1—Ba1ix45.0Ba1v—Sn2—Ba1iv60.0
O3—Ba1—Ba1ix135.0Ba1xvi—Sn2—Ba1iv60.0
Sn2—Ba1—Ba1ix120.0Ba1xi—Sn2—Ba1xvii90.0
Ba1ii—Ba1—Ba1ix120.0Ba1—Sn2—Ba1xvii120.0
Sn2iii—Ba1—Ba1ix60.0Ba1viii—Sn2—Ba1xvii90.0
Ba1iv—Ba1—Ba1ix90.0Ba1xii—Sn2—Ba1xvii120.0
Ba1v—Ba1—Ba1ix60.0Ba1xiii—Sn2—Ba1xvii60.0
Ba1vi—Ba1—Ba1ix90.0Ba1x—Sn2—Ba1xvii60.0
Ba1vii—Ba1—Ba1ix60.0Ba1xiv—Sn2—Ba1xvii60.0
Ba1viii—Ba1—Ba1ix180.0Ba1xv—Sn2—Ba1xvii60.0
O3i—Ba1—Ba1x135.0Ba1v—Sn2—Ba1xvii120.0
O3—Ba1—Ba1x45.0Ba1xvi—Sn2—Ba1xvii120.0
Sn2—Ba1—Ba1x60.0Ba1iv—Sn2—Ba1xvii180.0
Ba1ii—Ba1—Ba1x90.0Ba1viii—O3—Ba190.0
Sn2iii—Ba1—Ba1x120.0Ba1viii—O3—Ba1xviii90.0
Ba1iv—Ba1—Ba1x120.0Ba1—O3—Ba1xviii180.0
Ba1v—Ba1—Ba1x90.0Ba1viii—O3—Ba1ii90.0
Ba1vi—Ba1—Ba1x60.0Ba1—O3—Ba1ii90.0
Ba1vii—Ba1—Ba1x180.0Ba1xviii—O3—Ba1ii90.0
Ba1viii—Ba1—Ba1x60.0Ba1viii—O3—Ba1x90.0
Ba1ix—Ba1—Ba1x120.0Ba1—O3—Ba1x90.0
Ba1xi—Sn2—Ba1120.0Ba1xviii—O3—Ba1x90.0
Ba1xi—Sn2—Ba1viii180.0Ba1ii—O3—Ba1x180.0
Ba1—Sn2—Ba1viii60.0Ba1viii—O3—Ba1vi180.0
Ba1xi—Sn2—Ba1xii60.0Ba1—O3—Ba1vi90.0
Ba1—Sn2—Ba1xii120.0Ba1xviii—O3—Ba1vi90.0
Ba1viii—Sn2—Ba1xii120.0Ba1ii—O3—Ba1vi90.0
Ba1xi—Sn2—Ba1xiii60.0Ba1x—O3—Ba1vi90.0
Ba1—Sn2—Ba1xiii180.0
Symmetry codes: (i) x+1, y, z; (ii) z, x1, y; (iii) x, y1, z1; (iv) y+1, z, x; (v) z+1, x, y; (vi) y, z, x1; (vii) z+1, x1, y; (viii) y, z, x; (ix) y+1, z, x1; (x) z, x, y; (xi) y+1, z+1, x; (xii) z+1, x, y+1; (xiii) x, y+1, z+1; (xiv) x, y+1, z; (xv) z, x, y+1; (xvi) x, y, z+1; (xvii) y, z+1, x; (xviii) x1, y, z.
(Ca3PbO_295K) top
Crystal data top
Ca3PbOMo Kα radiation, λ = 0.71073 Å
Mr = 343.43Cell parameters from 2179 reflections
Cubic, Pm3mθ = 4.2–36.9°
a = 4.8402 (7) ŵ = 40.39 mm1
V = 113.39 (5) Å3T = 295 K
Z = 1Block, dark grey metallic
F(000) = 1500.14 × 0.08 × 0.05 mm
Dx = 5.029 Mg m3
Data collection top
SMART APEX II, Bruker AXS
diffractometer
86 reflections with I > 2σ(I)
ωscanRint = 0.036
Absorption correction: multi-scan
Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany.
θmax = 36.9°, θmin = 4.2°
Tmin = 0.068, Tmax = 0.167h = 88
2184 measured reflectionsk = 88
86 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.012 w = 1/[σ2(Fo2) + (0.0165P)2 + 0.2596P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.030(Δ/σ)max < 0.001
S = 1.21Δρmax = 1.23 e Å3
86 reflectionsΔρmin = 1.07 e Å3
6 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.096 (7)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb0.50000.50000.50000.00839 (16)
Ca0.50000.00000.00000.0105 (2)
O0.00000.00000.00000.0090 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb0.00839 (16)0.00839 (16)0.00839 (16)0.0000.0000.000
Ca0.0078 (4)0.0118 (3)0.0118 (3)0.0000.0000.000
O0.0090 (13)0.0090 (13)0.0090 (13)0.0000.0000.000
Geometric parameters (Å, º) top
Pb—Cai3.4225 (5)Ca—Pbxiii3.4225 (5)
Pb—Ca3.4225 (5)Ca—Cax3.4225 (5)
Pb—Caii3.4225 (5)Ca—Caxiv3.4225 (5)
Pb—Caiii3.4225 (5)Ca—Caxv3.4225 (5)
Pb—Caiv3.4225 (5)Ca—Caviii3.4225 (5)
Pb—Cav3.4225 (5)Ca—Pbxvi3.4225 (5)
Pb—Cavi3.4225 (5)Ca—Cav3.4225 (5)
Pb—Cavii3.4225 (5)Ca—Caxvii3.4225 (5)
Pb—Caviii3.4225 (5)Ca—Caxviii3.4225 (5)
Pb—Caix3.4225 (5)O—Caii2.4201 (4)
Pb—Cax3.4225 (5)O—Caxix2.4201 (4)
Pb—Caxi3.4225 (5)O—Caxv2.4201 (4)
Ca—Oxii2.4201 (4)O—Cav2.4201 (4)
Ca—O2.4201 (4)O—Caxiv2.4201 (4)
Cai—Pb—Ca120.0Pb—Ca—Cax60.0
Cai—Pb—Caii180.0Pbxiii—Ca—Cax120.0
Ca—Pb—Caii60.0Oxii—Ca—Caxiv135.0
Cai—Pb—Caiii60.0O—Ca—Caxiv45.0
Ca—Pb—Caiii120.0Pb—Ca—Caxiv120.0
Caii—Pb—Caiii120.0Pbxiii—Ca—Caxiv60.0
Cai—Pb—Caiv60.0Cax—Ca—Caxiv180.0
Ca—Pb—Caiv180.0Oxii—Ca—Caxv135.0
Caii—Pb—Caiv120.0O—Ca—Caxv45.0
Caiii—Pb—Caiv60.0Pb—Ca—Caxv120.0
Cai—Pb—Cav120.0Pbxiii—Ca—Caxv60.0
Ca—Pb—Cav60.0Cax—Ca—Caxv120.0
Caii—Pb—Cav60.0Caxiv—Ca—Caxv60.0
Caiii—Pb—Cav180.0Oxii—Ca—Caviii45.0
Caiv—Pb—Cav120.0O—Ca—Caviii135.0
Cai—Pb—Cavi60.0Pb—Ca—Caviii60.0
Ca—Pb—Cavi90.0Pbxiii—Ca—Caviii120.0
Caii—Pb—Cavi120.0Cax—Ca—Caviii60.0
Caiii—Pb—Cavi120.0Caxiv—Ca—Caviii120.0
Caiv—Pb—Cavi90.0Caxv—Ca—Caviii180.0
Cav—Pb—Cavi60.0Oxii—Ca—Pbxvi90.0
Cai—Pb—Cavii120.0O—Ca—Pbxvi90.0
Ca—Pb—Cavii120.0Pb—Ca—Pbxvi90.0
Caii—Pb—Cavii60.0Pbxiii—Ca—Pbxvi90.0
Caiii—Pb—Cavii90.0Cax—Ca—Pbxvi120.0
Caiv—Pb—Cavii60.0Caxiv—Ca—Pbxvi60.0
Cav—Pb—Cavii90.0Caxv—Ca—Pbxvi120.0
Cavi—Pb—Cavii120.0Caviii—Ca—Pbxvi60.0
Cai—Pb—Caviii60.0Oxii—Ca—Cav135.0
Ca—Pb—Caviii60.0O—Ca—Cav45.0
Caii—Pb—Caviii120.0Pb—Ca—Cav60.0
Caiii—Pb—Caviii90.0Pbxiii—Ca—Cav120.0
Caiv—Pb—Caviii120.0Cax—Ca—Cav120.0
Cav—Pb—Caviii90.0Caxiv—Ca—Cav60.0
Cavi—Pb—Caviii60.0Caxv—Ca—Cav90.0
Cavii—Pb—Caviii180.0Caviii—Ca—Cav90.0
Cai—Pb—Caix120.0Pbxvi—Ca—Cav60.0
Ca—Pb—Caix90.0Oxii—Ca—Caxvii45.0
Caii—Pb—Caix60.0O—Ca—Caxvii135.0
Caiii—Pb—Caix60.0Pb—Ca—Caxvii120.0
Caiv—Pb—Caix90.0Pbxiii—Ca—Caxvii60.0
Cav—Pb—Caix120.0Cax—Ca—Caxvii60.0
Cavi—Pb—Caix180.0Caxiv—Ca—Caxvii120.0
Cavii—Pb—Caix60.0Caxv—Ca—Caxvii90.0
Caviii—Pb—Caix120.0Caviii—Ca—Caxvii90.0
Cai—Pb—Cax90.0Pbxvi—Ca—Caxvii120.0
Ca—Pb—Cax60.0Cav—Ca—Caxvii180.0
Caii—Pb—Cax90.0Oxii—Ca—Caxviii45.0
Caiii—Pb—Cax60.0O—Ca—Caxviii135.0
Caiv—Pb—Cax120.0Pb—Ca—Caxviii120.0
Cav—Pb—Cax120.0Pbxiii—Ca—Caxviii60.0
Cavi—Pb—Cax120.0Cax—Ca—Caxviii90.0
Cavii—Pb—Cax120.0Caxiv—Ca—Caxviii90.0
Caviii—Pb—Cax60.0Caxv—Ca—Caxviii120.0
Caix—Pb—Cax60.0Caviii—Ca—Caxviii60.0
Cai—Pb—Caxi90.0Pbxvi—Ca—Caxviii60.0
Ca—Pb—Caxi120.0Cav—Ca—Caxviii120.0
Caii—Pb—Caxi90.0Caxvii—Ca—Caxviii60.0
Caiii—Pb—Caxi120.0Caii—O—Ca90.0
Caiv—Pb—Caxi60.0Caii—O—Caxix90.0
Cav—Pb—Caxi60.0Ca—O—Caxix180.0
Cavi—Pb—Caxi60.0Caii—O—Caxv90.0
Cavii—Pb—Caxi60.0Ca—O—Caxv90.0
Caviii—Pb—Caxi120.0Caxix—O—Caxv90.0
Caix—Pb—Caxi120.0Caii—O—Cav90.0
Cax—Pb—Caxi180.0Ca—O—Cav90.0
Oxii—Ca—O180.0Caxix—O—Cav90.0
Oxii—Ca—Pb90.0Caxv—O—Cav180.0
O—Ca—Pb90.0Caii—O—Caxiv180.0
Oxii—Ca—Pbxiii90.0Ca—O—Caxiv90.0
O—Ca—Pbxiii90.0Caxix—O—Caxiv90.0
Pb—Ca—Pbxiii180.0Caxv—O—Caxiv90.0
Oxii—Ca—Cax45.0Cav—O—Caxiv90.0
O—Ca—Cax135.0
Symmetry codes: (i) y+1, z+1, x; (ii) y, z, x; (iii) z+1, x, y+1; (iv) x, y+1, z+1; (v) z, x, y; (vi) x, y+1, z; (vii) z, x, y+1; (viii) z+1, x, y; (ix) x, y, z+1; (x) y+1, z, x; (xi) y, z+1, x; (xii) x+1, y, z; (xiii) x, y1, z1; (xiv) y, z, x1; (xv) z, x1, y; (xvi) x, y, z1; (xvii) z+1, x1, y; (xviii) y+1, z, x1; (xix) x1, y, z.
(Sr3PbO_295K) top
Crystal data top
Sr3PbOMo Kα radiation, λ = 0.71073 Å
Mr = 486.05Cell parameters from 1032 reflections
Cubic, Pm3mθ = 4.0–36.9°
a = 5.151 (3) ŵ = 59.67 mm1
V = 136.6 (2) Å3T = 295 K
Z = 1Block, dark grey metallic
F(000) = 2040.12 × 0.12 × 0.04 mm
Dx = 5.907 Mg m3
Data collection top
SMART APEX II, Bruker AXS
diffractometer
101 reflections with I > 2σ(I)
ωscanRint = 0.059
Absorption correction: multi-scan
Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany.
θmax = 37.0°, θmin = 4.0°
Tmin = 0.025, Tmax = 0.111h = 88
1691 measured reflectionsk = 86
101 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0167P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max < 0.001
S = 1.24Δρmax = 1.74 e Å3
101 reflectionsΔρmin = 1.72 e Å3
6 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.159 (9)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb0.50000.50000.50000.01312 (16)
Sr0.50000.00000.00000.01613 (19)
O0.00000.00000.00000.0135 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb0.01312 (16)0.01312 (16)0.01312 (16)0.0000.0000.000
Sr0.0109 (2)0.0187 (2)0.0187 (2)0.0000.0000.000
O0.0135 (12)0.0135 (12)0.0135 (12)0.0000.0000.000
Geometric parameters (Å, º) top
Pb—Sri3.642 (2)Sr—Pbxiii3.642 (2)
Pb—Sr3.642 (2)Sr—Srx3.642 (2)
Pb—Srii3.642 (2)Sr—Srxiv3.642 (2)
Pb—Sriii3.642 (2)Sr—Srxv3.642 (2)
Pb—Sriv3.642 (2)Sr—Srviii3.642 (2)
Pb—Srv3.642 (2)Sr—Pbxvi3.642 (2)
Pb—Srvi3.642 (2)Sr—Srv3.642 (2)
Pb—Srvii3.642 (2)Sr—Srxvii3.642 (2)
Pb—Srviii3.642 (2)Sr—Srxviii3.642 (2)
Pb—Srix3.642 (2)O—Srii2.5753 (15)
Pb—Srx3.642 (2)O—Srxix2.5753 (15)
Pb—Srxi3.642 (2)O—Srxv2.5753 (15)
Sr—Oxii2.5753 (15)O—Srv2.5753 (15)
Sr—O2.5753 (15)O—Srxiv2.5753 (15)
Sri—Pb—Sr120.0Pb—Sr—Srx60.0
Sri—Pb—Srii180.0Pbxiii—Sr—Srx120.0
Sr—Pb—Srii60.0Oxii—Sr—Srxiv135.0
Sri—Pb—Sriii60.0O—Sr—Srxiv45.0
Sr—Pb—Sriii120.0Pb—Sr—Srxiv120.0
Srii—Pb—Sriii120.0Pbxiii—Sr—Srxiv60.0
Sri—Pb—Sriv60.0Srx—Sr—Srxiv180.0
Sr—Pb—Sriv180.0Oxii—Sr—Srxv135.0
Srii—Pb—Sriv120.0O—Sr—Srxv45.0
Sriii—Pb—Sriv60.0Pb—Sr—Srxv120.0
Sri—Pb—Srv120.0Pbxiii—Sr—Srxv60.0
Sr—Pb—Srv60.0Srx—Sr—Srxv120.0
Srii—Pb—Srv60.0Srxiv—Sr—Srxv60.0
Sriii—Pb—Srv180.0Oxii—Sr—Srviii45.0
Sriv—Pb—Srv120.0O—Sr—Srviii135.0
Sri—Pb—Srvi60.0Pb—Sr—Srviii60.0
Sr—Pb—Srvi90.0Pbxiii—Sr—Srviii120.0
Srii—Pb—Srvi120.0Srx—Sr—Srviii60.0
Sriii—Pb—Srvi120.0Srxiv—Sr—Srviii120.0
Sriv—Pb—Srvi90.0Srxv—Sr—Srviii180.0
Srv—Pb—Srvi60.0Oxii—Sr—Pbxvi90.0
Sri—Pb—Srvii120.0O—Sr—Pbxvi90.0
Sr—Pb—Srvii120.0Pb—Sr—Pbxvi90.0
Srii—Pb—Srvii60.0Pbxiii—Sr—Pbxvi90.0
Sriii—Pb—Srvii90.0Srx—Sr—Pbxvi120.0
Sriv—Pb—Srvii60.0Srxiv—Sr—Pbxvi60.0
Srv—Pb—Srvii90.0Srxv—Sr—Pbxvi120.0
Srvi—Pb—Srvii120.0Srviii—Sr—Pbxvi60.0
Sri—Pb—Srviii60.0Oxii—Sr—Srv135.0
Sr—Pb—Srviii60.0O—Sr—Srv45.0
Srii—Pb—Srviii120.0Pb—Sr—Srv60.0
Sriii—Pb—Srviii90.0Pbxiii—Sr—Srv120.0
Sriv—Pb—Srviii120.0Srx—Sr—Srv120.0
Srv—Pb—Srviii90.0Srxiv—Sr—Srv60.0
Srvi—Pb—Srviii60.0Srxv—Sr—Srv90.0
Srvii—Pb—Srviii180.0Srviii—Sr—Srv90.0
Sri—Pb—Srix120.0Pbxvi—Sr—Srv60.0
Sr—Pb—Srix90.0Oxii—Sr—Srxvii45.0
Srii—Pb—Srix60.0O—Sr—Srxvii135.0
Sriii—Pb—Srix60.0Pb—Sr—Srxvii120.0
Sriv—Pb—Srix90.0Pbxiii—Sr—Srxvii60.0
Srv—Pb—Srix120.0Srx—Sr—Srxvii60.0
Srvi—Pb—Srix180.0Srxiv—Sr—Srxvii120.0
Srvii—Pb—Srix60.0Srxv—Sr—Srxvii90.0
Srviii—Pb—Srix120.0Srviii—Sr—Srxvii90.0
Sri—Pb—Srx90.0Pbxvi—Sr—Srxvii120.0
Sr—Pb—Srx60.0Srv—Sr—Srxvii180.0
Srii—Pb—Srx90.0Oxii—Sr—Srxviii45.0
Sriii—Pb—Srx60.0O—Sr—Srxviii135.0
Sriv—Pb—Srx120.0Pb—Sr—Srxviii120.0
Srv—Pb—Srx120.0Pbxiii—Sr—Srxviii60.0
Srvi—Pb—Srx120.0Srx—Sr—Srxviii90.0
Srvii—Pb—Srx120.0Srxiv—Sr—Srxviii90.0
Srviii—Pb—Srx60.0Srxv—Sr—Srxviii120.0
Srix—Pb—Srx60.0Srviii—Sr—Srxviii60.0
Sri—Pb—Srxi90.0Pbxvi—Sr—Srxviii60.0
Sr—Pb—Srxi120.0Srv—Sr—Srxviii120.0
Srii—Pb—Srxi90.0Srxvii—Sr—Srxviii60.0
Sriii—Pb—Srxi120.0Srii—O—Sr90.0
Sriv—Pb—Srxi60.0Srii—O—Srxix90.0
Srv—Pb—Srxi60.0Sr—O—Srxix180.0
Srvi—Pb—Srxi60.0Srii—O—Srxv90.0
Srvii—Pb—Srxi60.0Sr—O—Srxv90.0
Srviii—Pb—Srxi120.0Srxix—O—Srxv90.0
Srix—Pb—Srxi120.0Srii—O—Srv90.0
Srx—Pb—Srxi180.0Sr—O—Srv90.0
Oxii—Sr—O180.0Srxix—O—Srv90.0
Oxii—Sr—Pb90.0Srxv—O—Srv180.0
O—Sr—Pb90.0Srii—O—Srxiv180.0
Oxii—Sr—Pbxiii90.0Sr—O—Srxiv90.0
O—Sr—Pbxiii90.0Srxix—O—Srxiv90.0
Pb—Sr—Pbxiii180.0Srxv—O—Srxiv90.0
Oxii—Sr—Srx45.0Srv—O—Srxiv90.0
O—Sr—Srx135.0
Symmetry codes: (i) y+1, z+1, x; (ii) y, z, x; (iii) z+1, x, y+1; (iv) x, y+1, z+1; (v) z, x, y; (vi) x, y+1, z; (vii) z, x, y+1; (viii) z+1, x, y; (ix) x, y, z+1; (x) y+1, z, x; (xi) y, z+1, x; (xii) x+1, y, z; (xiii) x, y1, z1; (xiv) y, z, x1; (xv) z, x1, y; (xvi) x, y, z1; (xvii) z+1, x1, y; (xviii) y+1, z, x1; (xix) x1, y, z.
(Eu3PbO_295K) top
Crystal data top
Eu3PbOMo Kα radiation, λ = 0.71073 Å
Mr = 679.07Cell parameters from 932 reflections
Cubic, Pm3mθ = 4.0–36.3°
a = 5.0910 (19) ŵ = 66.79 mm1
V = 131.95 (15) Å3T = 295 K
Z = 1Block, dark grey metallic
F(000) = 2790.40 × 0.08 × 0.06 mm
Dx = 8.546 Mg m3
Data collection top
SMART APEX II, Bruker AXS
diffractometer
93 reflections with I > 2σ(I)
ωscanRint = 0.042
Absorption correction: multi-scan
Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany.
θmax = 36.3°, θmin = 4.0°
Tmin = 0.028, Tmax = 0.110h = 88
2520 measured reflectionsk = 88
93 independent reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.011 w = 1/[σ2(Fo2) + (0.0154P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.028(Δ/σ)max < 0.001
S = 1.13Δρmax = 0.95 e Å3
93 reflectionsΔρmin = 1.06 e Å3
6 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.057 (2)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu0.50000.00000.00000.01608 (12)
Pb0.50000.50000.50000.01263 (12)
O10.00000.00000.00000.0110 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu0.01024 (12)0.01900 (12)0.01900 (12)0.0000.0000.000
Pb0.01263 (12)0.01263 (12)0.01263 (12)0.0000.0000.000
O10.0110 (7)0.0110 (7)0.0110 (7)0.0000.0000.000
Geometric parameters (Å, º) top
Eu—O1i2.5455 (9)Pb—Euxii3.5999 (13)
Eu—O12.5455 (9)Pb—Euxiii3.5999 (13)
Eu—Pb3.5999 (13)Pb—Eux3.5999 (13)
Eu—Euii3.5999 (13)Pb—Euxiv3.5999 (13)
Eu—Pbiii3.5999 (13)Pb—Euxv3.5999 (13)
Eu—Euiv3.5999 (13)Pb—Euv3.5999 (13)
Eu—Euv3.5999 (13)Pb—Euxvi3.5999 (13)
Eu—Euvi3.5999 (13)Pb—Euiv3.5999 (13)
Eu—Euvii3.5999 (13)Pb—Euxvii3.5999 (13)
Eu—Euviii3.5999 (13)O1—Euviii2.5455 (9)
Eu—Euix3.5999 (13)O1—Euxviii2.5455 (9)
Eu—Eux3.5999 (13)O1—Euii2.5455 (9)
Pb—Euxi3.5999 (13)O1—Eux2.5455 (9)
Pb—Euviii3.5999 (13)O1—Euvi2.5455 (9)
O1i—Eu—O1180.0Euviii—Pb—Euxiii120.0
O1i—Eu—Pb90.0Euxii—Pb—Euxiii60.0
O1—Eu—Pb90.0Euxi—Pb—Eux120.0
O1i—Eu—Euii135.0Eu—Pb—Eux60.0
O1—Eu—Euii45.0Euviii—Pb—Eux60.0
Pb—Eu—Euii120.0Euxii—Pb—Eux180.0
O1i—Eu—Pbiii90.0Euxiii—Pb—Eux120.0
O1—Eu—Pbiii90.0Euxi—Pb—Euxiv60.0
Pb—Eu—Pbiii180.0Eu—Pb—Euxiv90.0
Euii—Eu—Pbiii60.0Euviii—Pb—Euxiv120.0
O1i—Eu—Euiv45.0Euxii—Pb—Euxiv120.0
O1—Eu—Euiv135.0Euxiii—Pb—Euxiv90.0
Pb—Eu—Euiv60.0Eux—Pb—Euxiv60.0
Euii—Eu—Euiv120.0Euxi—Pb—Euxv120.0
Pbiii—Eu—Euiv120.0Eu—Pb—Euxv120.0
O1i—Eu—Euv45.0Euviii—Pb—Euxv60.0
O1—Eu—Euv135.0Euxii—Pb—Euxv90.0
Pb—Eu—Euv60.0Euxiii—Pb—Euxv60.0
Euii—Eu—Euv180.0Eux—Pb—Euxv90.0
Pbiii—Eu—Euv120.0Euxiv—Pb—Euxv120.0
Euiv—Eu—Euv60.0Euxi—Pb—Euv60.0
O1i—Eu—Euvi135.0Eu—Pb—Euv60.0
O1—Eu—Euvi45.0Euviii—Pb—Euv120.0
Pb—Eu—Euvi120.0Euxii—Pb—Euv90.0
Euii—Eu—Euvi60.0Euxiii—Pb—Euv120.0
Pbiii—Eu—Euvi60.0Eux—Pb—Euv90.0
Euiv—Eu—Euvi180.0Euxiv—Pb—Euv60.0
Euv—Eu—Euvi120.0Euxv—Pb—Euv180.0
O1i—Eu—Euvii45.0Euxi—Pb—Euxvi120.0
O1—Eu—Euvii135.0Eu—Pb—Euxvi90.0
Pb—Eu—Euvii120.0Euviii—Pb—Euxvi60.0
Euii—Eu—Euvii90.0Euxii—Pb—Euxvi60.0
Pbiii—Eu—Euvii60.0Euxiii—Pb—Euxvi90.0
Euiv—Eu—Euvii60.0Eux—Pb—Euxvi120.0
Euv—Eu—Euvii90.0Euxiv—Pb—Euxvi180.0
Euvi—Eu—Euvii120.0Euxv—Pb—Euxvi60.0
O1i—Eu—Euviii135.0Euv—Pb—Euxvi120.0
O1—Eu—Euviii45.0Euxi—Pb—Euiv90.0
Pb—Eu—Euviii60.0Eu—Pb—Euiv60.0
Euii—Eu—Euviii60.0Euviii—Pb—Euiv90.0
Pbiii—Eu—Euviii120.0Euxii—Pb—Euiv60.0
Euiv—Eu—Euviii90.0Euxiii—Pb—Euiv120.0
Euv—Eu—Euviii120.0Eux—Pb—Euiv120.0
Euvi—Eu—Euviii90.0Euxiv—Pb—Euiv120.0
Euvii—Eu—Euviii120.0Euxv—Pb—Euiv120.0
O1i—Eu—Euix45.0Euv—Pb—Euiv60.0
O1—Eu—Euix135.0Euxvi—Pb—Euiv60.0
Pb—Eu—Euix120.0Euxi—Pb—Euxvii90.0
Euii—Eu—Euix120.0Eu—Pb—Euxvii120.0
Pbiii—Eu—Euix60.0Euviii—Pb—Euxvii90.0
Euiv—Eu—Euix90.0Euxii—Pb—Euxvii120.0
Euv—Eu—Euix60.0Euxiii—Pb—Euxvii60.0
Euvi—Eu—Euix90.0Eux—Pb—Euxvii60.0
Euvii—Eu—Euix60.0Euxiv—Pb—Euxvii60.0
Euviii—Eu—Euix180.0Euxv—Pb—Euxvii60.0
O1i—Eu—Eux135.0Euv—Pb—Euxvii120.0
O1—Eu—Eux45.0Euxvi—Pb—Euxvii120.0
Pb—Eu—Eux60.0Euiv—Pb—Euxvii180.0
Euii—Eu—Eux90.0Euviii—O1—Eu90.0
Pbiii—Eu—Eux120.0Euviii—O1—Euxviii90.0
Euiv—Eu—Eux120.0Eu—O1—Euxviii180.0
Euv—Eu—Eux90.0Euviii—O1—Euii90.0
Euvi—Eu—Eux60.0Eu—O1—Euii90.0
Euvii—Eu—Eux180.0Euxviii—O1—Euii90.0
Euviii—Eu—Eux60.0Euviii—O1—Eux90.0
Euix—Eu—Eux120.0Eu—O1—Eux90.0
Euxi—Pb—Eu120.0Euxviii—O1—Eux90.0
Euxi—Pb—Euviii180.0Euii—O1—Eux180.0
Eu—Pb—Euviii60.0Euviii—O1—Euvi180.0
Euxi—Pb—Euxii60.0Eu—O1—Euvi90.0
Eu—Pb—Euxii120.0Euxviii—O1—Euvi90.0
Euviii—Pb—Euxii120.0Euii—O1—Euvi90.0
Euxi—Pb—Euxiii60.0Eux—O1—Euvi90.0
Eu—Pb—Euxiii180.0
Symmetry codes: (i) x+1, y, z; (ii) z, x1, y; (iii) x, y1, z1; (iv) y+1, z, x; (v) z+1, x, y; (vi) y, z, x1; (vii) z+1, x1, y; (viii) y, z, x; (ix) y+1, z, x1; (x) z, x, y; (xi) y+1, z+1, x; (xii) z+1, x, y+1; (xiii) x, y+1, z+1; (xiv) x, y+1, z; (xv) z, x, y+1; (xvi) x, y, z+1; (xvii) y, z+1, x; (xviii) x1, y, z.
(Ba3PbO_295K) top
Crystal data top
Ba3PbOMo Kα radiation, λ = 0.71073 Å
Mr = 635.21Cell parameters from 1270 reflections
Cubic, Pm3mθ = 3.7–36.4°
a = 5.489 (7) ŵ = 42.85 mm1
V = 165.4 (7) Å3T = 295 K
Z = 1Block, dark grey metallic
F(000) = 2580.05 × 0.03 × 0.02 mm
Dx = 6.377 Mg m3
Data collection top
SMART APEX II, Bruker AXS
diffractometer
116 reflections with I > 2σ(I)
ωscanRint = 0.043
Absorption correction: multi-scan
Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany.
θmax = 36.9°, θmin = 3.7°
Tmin = 0.134, Tmax = 0.275h = 99
3016 measured reflectionsk = 99
117 independent reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.012 w = 1/[σ2(Fo2) + (0.0151P)2 + 0.0671P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.033(Δ/σ)max < 0.001
S = 1.22Δρmax = 0.95 e Å3
117 reflectionsΔρmin = 0.74 e Å3
6 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.102 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb0.50000.50000.50000.01680 (15)
Ba0.50000.00000.00000.02499 (13)
O0.00000.00000.00000.0154 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb0.01680 (15)0.01680 (15)0.01680 (15)0.0000.0000.000
Ba0.01372 (16)0.03063 (15)0.03063 (15)0.0000.0000.000
O0.0154 (11)0.0154 (11)0.0154 (11)0.0000.0000.000
Geometric parameters (Å, º) top
Pb—Bai3.882 (5)Ba—Pbxiii3.882 (5)
Pb—Ba3.882 (5)Ba—Bax3.882 (5)
Pb—Baii3.882 (5)Ba—Baxiv3.882 (5)
Pb—Baiii3.882 (5)Ba—Baxv3.882 (5)
Pb—Baiv3.882 (5)Ba—Baviii3.882 (5)
Pb—Bav3.882 (5)Ba—Pbxvi3.882 (5)
Pb—Bavi3.882 (5)Ba—Bav3.882 (5)
Pb—Bavii3.882 (5)Ba—Baxvii3.882 (5)
Pb—Baviii3.882 (5)Ba—Baxviii3.882 (5)
Pb—Baix3.882 (5)O—Baii2.745 (4)
Pb—Bax3.882 (5)O—Baxix2.745 (4)
Pb—Baxi3.882 (5)O—Baxv2.745 (4)
Ba—Oxii2.745 (4)O—Bav2.745 (4)
Ba—O2.745 (4)O—Baxiv2.745 (4)
Bai—Pb—Ba120.0Pb—Ba—Bax60.0
Bai—Pb—Baii180.0Pbxiii—Ba—Bax120.0
Ba—Pb—Baii60.0Oxii—Ba—Baxiv135.0
Bai—Pb—Baiii60.0O—Ba—Baxiv45.0
Ba—Pb—Baiii120.0Pb—Ba—Baxiv120.0
Baii—Pb—Baiii120.0Pbxiii—Ba—Baxiv60.0
Bai—Pb—Baiv60.0Bax—Ba—Baxiv180.0
Ba—Pb—Baiv180.0Oxii—Ba—Baxv135.0
Baii—Pb—Baiv120.0O—Ba—Baxv45.0
Baiii—Pb—Baiv60.0Pb—Ba—Baxv120.0
Bai—Pb—Bav120.0Pbxiii—Ba—Baxv60.0
Ba—Pb—Bav60.0Bax—Ba—Baxv120.0
Baii—Pb—Bav60.0Baxiv—Ba—Baxv60.0
Baiii—Pb—Bav180.0Oxii—Ba—Baviii45.0
Baiv—Pb—Bav120.0O—Ba—Baviii135.0
Bai—Pb—Bavi60.0Pb—Ba—Baviii60.0
Ba—Pb—Bavi90.0Pbxiii—Ba—Baviii120.0
Baii—Pb—Bavi120.0Bax—Ba—Baviii60.0
Baiii—Pb—Bavi120.0Baxiv—Ba—Baviii120.0
Baiv—Pb—Bavi90.0Baxv—Ba—Baviii180.0
Bav—Pb—Bavi60.0Oxii—Ba—Pbxvi90.0
Bai—Pb—Bavii120.0O—Ba—Pbxvi90.0
Ba—Pb—Bavii120.0Pb—Ba—Pbxvi90.0
Baii—Pb—Bavii60.0Pbxiii—Ba—Pbxvi90.0
Baiii—Pb—Bavii90.0Bax—Ba—Pbxvi120.0
Baiv—Pb—Bavii60.0Baxiv—Ba—Pbxvi60.0
Bav—Pb—Bavii90.0Baxv—Ba—Pbxvi120.0
Bavi—Pb—Bavii120.0Baviii—Ba—Pbxvi60.0
Bai—Pb—Baviii60.0Oxii—Ba—Bav135.0
Ba—Pb—Baviii60.0O—Ba—Bav45.0
Baii—Pb—Baviii120.0Pb—Ba—Bav60.0
Baiii—Pb—Baviii90.0Pbxiii—Ba—Bav120.0
Baiv—Pb—Baviii120.0Bax—Ba—Bav120.0
Bav—Pb—Baviii90.0Baxiv—Ba—Bav60.0
Bavi—Pb—Baviii60.0Baxv—Ba—Bav90.0
Bavii—Pb—Baviii180.0Baviii—Ba—Bav90.0
Bai—Pb—Baix120.0Pbxvi—Ba—Bav60.0
Ba—Pb—Baix90.0Oxii—Ba—Baxvii45.0
Baii—Pb—Baix60.0O—Ba—Baxvii135.0
Baiii—Pb—Baix60.0Pb—Ba—Baxvii120.0
Baiv—Pb—Baix90.0Pbxiii—Ba—Baxvii60.0
Bav—Pb—Baix120.0Bax—Ba—Baxvii60.0
Bavi—Pb—Baix180.0Baxiv—Ba—Baxvii120.0
Bavii—Pb—Baix60.0Baxv—Ba—Baxvii90.0
Baviii—Pb—Baix120.0Baviii—Ba—Baxvii90.0
Bai—Pb—Bax90.0Pbxvi—Ba—Baxvii120.0
Ba—Pb—Bax60.0Bav—Ba—Baxvii180.0
Baii—Pb—Bax90.0Oxii—Ba—Baxviii45.0
Baiii—Pb—Bax60.0O—Ba—Baxviii135.0
Baiv—Pb—Bax120.0Pb—Ba—Baxviii120.0
Bav—Pb—Bax120.0Pbxiii—Ba—Baxviii60.0
Bavi—Pb—Bax120.0Bax—Ba—Baxviii90.0
Bavii—Pb—Bax120.0Baxiv—Ba—Baxviii90.0
Baviii—Pb—Bax60.0Baxv—Ba—Baxviii120.0
Baix—Pb—Bax60.0Baviii—Ba—Baxviii60.0
Bai—Pb—Baxi90.0Pbxvi—Ba—Baxviii60.0
Ba—Pb—Baxi120.0Bav—Ba—Baxviii120.0
Baii—Pb—Baxi90.0Baxvii—Ba—Baxviii60.0
Baiii—Pb—Baxi120.0Baii—O—Ba90.0
Baiv—Pb—Baxi60.0Baii—O—Baxix90.0
Bav—Pb—Baxi60.0Ba—O—Baxix180.0
Bavi—Pb—Baxi60.0Baii—O—Baxv90.0
Bavii—Pb—Baxi60.0Ba—O—Baxv90.0
Baviii—Pb—Baxi120.0Baxix—O—Baxv90.0
Baix—Pb—Baxi120.0Baii—O—Bav90.0
Bax—Pb—Baxi180.0Ba—O—Bav90.0
Oxii—Ba—O180.0Baxix—O—Bav90.0
Oxii—Ba—Pb90.0Baxv—O—Bav180.0
O—Ba—Pb90.0Baii—O—Baxiv180.0
Oxii—Ba—Pbxiii90.0Ba—O—Baxiv90.0
O—Ba—Pbxiii90.0Baxix—O—Baxiv90.0
Pb—Ba—Pbxiii180.0Baxv—O—Baxiv90.0
Oxii—Ba—Bax45.0Bav—O—Baxiv90.0
O—Ba—Bax135.0
Symmetry codes: (i) y+1, z+1, x; (ii) y, z, x; (iii) z+1, x, y+1; (iv) x, y+1, z+1; (v) z, x, y; (vi) x, y+1, z; (vii) z, x, y+1; (viii) z+1, x, y; (ix) x, y, z+1; (x) y+1, z, x; (xi) y, z+1, x; (xii) x+1, y, z; (xiii) x, y1, z1; (xiv) y, z, x1; (xv) z, x1, y; (xvi) x, y, z1; (xvii) z+1, x1, y; (xviii) y+1, z, x1; (xix) x1, y, z.
(Eu3SiO_100K) top
Crystal data top
Eu3SiODx = 6.761 Mg m3
Mr = 499.97Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbnmCell parameters from 8655 reflections
a = 7.0138 (7) Åθ = 2.9–36.4°
b = 7.0383 (7) ŵ = 37.90 mm1
c = 9.9501 (10) ÅT = 100 K
V = 491.19 (9) Å3Block, grey
Z = 40.28 × 0.25 × 0.07 mm
F(000) = 844
Data collection top
SMART APEX II, Bruker AXS
diffractometer
3386 reflections with I > 2σ(I)
ωscanRint = 0.078
Absorption correction: multi-scan
Sheldrick, G. M. (2012a) TWINABS - Bruker AXS area detector scaling and absorption for twinned crystals, Version 2012/1, University of Göttingen. Germany.
θmax = 36.4°, θmin = 3.6°
Tmin = 0.031, Tmax = 0.166h = 011
13755 measured reflectionsk = 011
3442 independent reflectionsl = 016
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0818P)2 + 15.1882P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.140(Δ/σ)max < 0.001
S = 1.13Δρmax = 6.54 e Å3
3442 reflectionsΔρmin = 4.35 e Å3
30 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0096 (10)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.06364 (10)0.00956 (10)0.25000.00539 (18)
Eu20.21721 (7)0.28226 (7)0.03310 (5)0.00545 (17)
Si0.4941 (6)0.0256 (6)0.25000.0064 (6)
O0.00000.00000.00000.0054 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.0049 (3)0.0071 (3)0.0041 (3)0.00008 (19)0.0000.000
Eu20.0046 (3)0.0048 (3)0.0070 (3)0.00115 (12)0.00028 (12)0.00024 (13)
Si0.0058 (15)0.0058 (15)0.0076 (17)0.0024 (12)0.0000.000
O0.007 (4)0.005 (4)0.004 (4)0.000 (3)0.002 (3)0.003 (3)
Geometric parameters (Å, º) top
Eu1—Oi2.5281 (3)Eu2—Eu2iii3.5491 (4)
Eu1—O2.5281 (3)Eu2—Eu2x3.5491 (4)
Eu1—Siii3.112 (4)Eu2—Eu1x3.5649 (8)
Eu1—Siiii3.308 (4)Eu2—Eu1vi3.5748 (7)
Eu1—Eu2iv3.5649 (8)Eu2—Eu1ix3.5856 (7)
Eu1—Eu2iii3.5649 (8)Eu2—Eu2ix3.5970 (4)
Eu1—Eu2v3.5716 (8)Si—Eu1xi3.112 (4)
Eu1—Eu23.5716 (8)Si—Eu2iii3.129 (3)
Eu1—Eu2vi3.5748 (7)Si—Eu2iv3.129 (3)
Eu1—Eu2i3.5748 (7)Si—Eu1x3.308 (4)
Eu1—Eu2vii3.5856 (7)Si—Eu2v3.420 (3)
Eu1—Eu2viii3.5856 (7)Si—Eu2xii3.494 (3)
Eu2—O2.5251 (5)Si—Eu2ix3.494 (3)
Eu2—Oix2.5280 (5)O—Eu2vi2.5251 (5)
Eu2—Six3.129 (3)O—Eu2iii2.5280 (5)
Eu2—Si3.420 (3)O—Eu2viii2.5280 (5)
Eu2—Siviii3.494 (3)O—Eu1vi2.5281 (3)
Oi—Eu1—O159.43 (3)Oix—Eu2—Eu1x45.167 (12)
Oi—Eu1—Siii100.013 (16)Six—Eu2—Eu1x71.36 (8)
O—Eu1—Siii100.013 (16)Si—Eu2—Eu1x56.49 (7)
Oi—Eu1—Siiii90.02 (2)Siviii—Eu2—Eu1x129.35 (7)
O—Eu1—Siiii90.02 (2)Eu2iii—Eu2—Eu1x108.62 (2)
Siii—Eu1—Siiii103.03 (12)Eu2x—Eu2—Eu1x60.271 (16)
Oi—Eu1—Eu2iv45.165 (12)O—Eu2—Eu145.059 (12)
O—Eu1—Eu2iv119.10 (2)Oix—Eu2—Eu1149.32 (2)
Siii—Eu1—Eu2iv135.41 (4)Six—Eu2—Eu168.69 (8)
Siiii—Eu1—Eu2iv59.54 (5)Si—Eu2—Eu168.17 (7)
Oi—Eu1—Eu2iii119.10 (2)Siviii—Eu2—Eu1117.56 (7)
O—Eu1—Eu2iii45.165 (12)Eu2iii—Eu2—Eu160.084 (16)
Siii—Eu1—Eu2iii135.41 (4)Eu2x—Eu2—Eu1129.918 (18)
Siiii—Eu1—Eu2iii59.54 (5)Eu1x—Eu2—Eu1104.267 (18)
Eu2iv—Eu1—Eu2iii74.52 (2)O—Eu2—Eu1vi45.009 (13)
Oi—Eu1—Eu2v44.991 (13)Oix—Eu2—Eu1vi117.339 (19)
O—Eu1—Eu2v118.81 (2)Six—Eu2—Eu1vi134.00 (7)
Siii—Eu1—Eu2v120.27 (6)Si—Eu2—Eu1vi112.63 (6)
Siiii—Eu1—Eu2v119.18 (5)Siviii—Eu2—Eu1vi55.79 (7)
Eu2iv—Eu1—Eu2v59.644 (12)Eu2iii—Eu2—Eu1vi60.439 (14)
Eu2iii—Eu1—Eu2v103.08 (2)Eu2x—Eu2—Eu1vi124.852 (14)
Oi—Eu1—Eu2118.81 (2)Eu1x—Eu2—Eu1vi154.57 (2)
O—Eu1—Eu244.991 (13)Eu1—Eu2—Eu1vi90.068 (14)
Siii—Eu1—Eu2120.27 (6)O—Eu2—Eu1ix120.48 (2)
Siiii—Eu1—Eu2119.18 (5)Oix—Eu2—Eu1ix44.836 (12)
Eu2iv—Eu1—Eu2103.08 (2)Six—Eu2—Eu1ix120.05 (7)
Eu2iii—Eu1—Eu259.644 (12)Si—Eu2—Eu1ix119.21 (6)
Eu2v—Eu1—Eu274.35 (2)Siviii—Eu2—Eu1ix52.12 (7)
Oi—Eu1—Eu2vi147.44 (3)Eu2iii—Eu2—Eu1ix112.758 (17)
O—Eu1—Eu2vi44.941 (12)Eu2x—Eu2—Eu1ix60.135 (14)
Siii—Eu1—Eu2vi75.07 (5)Eu1x—Eu2—Eu1ix90.002 (14)
Siiii—Eu1—Eu2vi60.88 (4)Eu1—Eu2—Eu1ix165.399 (19)
Eu2iv—Eu1—Eu2vi117.50 (2)Eu1vi—Eu2—Eu1ix75.504 (16)
Eu2iii—Eu1—Eu2vi60.504 (10)O—Eu2—Eu2ix117.71 (2)
Eu2v—Eu1—Eu2vi162.01 (2)Oix—Eu2—Eu2ix44.583 (11)
Eu2—Eu1—Eu2vi89.931 (14)Six—Eu2—Eu2ix131.10 (8)
Oi—Eu1—Eu2i44.941 (12)Si—Eu2—Eu2ix59.68 (6)
O—Eu1—Eu2i147.44 (3)Siviii—Eu2—Eu2ix109.74 (7)
Siii—Eu1—Eu2i75.07 (5)Eu2iii—Eu2—Eu2ix75.43 (2)
Siiii—Eu1—Eu2i60.88 (4)Eu2x—Eu2—Eu2ix89.93 (2)
Eu2iv—Eu1—Eu2i60.504 (10)Eu1x—Eu2—Eu2ix59.884 (16)
Eu2iii—Eu1—Eu2i117.50 (2)Eu1—Eu2—Eu2ix125.15 (3)
Eu2v—Eu1—Eu2i89.931 (14)Eu1vi—Eu2—Eu2ix94.69 (2)
Eu2—Eu1—Eu2i162.01 (2)Eu1ix—Eu2—Eu2ix59.638 (19)
Eu2vi—Eu1—Eu2i103.99 (2)Eu1xi—Si—Eu2iii115.39 (11)
Oi—Eu1—Eu2vii44.833 (12)Eu1xi—Si—Eu2iv115.39 (11)
O—Eu1—Eu2vii146.80 (3)Eu2iii—Si—Eu2iv87.23 (11)
Siii—Eu1—Eu2vii62.43 (4)Eu1xi—Si—Eu1x86.09 (10)
Siiii—Eu1—Eu2vii120.30 (3)Eu2iii—Si—Eu1x127.68 (9)
Eu2iv—Eu1—Eu2vii89.998 (13)Eu2iv—Si—Eu1x127.68 (9)
Eu2iii—Eu1—Eu2vii162.02 (2)Eu1xi—Si—Eu2127.46 (9)
Eu2v—Eu1—Eu2vii60.340 (9)Eu2iii—Si—Eu265.46 (5)
Eu2—Eu1—Eu2vii117.04 (2)Eu2iv—Si—Eu2117.09 (13)
Eu2vi—Eu1—Eu2vii136.84 (2)Eu1x—Si—Eu263.97 (7)
Eu2i—Eu1—Eu2vii59.426 (11)Eu1xi—Si—Eu2v127.46 (9)
Oi—Eu1—Eu2viii146.80 (3)Eu2iii—Si—Eu2v117.09 (13)
O—Eu1—Eu2viii44.833 (12)Eu2iv—Si—Eu2v65.46 (5)
Siii—Eu1—Eu2viii62.43 (4)Eu1x—Si—Eu2v63.97 (7)
Siiii—Eu1—Eu2viii120.30 (3)Eu2—Si—Eu2v78.26 (9)
Eu2iv—Eu1—Eu2viii162.02 (2)Eu1xi—Si—Eu2xii65.45 (7)
Eu2iii—Eu1—Eu2viii89.998 (13)Eu2iii—Si—Eu2xii168.53 (12)
Eu2v—Eu1—Eu2viii117.04 (2)Eu2iv—Si—Eu2xii82.410 (16)
Eu2—Eu1—Eu2viii60.340 (10)Eu1x—Si—Eu2xii63.34 (6)
Eu2vi—Eu1—Eu2viii59.426 (11)Eu2—Si—Eu2xii123.96 (12)
Eu2i—Eu1—Eu2viii136.84 (2)Eu2v—Si—Eu2xii62.69 (4)
Eu2vii—Eu1—Eu2viii103.55 (2)Eu1xi—Si—Eu2ix65.45 (7)
O—Eu2—Oix158.95 (2)Eu2iii—Si—Eu2ix82.410 (16)
O—Eu2—Six103.58 (8)Eu2iv—Si—Eu2ix168.53 (12)
Oix—Eu2—Six97.46 (8)Eu1x—Si—Eu2ix63.34 (6)
O—Eu2—Si90.54 (7)Eu2—Si—Eu2ix62.68 (4)
Oix—Eu2—Si87.53 (7)Eu2v—Si—Eu2ix123.96 (12)
Six—Eu2—Si97.06 (7)Eu2xii—Si—Eu2ix107.43 (11)
O—Eu2—Siviii85.94 (7)Eu2vi—O—Eu2180.0
Oix—Eu2—Siviii90.67 (7)Eu2vi—O—Eu2iii90.768 (9)
Six—Eu2—Siviii97.589 (17)Eu2—O—Eu2iii89.231 (9)
Si—Eu2—Siviii165.35 (7)Eu2vi—O—Eu2viii89.232 (9)
O—Eu2—Eu2iii45.418 (11)Eu2—O—Eu2viii90.769 (9)
Oix—Eu2—Eu2iii119.96 (2)Eu2iii—O—Eu2viii180.000 (18)
Six—Eu2—Eu2iii127.17 (7)Eu2vi—O—Eu1vi89.95 (2)
Si—Eu2—Eu2iii53.31 (6)Eu2—O—Eu1vi90.05 (2)
Siviii—Eu2—Eu2iii116.22 (7)Eu2iii—O—Eu1vi90.33 (2)
O—Eu2—Eu2x149.13 (3)Eu2viii—O—Eu1vi89.67 (2)
Oix—Eu2—Eu2x45.350 (13)Eu2vi—O—Eu190.05 (2)
Six—Eu2—Eu2x61.22 (8)Eu2—O—Eu189.95 (2)
Si—Eu2—Eu2x116.76 (7)Eu2iii—O—Eu189.67 (2)
Siviii—Eu2—Eu2x70.99 (7)Eu2viii—O—Eu190.33 (2)
Eu2iii—Eu2—Eu2x165.11 (3)Eu1vi—O—Eu1180.00 (3)
O—Eu2—Eu1x144.44 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x1, y, z; (iii) x+1/2, y1/2, z; (iv) x+1/2, y1/2, z+1/2; (v) x, y, z+1/2; (vi) x, y, z; (vii) x1/2, y+1/2, z+1/2; (viii) x1/2, y+1/2, z; (ix) x+1/2, y+1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1, y, z; (xii) x+1/2, y+1/2, z+1/2.
(Ca3SiO_100K) top
Crystal data top
Ca3SiODx = 2.620 Mg m3
Mr = 164.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbnmCell parameters from 759 reflections
a = 6.660 (2) Åθ = 4.3–34.7°
b = 6.646 (2) ŵ = 4.05 mm1
c = 9.411 (3) ÅT = 100 K
V = 416.5 (2) Å3Block, grey
Z = 40.02 × 0.02 × 0.01 mm
F(000) = 328
Data collection top
SMART APEX I, Bruker AXS
diffractometer
818 reflections with I > 2σ(I)
ωscanRint = 0.073
Absorption correction: multi-scan
Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany.
θmax = 35.2°, θmin = 2.2°
Tmin = 0.188, Tmax = 0.272h = 1010
6539 measured reflectionsk = 1010
1020 independent reflectionsl = 1514
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.071Secondary atom site location: difference Fourier map
wR(F2) = 0.196 w = 1/[σ2(Fo2) + (0.0608P)2 + 5.6205P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1020 reflectionsΔρmax = 2.11 e Å3
29 parametersΔρmin = 1.46 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.0323 (2)0.0010 (2)0.25000.0090 (3)
Ca20.23856 (15)0.26138 (15)0.01633 (11)0.0114 (3)
Si0.4972 (3)0.0036 (3)0.25000.0062 (4)
O0.00000.00000.00000.0061 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0064 (6)0.0137 (7)0.0069 (5)0.0004 (4)0.0000.000
Ca20.0114 (4)0.0106 (5)0.0120 (4)0.0053 (3)0.0004 (3)0.0002 (3)
Si0.0063 (7)0.0064 (8)0.0058 (7)0.0004 (5)0.0000.000
O0.0080 (19)0.009 (2)0.0016 (17)0.0014 (16)0.0007 (14)0.0002 (12)
Geometric parameters (Å, º) top
Ca1—Oi2.3625 (8)Ca2—Ca1x3.3402 (16)
Ca1—O2.3625 (8)Ca2—Ca1viii3.3414 (15)
Ca1—Siii3.134 (3)Ca2—Ca2ix3.3475 (12)
Ca1—Siiii3.301 (3)Ca2—Ca2vi3.3475 (12)
Ca1—Ca2iv3.3360 (16)Si—Ca1xi3.134 (3)
Ca1—Ca23.3360 (16)Si—Ca2iii3.1452 (18)
Ca1—Ca2v3.3388 (15)Si—Ca2vii3.1452 (18)
Ca1—Ca2vi3.3388 (15)Si—Ca2iv3.2769 (18)
Ca1—Ca2vii3.3402 (16)Si—Ca1x3.301 (3)
Ca1—Ca2iii3.3402 (16)Si—Ca1iii3.361 (3)
Ca1—Ca2viii3.3414 (15)Si—Ca2xii3.3625 (17)
Ca1—Ca2i3.3414 (15)Si—Ca2ix3.3625 (17)
Ca2—O2.3591 (11)Si—Ca2xiii3.5327 (18)
Ca2—Oix2.3602 (11)Si—Ca2xiv3.5327 (18)
Ca2—Six3.1452 (18)O—Ca2viii2.3591 (11)
Ca2—Si3.2769 (18)O—Ca2iii2.3602 (11)
Ca2—Ca2x3.3265 (11)O—Ca2vi2.3602 (11)
Ca2—Ca2iii3.3265 (12)O—Ca1viii2.3625 (8)
Ca2—Ca1ix3.3388 (15)
Oi—Ca1—O169.56 (7)Ca2iii—Ca2—Ca1viii60.10 (3)
Oi—Ca1—Siii95.22 (3)Ca1—Ca2—Ca1viii90.08 (3)
O—Ca1—Siii95.22 (3)Ca1ix—Ca2—Ca1viii82.64 (4)
Oi—Ca1—Siiii89.79 (3)Ca1x—Ca2—Ca1viii168.40 (6)
O—Ca1—Siiii89.79 (3)O—Ca2—Ca2ix129.10 (5)
Siii—Ca1—Siiii94.61 (6)Oix—Ca2—Ca2ix44.81 (3)
Oi—Ca1—Ca2iv45.00 (3)Six—Ca2—Ca2ix125.72 (6)
O—Ca1—Ca2iv127.29 (5)Si—Ca2—Ca2ix60.99 (4)
Siii—Ca1—Ca2iv122.38 (4)Ca2x—Ca2—Ca2ix89.97 (5)
Siiii—Ca1—Ca2iv118.89 (4)Ca2iii—Ca2—Ca2ix84.80 (5)
Oi—Ca1—Ca2127.29 (5)Ca1—Ca2—Ca2ix125.08 (5)
O—Ca1—Ca245.00 (3)Ca1ix—Ca2—Ca2ix59.86 (4)
Siii—Ca1—Ca2122.38 (4)Ca1x—Ca2—Ca2ix59.95 (4)
Siiii—Ca1—Ca2118.89 (4)Ca1viii—Ca2—Ca2ix108.47 (5)
Ca2iv—Ca1—Ca282.48 (5)O—Ca2—Ca2vi44.83 (3)
Oi—Ca1—Ca2v44.98 (3)Oix—Ca2—Ca2vi139.31 (5)
O—Ca1—Ca2v141.99 (6)Six—Ca2—Ca2vi65.84 (5)
Siii—Ca1—Ca2v62.50 (3)Si—Ca2—Ca2vi124.12 (6)
Siiii—Ca1—Ca2v120.54 (4)Ca2x—Ca2—Ca2vi95.20 (5)
Ca2iv—Ca1—Ca2v60.20 (3)Ca2iii—Ca2—Ca2vi90.03 (5)
Ca2—Ca1—Ca2v119.52 (5)Ca1—Ca2—Ca2vi59.94 (4)
Oi—Ca1—Ca2vi141.99 (6)Ca1ix—Ca2—Ca2vi114.04 (5)
O—Ca1—Ca2vi44.98 (3)Ca1x—Ca2—Ca2vi131.63 (5)
Siii—Ca1—Ca2vi62.50 (3)Ca1viii—Ca2—Ca2vi59.92 (4)
Siiii—Ca1—Ca2vi120.54 (4)Ca2ix—Ca2—Ca2vi168.26 (7)
Ca2iv—Ca1—Ca2vi119.52 (5)Ca1xi—Si—Ca2iii119.62 (5)
Ca2—Ca1—Ca2vi60.20 (3)Ca1xi—Si—Ca2vii119.62 (5)
Ca2v—Ca1—Ca2vi97.30 (5)Ca2iii—Si—Ca2vii88.72 (7)
Oi—Ca1—Ca2vii44.96 (3)Ca1xi—Si—Ca2iv122.05 (5)
O—Ca1—Ca2vii127.13 (6)Ca2iii—Si—Ca2iv118.32 (7)
Siii—Ca1—Ca2vii126.17 (4)Ca2vii—Si—Ca2iv62.35 (4)
Siiii—Ca1—Ca2vii59.13 (4)Ca1xi—Si—Ca2122.05 (5)
Ca2iv—Ca1—Ca2vii59.77 (3)Ca2iii—Si—Ca262.35 (4)
Ca2—Ca1—Ca2vii111.38 (5)Ca2vii—Si—Ca2118.32 (7)
Ca2v—Ca1—Ca2vii89.94 (3)Ca2iv—Si—Ca284.30 (6)
Ca2vi—Ca1—Ca2vii170.92 (4)Ca1xi—Si—Ca1x86.50 (6)
Oi—Ca1—Ca2iii127.13 (6)Ca2iii—Si—Ca1x123.08 (5)
O—Ca1—Ca2iii44.96 (3)Ca2vii—Si—Ca1x123.08 (5)
Siii—Ca1—Ca2iii126.17 (4)Ca2iv—Si—Ca1x61.03 (4)
Siiii—Ca1—Ca2iii59.13 (4)Ca2—Si—Ca1x61.03 (4)
Ca2iv—Ca1—Ca2iii111.38 (5)Ca1xi—Si—Ca1iii85.46 (6)
Ca2—Ca1—Ca2iii59.77 (3)Ca2iii—Si—Ca1iii61.58 (4)
Ca2v—Ca1—Ca2iii170.92 (4)Ca2vii—Si—Ca1iii61.58 (4)
Ca2vi—Ca1—Ca2iii89.94 (3)Ca2iv—Si—Ca1iii123.92 (5)
Ca2vii—Ca1—Ca2iii82.35 (5)Ca2—Si—Ca1iii123.92 (5)
Oi—Ca1—Ca2viii141.79 (6)Ca1x—Si—Ca1iii171.96 (9)
O—Ca1—Ca2viii44.91 (3)Ca1xi—Si—Ca2xii61.73 (4)
Siii—Ca1—Ca2viii66.04 (4)Ca2iii—Si—Ca2xii176.02 (5)
Siiii—Ca1—Ca2viii60.82 (3)Ca2vii—Si—Ca2xii87.43 (3)
Ca2iv—Ca1—Ca2viii170.92 (4)Ca2iv—Si—Ca2xii60.54 (3)
Ca2—Ca1—Ca2viii89.92 (3)Ca2—Si—Ca2xii120.57 (6)
Ca2v—Ca1—Ca2viii128.47 (5)Ca1x—Si—Ca2xii60.18 (4)
Ca2vi—Ca1—Ca2viii59.73 (3)Ca1iii—Si—Ca2xii115.48 (5)
Ca2vii—Ca1—Ca2viii119.32 (5)Ca1xi—Si—Ca2ix61.73 (4)
Ca2iii—Ca1—Ca2viii60.13 (3)Ca2iii—Si—Ca2ix87.43 (3)
Oi—Ca1—Ca2i44.91 (3)Ca2vii—Si—Ca2ix176.02 (5)
O—Ca1—Ca2i141.79 (6)Ca2iv—Si—Ca2ix120.57 (6)
Siii—Ca1—Ca2i66.04 (4)Ca2—Si—Ca2ix60.54 (3)
Siiii—Ca1—Ca2i60.82 (3)Ca1x—Si—Ca2ix60.18 (4)
Ca2iv—Ca1—Ca2i89.92 (3)Ca1iii—Si—Ca2ix115.48 (5)
Ca2—Ca1—Ca2i170.92 (4)Ca2xii—Si—Ca2ix96.39 (6)
Ca2v—Ca1—Ca2i59.73 (3)Ca1xi—Si—Ca1178.96 (8)
Ca2vi—Ca1—Ca2i128.47 (5)Ca2iii—Si—Ca159.76 (4)
Ca2vii—Ca1—Ca2i60.13 (3)Ca2vii—Si—Ca159.76 (4)
Ca2iii—Ca1—Ca2i119.32 (5)Ca2iv—Si—Ca158.59 (4)
Ca2viii—Ca1—Ca2i97.20 (6)Ca2—Si—Ca158.59 (4)
O—Ca2—Oix170.89 (5)Ca1x—Si—Ca194.55 (6)
O—Ca2—Six94.95 (5)Ca1iii—Si—Ca193.49 (6)
Oix—Ca2—Six94.01 (5)Ca2xii—Si—Ca1118.82 (5)
O—Ca2—Si90.73 (5)Ca2ix—Si—Ca1118.82 (5)
Oix—Ca2—Si90.41 (5)Ca1xi—Si—Ca2xiii59.80 (4)
Six—Ca2—Si93.48 (5)Ca2iii—Si—Ca2xiii59.83 (3)
O—Ca2—Ca2x140.03 (5)Ca2vii—Si—Ca2xiii119.32 (6)
Oix—Ca2—Ca2x45.17 (3)Ca2iv—Si—Ca2xiii176.96 (5)
Six—Ca2—Ca2x60.77 (4)Ca2—Si—Ca2xiii92.66 (3)
Si—Ca2—Ca2x119.88 (4)Ca1x—Si—Ca2xiii117.51 (5)
O—Ca2—Ca2iii45.19 (3)Ca1iii—Si—Ca2xiii57.87 (4)
Oix—Ca2—Ca2iii129.60 (5)Ca2xii—Si—Ca2xiii121.48 (7)
Six—Ca2—Ca2iii122.29 (4)Ca2ix—Si—Ca2xiii57.63 (3)
Si—Ca2—Ca2iii56.88 (4)Ca1—Si—Ca2xiii119.60 (5)
Ca2x—Ca2—Ca2iii174.75 (7)Ca1xi—Si—Ca2xiv59.80 (4)
O—Ca2—Ca145.09 (3)Ca2iii—Si—Ca2xiv119.32 (6)
Oix—Ca2—Ca1142.46 (4)Ca2vii—Si—Ca2xiv59.83 (3)
Six—Ca2—Ca162.40 (5)Ca2iv—Si—Ca2xiv92.66 (3)
Si—Ca2—Ca164.44 (5)Ca2—Si—Ca2xiv176.96 (5)
Ca2x—Ca2—Ca1123.15 (4)Ca1x—Si—Ca2xiv117.51 (5)
Ca2iii—Ca2—Ca160.18 (3)Ca1iii—Si—Ca2xiv57.87 (4)
O—Ca2—Ca1ix127.60 (4)Ca2xii—Si—Ca2xiv57.63 (3)
Oix—Ca2—Ca1ix45.04 (3)Ca2ix—Si—Ca2xiv121.48 (7)
Six—Ca2—Ca1ix120.60 (5)Ca1—Si—Ca2xiv119.60 (5)
Si—Ca2—Ca1ix120.85 (5)Ca2xiii—Si—Ca2xiv90.39 (6)
Ca2x—Ca2—Ca1ix60.17 (3)Ca2viii—O—Ca2180.00 (3)
Ca2iii—Ca2—Ca1ix117.10 (4)Ca2viii—O—Ca2iii90.36 (3)
Ca1—Ca2—Ca1ix172.43 (4)Ca2—O—Ca2iii89.64 (3)
O—Ca2—Ca1x141.76 (5)Ca2viii—O—Ca2vi89.64 (3)
Oix—Ca2—Ca1x45.02 (3)Ca2—O—Ca2vi90.36 (3)
Six—Ca2—Ca1x65.79 (5)Ca2iii—O—Ca2vi180.00 (3)
Si—Ca2—Ca1x59.84 (5)Ca2viii—O—Ca1viii89.91 (4)
Ca2x—Ca2—Ca1x60.05 (3)Ca2—O—Ca1viii90.09 (4)
Ca2iii—Ca2—Ca1x116.46 (4)Ca2iii—O—Ca1viii89.98 (4)
Ca1—Ca2—Ca1x97.45 (4)Ca2vi—O—Ca1viii90.02 (4)
Ca1ix—Ca2—Ca1x90.06 (3)Ca2viii—O—Ca190.09 (4)
O—Ca2—Ca1viii45.00 (3)Ca2—O—Ca189.91 (4)
Oix—Ca2—Ca1viii127.05 (5)Ca2iii—O—Ca190.02 (4)
Six—Ca2—Ca1viii125.75 (6)Ca2vi—O—Ca189.98 (4)
Si—Ca2—Ca1viii116.66 (5)Ca1viii—O—Ca1180.0
Ca2x—Ca2—Ca1viii122.43 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x1, y, z; (iii) x+1/2, y1/2, z; (iv) x, y, z+1/2; (v) x1/2, y+1/2, z+1/2; (vi) x1/2, y+1/2, z; (vii) x+1/2, y1/2, z+1/2; (viii) x, y, z; (ix) x+1/2, y+1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1, y, z; (xii) x+1/2, y+1/2, z+1/2; (xiii) x+1, y, z; (xiv) x+1, y, z+1/2.
(Ca3SiO_500K) top
Crystal data top
Ca3SiOMo Kα radiation, λ = 0.71073 Å
Mr = 164.33Cell parameters from 4.29 reflections
Cubic, Pm3mθ = 34.1°
a = 4.741 (6) ŵ = 3.95 mm1
V = 106.6 (4) Å3T = 500 K
Z = 1Block, grey
F(000) = 820.02 × 0.02 × 0.01 mm
Dx = 2.561 Mg m3
Data collection top
SMART APEX I, Bruker AXS
diffractometer
58 reflections with I > 2σ(I)
ωscanRint = 0.045
Absorption correction: multi-scan
Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany.
θmax = 35.2°, θmin = 4.3°
Tmin = 0.171, Tmax = 0.272h = 77
1699 measured reflectionsk = 77
73 independent reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0092P)2 + 0.0492P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max < 0.001
S = 1.12Δρmax = 0.45 e Å3
73 reflectionsΔρmin = 0.53 e Å3
6 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.046 (14)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca0.50000.00000.00000.0302 (3)
Si0.50000.50000.50000.0189 (4)
O0.00000.00000.00000.0167 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca0.0128 (4)0.0390 (4)0.0390 (4)0.0000.0000.000
Si0.0189 (4)0.0189 (4)0.0189 (4)0.0000.0000.000
O0.0167 (8)0.0167 (8)0.0167 (8)0.0000.0000.000
Geometric parameters (Å, º) top
Ca—Oi2.370 (3)Si—Caxii3.352 (4)
Ca—O2.370 (3)Si—Caxiii3.352 (4)
Ca—Si3.352 (4)Si—Cax3.352 (4)
Ca—Caii3.352 (4)Si—Caxiv3.352 (4)
Ca—Siiii3.352 (4)Si—Caxv3.352 (4)
Ca—Caiv3.352 (4)Si—Cav3.352 (4)
Ca—Cav3.352 (4)Si—Caxvi3.352 (4)
Ca—Cavi3.352 (4)Si—Caiv3.352 (4)
Ca—Cavii3.352 (4)Si—Caxvii3.352 (4)
Ca—Caviii3.352 (4)O—Caviii2.370 (3)
Ca—Caix3.352 (4)O—Caxviii2.370 (3)
Ca—Cax3.352 (4)O—Caii2.370 (3)
Si—Caxi3.352 (4)O—Cax2.370 (3)
Si—Caviii3.352 (4)O—Cavi2.370 (3)
Oi—Ca—O180.0Caviii—Si—Caxiii120.0
Oi—Ca—Si90.0Caxii—Si—Caxiii60.0
O—Ca—Si90.0Caxi—Si—Cax120.0
Oi—Ca—Caii135.0Ca—Si—Cax60.0
O—Ca—Caii45.0Caviii—Si—Cax60.0
Si—Ca—Caii120.0Caxii—Si—Cax180.0
Oi—Ca—Siiii90.0Caxiii—Si—Cax120.0
O—Ca—Siiii90.0Caxi—Si—Caxiv60.0
Si—Ca—Siiii180.0Ca—Si—Caxiv90.0
Caii—Ca—Siiii60.0Caviii—Si—Caxiv120.0
Oi—Ca—Caiv45.0Caxii—Si—Caxiv120.0
O—Ca—Caiv135.0Caxiii—Si—Caxiv90.0
Si—Ca—Caiv60.0Cax—Si—Caxiv60.0
Caii—Ca—Caiv120.0Caxi—Si—Caxv120.0
Siiii—Ca—Caiv120.0Ca—Si—Caxv120.0
Oi—Ca—Cav45.0Caviii—Si—Caxv60.0
O—Ca—Cav135.0Caxii—Si—Caxv90.0
Si—Ca—Cav60.0Caxiii—Si—Caxv60.0
Caii—Ca—Cav180.0Cax—Si—Caxv90.0
Siiii—Ca—Cav120.0Caxiv—Si—Caxv120.0
Caiv—Ca—Cav60.0Caxi—Si—Cav60.0
Oi—Ca—Cavi135.0Ca—Si—Cav60.0
O—Ca—Cavi45.0Caviii—Si—Cav120.0
Si—Ca—Cavi120.0Caxii—Si—Cav90.0
Caii—Ca—Cavi60.0Caxiii—Si—Cav120.0
Siiii—Ca—Cavi60.0Cax—Si—Cav90.0
Caiv—Ca—Cavi180.0Caxiv—Si—Cav60.0
Cav—Ca—Cavi120.0Caxv—Si—Cav180.0
Oi—Ca—Cavii45.0Caxi—Si—Caxvi120.0
O—Ca—Cavii135.0Ca—Si—Caxvi90.0
Si—Ca—Cavii120.0Caviii—Si—Caxvi60.0
Caii—Ca—Cavii90.0Caxii—Si—Caxvi60.0
Siiii—Ca—Cavii60.0Caxiii—Si—Caxvi90.0
Caiv—Ca—Cavii60.0Cax—Si—Caxvi120.0
Cav—Ca—Cavii90.0Caxiv—Si—Caxvi180.0
Cavi—Ca—Cavii120.0Caxv—Si—Caxvi60.0
Oi—Ca—Caviii135.0Cav—Si—Caxvi120.0
O—Ca—Caviii45.0Caxi—Si—Caiv90.0
Si—Ca—Caviii60.0Ca—Si—Caiv60.0
Caii—Ca—Caviii60.0Caviii—Si—Caiv90.0
Siiii—Ca—Caviii120.0Caxii—Si—Caiv60.0
Caiv—Ca—Caviii90.0Caxiii—Si—Caiv120.0
Cav—Ca—Caviii120.0Cax—Si—Caiv120.0
Cavi—Ca—Caviii90.0Caxiv—Si—Caiv120.0
Cavii—Ca—Caviii120.0Caxv—Si—Caiv120.0
Oi—Ca—Caix45.0Cav—Si—Caiv60.0
O—Ca—Caix135.0Caxvi—Si—Caiv60.0
Si—Ca—Caix120.0Caxi—Si—Caxvii90.0
Caii—Ca—Caix120.0Ca—Si—Caxvii120.0
Siiii—Ca—Caix60.0Caviii—Si—Caxvii90.0
Caiv—Ca—Caix90.0Caxii—Si—Caxvii120.0
Cav—Ca—Caix60.0Caxiii—Si—Caxvii60.0
Cavi—Ca—Caix90.0Cax—Si—Caxvii60.0
Cavii—Ca—Caix60.0Caxiv—Si—Caxvii60.0
Caviii—Ca—Caix180.0Caxv—Si—Caxvii60.0
Oi—Ca—Cax135.0Cav—Si—Caxvii120.0
O—Ca—Cax45.0Caxvi—Si—Caxvii120.0
Si—Ca—Cax60.0Caiv—Si—Caxvii180.0
Caii—Ca—Cax90.0Caviii—O—Ca90.0
Siiii—Ca—Cax120.0Caviii—O—Caxviii90.0
Caiv—Ca—Cax120.0Ca—O—Caxviii180.0
Cav—Ca—Cax90.0Caviii—O—Caii90.0
Cavi—Ca—Cax60.0Ca—O—Caii90.0
Cavii—Ca—Cax180.0Caxviii—O—Caii90.0
Caviii—Ca—Cax60.0Caviii—O—Cax90.0
Caix—Ca—Cax120.0Ca—O—Cax90.0
Caxi—Si—Ca120.0Caxviii—O—Cax90.0
Caxi—Si—Caviii180.0Caii—O—Cax180.0
Ca—Si—Caviii60.0Caviii—O—Cavi180.0
Caxi—Si—Caxii60.0Ca—O—Cavi90.0
Ca—Si—Caxii120.0Caxviii—O—Cavi90.0
Caviii—Si—Caxii120.0Caii—O—Cavi90.0
Caxi—Si—Caxiii60.0Cax—O—Cavi90.0
Ca—Si—Caxiii180.0
Symmetry codes: (i) x+1, y, z; (ii) z, x1, y; (iii) x, y1, z1; (iv) y+1, z, x; (v) z+1, x, y; (vi) y, z, x1; (vii) z+1, x1, y; (viii) y, z, x; (ix) y+1, z, x1; (x) z, x, y; (xi) y+1, z+1, x; (xii) z+1, x, y+1; (xiii) x, y+1, z+1; (xiv) x, y+1, z; (xv) z, x, y+1; (xvi) x, y, z+1; (xvii) y, z+1, x; (xviii) x1, y, z.
(Ca3GeO_500K) top
Crystal data top
Ca3GeOMo Kα radiation, λ = 0.71073 Å
Mr = 208.83Cell parameters from 687 reflections
Cubic, Pm3mθ = 4.3–35.1°
a = 4.7452 (13) ŵ = 10.56 mm1
V = 106.85 (9) Å3T = 500 K
Z = 1Block, grey
F(000) = 1000.03 × 0.02 × 0.02 mm
Dx = 3.245 Mg m3
Data collection top
SMART APEX I, Bruker AXS
diffractometer
73 reflections with I > 2σ(I)
ωscanRint = 0.030
Absorption correction: multi-scan
Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany.
θmax = 35.1°, θmin = 4.3°
Tmin = 0.194, Tmax = 0.272h = 77
1694 measured reflectionsk = 77
74 independent reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0153P)2 + 0.0516P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max = 0.002
S = 1.26Δρmax = 0.40 e Å3
74 reflectionsΔρmin = 0.24 e Å3
6 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.007 (9)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca0.50000.00000.00000.0265 (2)
Ge0.50000.50000.50000.0197 (3)
O0.00000.00000.00000.0133 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca0.0119 (3)0.0338 (3)0.0338 (3)0.0000.0000.000
Ge0.0197 (3)0.0197 (3)0.0197 (3)0.0000.0000.000
O0.0133 (7)0.0133 (7)0.0133 (7)0.0000.0000.000
Geometric parameters (Å, º) top
Ca—Oi2.3726 (6)Ge—Caxii3.3554 (9)
Ca—O2.3726 (6)Ge—Caxiii3.3554 (9)
Ca—Ge3.3554 (9)Ge—Cax3.3554 (9)
Ca—Caii3.3554 (9)Ge—Caxiv3.3554 (9)
Ca—Geiii3.3554 (9)Ge—Caxv3.3554 (9)
Ca—Caiv3.3554 (9)Ge—Cav3.3554 (9)
Ca—Cav3.3554 (9)Ge—Caxvi3.3554 (9)
Ca—Cavi3.3554 (9)Ge—Caiv3.3554 (9)
Ca—Cavii3.3554 (9)Ge—Caxvii3.3554 (9)
Ca—Caviii3.3554 (9)O—Caviii2.3726 (6)
Ca—Caix3.3554 (9)O—Caxviii2.3726 (6)
Ca—Cax3.3554 (9)O—Caii2.3726 (6)
Ge—Caxi3.3554 (9)O—Cax2.3726 (6)
Ge—Caviii3.3554 (9)O—Cavi2.3726 (6)
Oi—Ca—O180.0Caviii—Ge—Caxiii120.0
Oi—Ca—Ge90.0Caxii—Ge—Caxiii60.0
O—Ca—Ge90.0Caxi—Ge—Cax120.0
Oi—Ca—Caii135.0Ca—Ge—Cax60.0
O—Ca—Caii45.0Caviii—Ge—Cax60.0
Ge—Ca—Caii120.0Caxii—Ge—Cax180.0
Oi—Ca—Geiii90.0Caxiii—Ge—Cax120.0
O—Ca—Geiii90.0Caxi—Ge—Caxiv60.0
Ge—Ca—Geiii180.0Ca—Ge—Caxiv90.0
Caii—Ca—Geiii60.0Caviii—Ge—Caxiv120.0
Oi—Ca—Caiv45.0Caxii—Ge—Caxiv120.0
O—Ca—Caiv135.0Caxiii—Ge—Caxiv90.0
Ge—Ca—Caiv60.0Cax—Ge—Caxiv60.0
Caii—Ca—Caiv120.0Caxi—Ge—Caxv120.0
Geiii—Ca—Caiv120.0Ca—Ge—Caxv120.0
Oi—Ca—Cav45.0Caviii—Ge—Caxv60.0
O—Ca—Cav135.0Caxii—Ge—Caxv90.0
Ge—Ca—Cav60.0Caxiii—Ge—Caxv60.0
Caii—Ca—Cav180.0Cax—Ge—Caxv90.0
Geiii—Ca—Cav120.0Caxiv—Ge—Caxv120.0
Caiv—Ca—Cav60.0Caxi—Ge—Cav60.0
Oi—Ca—Cavi135.0Ca—Ge—Cav60.0
O—Ca—Cavi45.0Caviii—Ge—Cav120.0
Ge—Ca—Cavi120.0Caxii—Ge—Cav90.0
Caii—Ca—Cavi60.0Caxiii—Ge—Cav120.0
Geiii—Ca—Cavi60.0Cax—Ge—Cav90.0
Caiv—Ca—Cavi180.0Caxiv—Ge—Cav60.0
Cav—Ca—Cavi120.0Caxv—Ge—Cav180.0
Oi—Ca—Cavii45.0Caxi—Ge—Caxvi120.0
O—Ca—Cavii135.0Ca—Ge—Caxvi90.0
Ge—Ca—Cavii120.0Caviii—Ge—Caxvi60.0
Caii—Ca—Cavii90.0Caxii—Ge—Caxvi60.0
Geiii—Ca—Cavii60.0Caxiii—Ge—Caxvi90.0
Caiv—Ca—Cavii60.0Cax—Ge—Caxvi120.0
Cav—Ca—Cavii90.0Caxiv—Ge—Caxvi180.0
Cavi—Ca—Cavii120.0Caxv—Ge—Caxvi60.0
Oi—Ca—Caviii135.0Cav—Ge—Caxvi120.0
O—Ca—Caviii45.0Caxi—Ge—Caiv90.0
Ge—Ca—Caviii60.0Ca—Ge—Caiv60.0
Caii—Ca—Caviii60.0Caviii—Ge—Caiv90.0
Geiii—Ca—Caviii120.0Caxii—Ge—Caiv60.0
Caiv—Ca—Caviii90.0Caxiii—Ge—Caiv120.0
Cav—Ca—Caviii120.0Cax—Ge—Caiv120.0
Cavi—Ca—Caviii90.0Caxiv—Ge—Caiv120.0
Cavii—Ca—Caviii120.0Caxv—Ge—Caiv120.0
Oi—Ca—Caix45.0Cav—Ge—Caiv60.0
O—Ca—Caix135.0Caxvi—Ge—Caiv60.0
Ge—Ca—Caix120.0Caxi—Ge—Caxvii90.0
Caii—Ca—Caix120.0Ca—Ge—Caxvii120.0
Geiii—Ca—Caix60.0Caviii—Ge—Caxvii90.0
Caiv—Ca—Caix90.0Caxii—Ge—Caxvii120.0
Cav—Ca—Caix60.0Caxiii—Ge—Caxvii60.0
Cavi—Ca—Caix90.0Cax—Ge—Caxvii60.0
Cavii—Ca—Caix60.0Caxiv—Ge—Caxvii60.0
Caviii—Ca—Caix180.0Caxv—Ge—Caxvii60.0
Oi—Ca—Cax135.0Cav—Ge—Caxvii120.0
O—Ca—Cax45.0Caxvi—Ge—Caxvii120.0
Ge—Ca—Cax60.0Caiv—Ge—Caxvii180.0
Caii—Ca—Cax90.0Caviii—O—Ca90.0
Geiii—Ca—Cax120.0Caviii—O—Caxviii90.0
Caiv—Ca—Cax120.0Ca—O—Caxviii180.0
Cav—Ca—Cax90.0Caviii—O—Caii90.0
Cavi—Ca—Cax60.0Ca—O—Caii90.0
Cavii—Ca—Cax180.0Caxviii—O—Caii90.0
Caviii—Ca—Cax60.0Caviii—O—Cax90.0
Caix—Ca—Cax120.0Ca—O—Cax90.0
Caxi—Ge—Ca120.0Caxviii—O—Cax90.0
Caxi—Ge—Caviii180.0Caii—O—Cax180.0
Ca—Ge—Caviii60.0Caviii—O—Cavi180.0
Caxi—Ge—Caxii60.0Ca—O—Cavi90.0
Ca—Ge—Caxii120.0Caxviii—O—Cavi90.0
Caviii—Ge—Caxii120.0Caii—O—Cavi90.0
Caxi—Ge—Caxiii60.0Cax—O—Cavi90.0
Ca—Ge—Caxiii180.0
Symmetry codes: (i) x+1, y, z; (ii) z, x1, y; (iii) x, y1, z1; (iv) y+1, z, x; (v) z+1, x, y; (vi) y, z, x1; (vii) z+1, x1, y; (viii) y, z, x; (ix) y+1, z, x1; (x) z, x, y; (xi) y+1, z+1, x; (xii) z+1, x, y+1; (xiii) x, y+1, z+1; (xiv) x, y+1, z; (xv) z, x, y+1; (xvi) x, y, z+1; (xvii) y, z+1, x; (xviii) x1, y, z.
(Ba3PbO_100K) top
Crystal data top
Ba3PbOF(000) = 1032
Mr = 635.2Dx = 6.553 Mg m3
Orthorhombic, IbmmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I -2xc;-2y;-2zcCell parameters from 1917 reflections
a = 7.693 (2) Åθ = 3.8–36.8°
b = 7.693 (2) ŵ = 44.03 mm1
c = 10.880 (3) ÅT = 100 K
V = 643.9 (3) Å3Block, grey
Z = 40.05 × 0.03 × 0.02 mm
Data collection top
SMART APEX II, Bruker AXS
diffractometer
3005 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ωscanθmax = 37.0°, θmin = 3.2°
Absorption correction: multi-scan
Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany.
h = 1313
Tmin = 0.132, Tmax = 0.275k = 1212
6195 measured reflectionsl = 1818
3139 independent reflections
Refinement top
Refinement on F0 constraints
R[F > 3σ(F)] = 0.032Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F) = 0.035(Δ/σ)max = 0.008
S = 1.17Δρmax = 1.37 e Å3
3139 reflectionsΔρmin = 2.23 e Å3
24 parametersExtinction correction: B-C type 2 (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 86E1 (3)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.01880 (12)00.250.0101 (2)
Ba20.250.250.00941 (7)0.0118 (3)
Pb0.49967 (11)00.250.00608 (17)
O0000.008 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0079 (3)0.0151 (5)0.0072 (4)000
Ba20.0114 (5)0.0115 (5)0.0126 (3)0.00595 (15)00
Pb0.0045 (3)0.0059 (3)0.0078 (3)000
O0.004 (6)0.011 (7)0.010 (6)00.001 (4)0
Geometric parameters (Å, º) top
Ba1—Ba23.8506 (14)Ba1—O2.7238 (15)
Ba1—Ba2i3.8507 (15)Ba1—Oxi2.7238 (15)
Ba1—Ba2ii3.8507 (15)Ba2—Ba2ii3.852 (2)
Ba1—Ba2iii3.8506 (14)Ba2—Ba2xii3.852 (2)
Ba1—Ba2iv3.8507 (15)Ba2—Ba2vi3.846 (2)
Ba1—Ba2v3.8506 (14)Ba2—Ba2xiii3.846 (2)
Ba1—Ba2vi3.8506 (14)Ba2—Pb3.7736 (14)
Ba1—Ba2vii3.8507 (15)Ba2—Pbxiv3.9208 (15)
Ba1—Pbviii3.704 (2)Ba2—Pbxv3.9208 (15)
Ba1—Pb3.989 (2)Ba2—Pbx3.7736 (14)
Ba1—Pbix3.849 (2)Ba2—O2.7218 (10)
Ba1—Pbx3.849 (2)Ba2—Ox2.7218 (10)
Ba2—Ba1—Ba2i174.73 (2)Ba1x—Ba2—Pbxiv120.538 (17)
Ba2—Ba1—Ba2ii60.022 (17)Ba1x—Ba2—Pbxv118.07 (2)
Ba2—Ba1—Ba2iii115.04 (3)Ba1x—Ba2—Pbx63.08 (3)
Ba2—Ba1—Ba2iv89.96 (2)Ba1x—Ba2—O139.28 (3)
Ba2—Ba1—Ba2v85.66 (3)Ba1x—Ba2—Ox45.022 (14)
Ba2—Ba1—Ba2vi59.929 (19)Ba2ii—Ba2—Ba2xii173.91 (3)
Ba2—Ba1—Ba2vii119.792 (18)Ba2ii—Ba2—Ba2vi90.0000 (8)
Ba2—Ba1—Pbviii122.481 (15)Ba2ii—Ba2—Ba2xiii90.0000 (8)
Ba2—Ba1—Pb57.519 (15)Ba2ii—Ba2—Pb123.03 (2)
Ba2—Ba1—Pbix118.592 (18)Ba2ii—Ba2—Pbxiv58.081 (16)
Ba2—Ba1—Pbx58.693 (13)Ba2ii—Ba2—Pbxv116.89 (2)
Ba2—Ba1—O44.979 (14)Ba2ii—Ba2—Pbx61.874 (17)
Ba2—Ba1—Oxi130.57 (3)Ba2ii—Ba2—O44.959 (11)
Ba2i—Ba1—Ba2ii124.98 (3)Ba2ii—Ba2—Ox134.717 (11)
Ba2i—Ba1—Ba2iii60.022 (17)Ba2xii—Ba2—Ba2vi90.0000 (8)
Ba2i—Ba1—Ba2iv94.27 (3)Ba2xii—Ba2—Ba2xiii90.0000 (8)
Ba2i—Ba1—Ba2v89.96 (2)Ba2xii—Ba2—Pb61.874 (17)
Ba2i—Ba1—Ba2vi119.792 (18)Ba2xii—Ba2—Pbxiv116.89 (2)
Ba2i—Ba1—Ba2vii59.928 (19)Ba2xii—Ba2—Pbxv58.081 (16)
Ba2i—Ba1—Pbviii62.491 (15)Ba2xii—Ba2—Pbx123.03 (2)
Ba2i—Ba1—Pb117.509 (15)Ba2xii—Ba2—O134.717 (11)
Ba2i—Ba1—Pbix61.221 (12)Ba2xii—Ba2—Ox44.959 (11)
Ba2i—Ba1—Pbx121.114 (16)Ba2vi—Ba2—Ba2xiii180.0 (5)
Ba2i—Ba1—O139.15 (2)Ba2vi—Ba2—Pb59.359 (13)
Ba2i—Ba1—Oxi44.978 (14)Ba2vi—Ba2—Pbxiv119.375 (18)
Ba2ii—Ba1—Ba2iii174.73 (2)Ba2vi—Ba2—Pbxv60.625 (13)
Ba2ii—Ba1—Ba2iv59.928 (19)Ba2vi—Ba2—Pbx120.641 (18)
Ba2ii—Ba1—Ba2v119.792 (18)Ba2vi—Ba2—O45.041 (11)
Ba2ii—Ba1—Ba2vi89.96 (2)Ba2vi—Ba2—Ox134.960 (11)
Ba2ii—Ba1—Ba2vii94.27 (3)Ba2xiii—Ba2—Pb120.641 (18)
Ba2ii—Ba1—Pbviii62.491 (15)Ba2xiii—Ba2—Pbxiv60.625 (13)
Ba2ii—Ba1—Pb117.509 (15)Ba2xiii—Ba2—Pbxv119.375 (18)
Ba2ii—Ba1—Pbix121.114 (16)Ba2xiii—Ba2—Pbx59.359 (13)
Ba2ii—Ba1—Pbx61.221 (12)Ba2xiii—Ba2—O134.960 (11)
Ba2ii—Ba1—O44.978 (14)Ba2xiii—Ba2—Ox45.041 (11)
Ba2ii—Ba1—Oxi139.15 (2)Pb—Ba2—Pbxiv177.880 (18)
Ba2iii—Ba1—Ba2iv119.792 (18)Pb—Ba2—Pbxv89.96 (2)
Ba2iii—Ba1—Ba2v59.929 (19)Pb—Ba2—Pbx92.16 (3)
Ba2iii—Ba1—Ba2vi85.66 (3)Pb—Ba2—O91.47 (2)
Ba2iii—Ba1—Ba2vii89.96 (2)Pb—Ba2—Ox91.52 (2)
Ba2iii—Ba1—Pbviii122.481 (15)Pbxiv—Ba2—Pbxv87.92 (3)
Ba2iii—Ba1—Pb57.519 (15)Pbxiv—Ba2—Pbx89.96 (2)
Ba2iii—Ba1—Pbix58.693 (13)Pbxiv—Ba2—O88.42 (2)
Ba2iii—Ba1—Pbx118.592 (18)Pbxiv—Ba2—Ox88.48 (2)
Ba2iii—Ba1—O130.57 (3)Pbxv—Ba2—Pbx177.880 (18)
Ba2iii—Ba1—Oxi44.979 (14)Pbxv—Ba2—O88.48 (2)
Ba2iv—Ba1—Ba2v174.73 (2)Pbxv—Ba2—Ox88.42 (2)
Ba2iv—Ba1—Ba2vi60.022 (17)Pbx—Ba2—O91.52 (2)
Ba2iv—Ba1—Ba2vii124.98 (3)Pbx—Ba2—Ox91.47 (2)
Ba2iv—Ba1—Pbviii62.491 (15)O—Ba2—Ox175.69 (3)
Ba2iv—Ba1—Pb117.509 (15)Ba1—Pb—Ba1xviii180.0 (5)
Ba2iv—Ba1—Pbix61.221 (12)Ba1—Pb—Ba1ix92.191 (19)
Ba2iv—Ba1—Pbx121.114 (16)Ba1—Pb—Ba1x92.191 (19)
Ba2iv—Ba1—O44.978 (14)Ba1—Pb—Ba259.404 (15)
Ba2iv—Ba1—Oxi139.15 (2)Ba1—Pb—Ba2xix119.417 (14)
Ba2v—Ba1—Ba2vi115.04 (3)Ba1—Pb—Ba2xii119.417 (14)
Ba2v—Ba1—Ba2vii60.022 (17)Ba1—Pb—Ba2iii59.404 (15)
Ba2v—Ba1—Pbviii122.481 (15)Ba1—Pb—Ba2xx119.417 (14)
Ba2v—Ba1—Pb57.519 (15)Ba1—Pb—Ba2v59.404 (15)
Ba2v—Ba1—Pbix118.592 (18)Ba1—Pb—Ba2vi59.404 (15)
Ba2v—Ba1—Pbx58.693 (13)Ba1—Pb—Ba2xxi119.417 (14)
Ba2v—Ba1—O130.57 (3)Ba1xviii—Pb—Ba1ix87.809 (19)
Ba2v—Ba1—Oxi44.979 (14)Ba1xviii—Pb—Ba1x87.809 (19)
Ba2vi—Ba1—Ba2vii174.73 (2)Ba1xviii—Pb—Ba2120.596 (15)
Ba2vi—Ba1—Pbviii122.481 (15)Ba1xviii—Pb—Ba2xix60.583 (14)
Ba2vi—Ba1—Pb57.519 (15)Ba1xviii—Pb—Ba2xii60.583 (14)
Ba2vi—Ba1—Pbix58.693 (13)Ba1xviii—Pb—Ba2iii120.596 (15)
Ba2vi—Ba1—Pbx118.592 (18)Ba1xviii—Pb—Ba2xx60.583 (14)
Ba2vi—Ba1—O44.979 (14)Ba1xviii—Pb—Ba2v120.596 (15)
Ba2vi—Ba1—Oxi130.57 (3)Ba1xviii—Pb—Ba2vi120.596 (15)
Ba2vii—Ba1—Pbviii62.491 (15)Ba1xviii—Pb—Ba2xxi60.583 (14)
Ba2vii—Ba1—Pb117.509 (15)Ba1ix—Pb—Ba1x175.62 (3)
Ba2vii—Ba1—Pbix121.114 (16)Ba1ix—Pb—Ba2121.920 (17)
Ba2vii—Ba1—Pbx61.221 (12)Ba1ix—Pb—Ba2xix59.407 (13)
Ba2vii—Ba1—O139.15 (2)Ba1ix—Pb—Ba2xii118.124 (17)
Ba2vii—Ba1—Oxi44.978 (14)Ba1ix—Pb—Ba2iii60.671 (13)
Pbviii—Ba1—Pb180.0 (5)Ba1ix—Pb—Ba2xx59.407 (13)
Pbviii—Ba1—Pbix92.191 (19)Ba1ix—Pb—Ba2v121.920 (17)
Pbviii—Ba1—Pbx92.191 (19)Ba1ix—Pb—Ba2vi60.671 (13)
Pbviii—Ba1—O93.04 (2)Ba1ix—Pb—Ba2xxi118.124 (17)
Pbviii—Ba1—Oxi93.04 (2)Ba1x—Pb—Ba260.671 (13)
Pb—Ba1—Pbix87.809 (19)Ba1x—Pb—Ba2xix118.124 (17)
Pb—Ba1—Pbx87.809 (19)Ba1x—Pb—Ba2xii59.407 (13)
Pb—Ba1—O86.96 (2)Ba1x—Pb—Ba2iii121.920 (17)
Pb—Ba1—Oxi86.96 (2)Ba1x—Pb—Ba2xx118.124 (17)
Pbix—Ba1—Pbx175.62 (3)Ba1x—Pb—Ba2v60.671 (13)
Pbix—Ba1—O89.8837 (17)Ba1x—Pb—Ba2vi121.920 (17)
Pbix—Ba1—Oxi89.8837 (17)Ba1x—Pb—Ba2xxi59.407 (13)
Pbx—Ba1—O89.8837 (17)Ba2—Pb—Ba2xix177.880 (16)
Pbx—Ba1—Oxi89.8837 (17)Ba2—Pb—Ba2xii60.045 (18)
O—Ba1—Oxi173.91 (4)Ba2—Pb—Ba2iii118.81 (3)
Ba1—Ba2—Ba1xvi174.73 (2)Ba2—Pb—Ba2xx90.04 (2)
Ba1—Ba2—Ba1xvii90.04 (2)Ba2—Pb—Ba2v87.84 (3)
Ba1—Ba2—Ba1x94.34 (3)Ba2—Pb—Ba2vi61.282 (19)
Ba1—Ba2—Ba2ii59.990 (18)Ba2—Pb—Ba2xxi119.955 (18)
Ba1—Ba2—Ba2xii124.92 (2)Ba2xix—Pb—Ba2xii121.17 (3)
Ba1—Ba2—Ba2vi60.035 (13)Ba2xix—Pb—Ba2iii60.045 (18)
Ba1—Ba2—Ba2xiii119.965 (18)Ba2xix—Pb—Ba2xx92.08 (3)
Ba1—Ba2—Pb63.08 (3)Ba2xix—Pb—Ba2v90.04 (2)
Ba1—Ba2—Pbxiv118.07 (2)Ba2xix—Pb—Ba2vi119.955 (18)
Ba1—Ba2—Pbxv120.538 (17)Ba2xix—Pb—Ba2xxi58.749 (19)
Ba1—Ba2—Pbx60.637 (19)Ba2xii—Pb—Ba2iii177.880 (16)
Ba1—Ba2—O45.022 (14)Ba2xii—Pb—Ba2xx58.749 (19)
Ba1—Ba2—Ox139.28 (3)Ba2xii—Pb—Ba2v119.955 (18)
Ba1xvi—Ba2—Ba1xvii85.73 (3)Ba2xii—Pb—Ba2vi90.04 (2)
Ba1xvi—Ba2—Ba1x90.04 (2)Ba2xii—Pb—Ba2xxi92.08 (3)
Ba1xvi—Ba2—Ba2ii114.98 (2)Ba2iii—Pb—Ba2xx119.955 (18)
Ba1xvi—Ba2—Ba2xii59.988 (17)Ba2iii—Pb—Ba2v61.282 (19)
Ba1xvi—Ba2—Ba2vi119.964 (19)Ba2iii—Pb—Ba2vi87.84 (3)
Ba1xvi—Ba2—Ba2xiii60.036 (14)Ba2iii—Pb—Ba2xxi90.04 (2)
Ba1xvi—Ba2—Pb121.86 (2)Ba2xx—Pb—Ba2v177.880 (16)
Ba1xvi—Ba2—Pbxiv56.93 (2)Ba2xx—Pb—Ba2vi60.045 (18)
Ba1xvi—Ba2—Pbxv59.372 (19)Ba2xx—Pb—Ba2xxi121.17 (3)
Ba1xvi—Ba2—Pbx119.273 (17)Ba2v—Pb—Ba2vi118.81 (3)
Ba1xvi—Ba2—O130.67 (3)Ba2v—Pb—Ba2xxi60.045 (18)
Ba1xvi—Ba2—Ox45.021 (14)Ba2vi—Pb—Ba2xxi177.880 (16)
Ba1xvii—Ba2—Ba1x174.73 (2)Ba1—O—Ba1xvii180.0 (5)
Ba1xvii—Ba2—Ba2ii59.988 (17)Ba1—O—Ba290.00 (2)
Ba1xvii—Ba2—Ba2xii114.98 (2)Ba1—O—Ba2ii90.00 (2)
Ba1xvii—Ba2—Ba2vi60.036 (14)Ba1—O—Ba2iv90.00 (2)
Ba1xvii—Ba2—Ba2xiii119.964 (19)Ba1—O—Ba2vi90.00 (2)
Ba1xvii—Ba2—Pb119.273 (17)Ba1xvii—O—Ba290.00 (2)
Ba1xvii—Ba2—Pbxiv59.372 (19)Ba1xvii—O—Ba2ii90.00 (2)
Ba1xvii—Ba2—Pbxv56.93 (2)Ba1xvii—O—Ba2iv90.00 (2)
Ba1xvii—Ba2—Pbx121.86 (2)Ba1xvii—O—Ba2vi90.00 (2)
Ba1xvii—Ba2—O45.021 (14)Ba2—O—Ba2ii90.08 (2)
Ba1xvii—Ba2—Ox130.67 (3)Ba2—O—Ba2iv180.0 (5)
Ba1x—Ba2—Ba2ii124.92 (2)Ba2—O—Ba2vi89.92 (2)
Ba1x—Ba2—Ba2xii59.990 (18)Ba2ii—O—Ba2iv89.92 (2)
Ba1x—Ba2—Ba2vi119.965 (18)Ba2ii—O—Ba2vi180.0 (5)
Ba1x—Ba2—Ba2xiii60.035 (13)Ba2iv—O—Ba2vi90.08 (2)
Ba1x—Ba2—Pb60.637 (19)
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x, y, z; (v) x+1/2, y+1/2, z+1/2; (vi) x, y, z; (vii) x1/2, y+1/2, z+1/2; (viii) x1, y, z; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z; (xi) x, y, z+1/2; (xii) x+1, y, z; (xiii) x, y+1, z; (xiv) x1/2, y+1/2, z1/2; (xv) x+1, y, z1/2; (xvi) x+1/2, y+1/2, z1/2; (xvii) x, y, z1/2; (xviii) x+1, y, z; (xix) x+1/2, y1/2, z+1/2; (xx) x+1, y, z; (xxi) x+1/2, y+1/2, z+1/2.
(Ba3SnO_100K) top
Crystal data top
Ba3SnOF(000) = 904
Mr = 546.7Dx = 5.677 Mg m3
Orthorhombic, IbmmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I -2xc;-2y;-2zcCell parameters from 3194 reflections
a = 7.676 (1) Åθ = 3.3–37.1°
b = 7.676 (1) ŵ = 21.95 mm1
c = 10.8560 (13) ÅT = 100 K
V = 639.65 (14) Å3Block, grey
Z = 40.08 × 0.06 × 0.05 mm
Data collection top
SMART APEX II, Bruker AXS
diffractometer
2514 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ωscanθmax = 37.1°, θmin = 3.3°
Absorption correction: multi-scan
Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany.
h = 1212
Tmin = 0.094, Tmax = 0.167k = 1212
5161 measured reflectionsl = 1818
2658 independent reflections
Refinement top
Refinement on F0 constraints
R[F > 3σ(F)] = 0.029Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F) = 0.035(Δ/σ)max = 0.005
S = 1.19Δρmax = 0.99 e Å3
2658 reflectionsΔρmin = 1.22 e Å3
24 parametersExtinction correction: B-C type 2 (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 77E1 (4)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.02222 (7)00.250.00813 (17)
Ba20.250.250.01133 (5)0.01269 (16)
Sn0.50010 (10)00.250.0078 (2)
O0000.0132 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0087 (2)0.0099 (3)0.0058 (4)000
Ba20.0099 (2)0.0181 (3)0.0100 (3)0.00607 (14)00
Sn0.0038 (3)0.0089 (4)0.0106 (5)000
O0.017 (2)0.023 (4)0.001 (3)00.001 (3)0
Geometric parameters (Å, º) top
Ba1—Ba23.8421 (7)Ba1—Oxi2.7194 (6)
Ba1—Ba2i3.8456 (7)Ba2—Ba2ii3.8459 (10)
Ba1—Ba2ii3.8456 (7)Ba2—Ba2xii3.8459 (10)
Ba1—Ba2iii3.8421 (7)Ba2—Ba2vi3.8380 (10)
Ba1—Ba2iv3.8456 (7)Ba2—Ba2xiii3.8380 (10)
Ba1—Ba2v3.8421 (7)Ba2—Sn3.7525 (8)
Ba1—Ba2vi3.8421 (7)Ba2—Snxiv3.9257 (8)
Ba1—Ba2vii3.8456 (7)Ba2—Snxv3.9257 (8)
Ba1—Snviii3.6667 (14)Ba2—Snx3.7525 (8)
Ba1—Snix3.8418 (10)Ba2—O2.7167 (5)
Ba1—Snx3.8418 (10)Ba2—Ox2.7167 (5)
Ba1—O2.7194 (6)
Ba2—Ba1—Ba2i173.727 (15)Ba1x—Ba2—Snxv117.759 (15)
Ba2—Ba1—Ba2ii60.035 (9)Ba1x—Ba2—Snx63.717 (16)
Ba2—Ba1—Ba2iii114.107 (17)Ba1x—Ba2—O140.132 (17)
Ba2—Ba1—Ba2iv89.943 (11)Ba1x—Ba2—Ox45.054 (8)
Ba2—Ba1—Ba2v84.808 (14)Ba2ii—Ba2—Ba2xii172.663 (18)
Ba2—Ba1—Ba2vi59.929 (10)Ba2ii—Ba2—Ba2vi90.0000 (7)
Ba2—Ba1—Ba2vii119.705 (9)Ba2ii—Ba2—Ba2xiii90.0000 (7)
Ba2—Ba1—Snviii122.947 (9)Ba2ii—Ba2—Sn123.692 (15)
Ba2—Ba1—Snix118.355 (12)Ba2ii—Ba2—Snxiv57.732 (13)
Ba2—Ba1—Snx58.465 (9)Ba2ii—Ba2—Snxv116.193 (16)
Ba2—Ba1—O44.997 (8)Ba2ii—Ba2—Snx62.201 (13)
Ba2—Ba1—Oxi129.711 (15)Ba2ii—Ba2—O44.941 (5)
Ba2i—Ba1—Ba2ii125.914 (17)Ba2ii—Ba2—Ox134.591 (6)
Ba2i—Ba1—Ba2iii60.035 (9)Ba2xii—Ba2—Ba2vi90.0000 (7)
Ba2i—Ba1—Ba2iv95.079 (14)Ba2xii—Ba2—Ba2xiii90.0000 (7)
Ba2i—Ba1—Ba2v89.943 (11)Ba2xii—Ba2—Sn62.201 (13)
Ba2i—Ba1—Ba2vi119.705 (9)Ba2xii—Ba2—Snxiv116.193 (16)
Ba2i—Ba1—Ba2vii59.870 (10)Ba2xii—Ba2—Snxv57.732 (13)
Ba2i—Ba1—Snviii62.957 (9)Ba2xii—Ba2—Snx123.692 (15)
Ba2i—Ba1—Snix61.417 (8)Ba2xii—Ba2—O134.591 (6)
Ba2i—Ba1—Snx121.240 (10)Ba2xii—Ba2—Ox44.941 (5)
Ba2i—Ba1—O139.890 (13)Ba2vi—Ba2—Ba2xiii180.0 (5)
Ba2i—Ba1—Oxi44.946 (8)Ba2vi—Ba2—Sn59.243 (9)
Ba2ii—Ba1—Ba2iii173.727 (15)Ba2vi—Ba2—Snxiv119.264 (12)
Ba2ii—Ba1—Ba2iv59.870 (10)Ba2vi—Ba2—Snxv60.736 (9)
Ba2ii—Ba1—Ba2v119.705 (9)Ba2vi—Ba2—Snx120.757 (12)
Ba2ii—Ba1—Ba2vi89.943 (11)Ba2vi—Ba2—O45.059 (5)
Ba2ii—Ba1—Ba2vii95.079 (14)Ba2vi—Ba2—Ox134.941 (5)
Ba2ii—Ba1—Snviii62.957 (9)Ba2xiii—Ba2—Sn120.757 (12)
Ba2ii—Ba1—Snix121.240 (10)Ba2xiii—Ba2—Snxiv60.736 (9)
Ba2ii—Ba1—Snx61.417 (8)Ba2xiii—Ba2—Snxv119.264 (12)
Ba2ii—Ba1—O44.946 (8)Ba2xiii—Ba2—Snx59.243 (9)
Ba2ii—Ba1—Oxi139.890 (13)Ba2xiii—Ba2—O134.941 (5)
Ba2iii—Ba1—Ba2iv119.705 (9)Ba2xiii—Ba2—Ox45.059 (5)
Ba2iii—Ba1—Ba2v59.929 (10)Sn—Ba2—Snxiv177.390 (13)
Ba2iii—Ba1—Ba2vi84.808 (14)Sn—Ba2—Snxv89.944 (12)
Ba2iii—Ba1—Ba2vii89.943 (11)Sn—Ba2—Snx92.666 (16)
Ba2iii—Ba1—Snviii122.947 (9)Sn—Ba2—O91.800 (13)
Ba2iii—Ba1—Snix58.465 (9)Sn—Ba2—Ox91.784 (14)
Ba2iii—Ba1—Snx118.355 (12)Snxiv—Ba2—Snxv87.447 (16)
Ba2iii—Ba1—O129.711 (15)Snxiv—Ba2—Snx89.944 (12)
Ba2iii—Ba1—Oxi44.997 (8)Snxiv—Ba2—O88.132 (13)
Ba2iv—Ba1—Ba2v173.727 (15)Snxiv—Ba2—Ox88.117 (13)
Ba2iv—Ba1—Ba2vi60.035 (9)Snxv—Ba2—Snx177.390 (13)
Ba2iv—Ba1—Ba2vii125.914 (17)Snxv—Ba2—O88.117 (13)
Ba2iv—Ba1—Snviii62.957 (9)Snxv—Ba2—Ox88.132 (13)
Ba2iv—Ba1—Snix61.417 (8)Snx—Ba2—O91.784 (14)
Ba2iv—Ba1—Snx121.240 (10)Snx—Ba2—Ox91.800 (13)
Ba2iv—Ba1—O44.946 (8)O—Ba2—Ox174.81 (2)
Ba2iv—Ba1—Oxi139.890 (13)Ba1xviii—Sn—Ba1ix87.466 (14)
Ba2v—Ba1—Ba2vi114.107 (17)Ba1xviii—Sn—Ba1x87.466 (14)
Ba2v—Ba1—Ba2vii60.035 (9)Ba1xviii—Sn—Ba2120.770 (11)
Ba2v—Ba1—Snviii122.947 (9)Ba1xviii—Sn—Ba2xix60.749 (11)
Ba2v—Ba1—Snix118.355 (12)Ba1xviii—Sn—Ba2xii60.749 (11)
Ba2v—Ba1—Snx58.465 (9)Ba1xviii—Sn—Ba2iii120.770 (11)
Ba2v—Ba1—O129.711 (15)Ba1xviii—Sn—Ba2xx60.749 (11)
Ba2v—Ba1—Oxi44.997 (8)Ba1xviii—Sn—Ba2v120.770 (11)
Ba2vi—Ba1—Ba2vii173.727 (15)Ba1xviii—Sn—Ba2vi120.770 (11)
Ba2vi—Ba1—Snviii122.947 (9)Ba1xviii—Sn—Ba2xxi60.749 (11)
Ba2vi—Ba1—Snix58.465 (9)Ba1ix—Sn—Ba1x174.93 (3)
Ba2vi—Ba1—Snx118.355 (12)Ba1ix—Sn—Ba2122.243 (12)
Ba2vi—Ba1—O44.997 (8)Ba1ix—Sn—Ba2xix59.339 (8)
Ba2vi—Ba1—Oxi129.711 (15)Ba1ix—Sn—Ba2xii117.824 (12)
Ba2vii—Ba1—Snviii62.957 (9)Ba1ix—Sn—Ba2iii60.772 (8)
Ba2vii—Ba1—Snix121.240 (10)Ba1ix—Sn—Ba2xx59.339 (8)
Ba2vii—Ba1—Snx61.417 (8)Ba1ix—Sn—Ba2v122.243 (12)
Ba2vii—Ba1—O139.890 (13)Ba1ix—Sn—Ba2vi60.772 (8)
Ba2vii—Ba1—Oxi44.946 (8)Ba1ix—Sn—Ba2xxi117.824 (12)
Snviii—Ba1—Snix92.534 (14)Ba1x—Sn—Ba260.772 (8)
Snviii—Ba1—Snx92.534 (14)Ba1x—Sn—Ba2xix117.824 (12)
Snviii—Ba1—O93.596 (12)Ba1x—Sn—Ba2xii59.339 (8)
Snviii—Ba1—Oxi93.596 (12)Ba1x—Sn—Ba2iii122.243 (12)
Snix—Ba1—Snx174.93 (2)Ba1x—Sn—Ba2xx117.824 (12)
Snix—Ba1—O89.8411 (13)Ba1x—Sn—Ba2v60.772 (8)
Snix—Ba1—Oxi89.8411 (13)Ba1x—Sn—Ba2vi122.243 (12)
Snx—Ba1—O89.8411 (13)Ba1x—Sn—Ba2xxi59.339 (8)
Snx—Ba1—Oxi89.8411 (13)Ba2—Sn—Ba2xix177.390 (14)
O—Ba1—Oxi172.81 (2)Ba2—Sn—Ba2xii60.067 (9)
Ba1—Ba2—Ba1xvi173.727 (13)Ba2—Sn—Ba2iii118.46 (2)
Ba1—Ba2—Ba1xvii90.057 (10)Ba2—Sn—Ba2xx90.056 (11)
Ba1—Ba2—Ba1x95.192 (15)Ba2—Sn—Ba2v87.334 (16)
Ba1—Ba2—Ba2ii60.027 (11)Ba2—Sn—Ba2vi61.514 (12)
Ba1—Ba2—Ba2xii125.866 (13)Ba2—Sn—Ba2xxi119.933 (9)
Ba1—Ba2—Ba2vi60.036 (8)Ba2xix—Sn—Ba2xii121.50 (2)
Ba1—Ba2—Ba2xiii119.965 (11)Ba2xix—Sn—Ba2iii60.067 (9)
Ba1—Ba2—Sn63.717 (16)Ba2xix—Sn—Ba2xx92.553 (16)
Ba1—Ba2—Snxiv117.759 (15)Ba2xix—Sn—Ba2v90.056 (11)
Ba1—Ba2—Snxv120.594 (9)Ba2xix—Sn—Ba2vi119.933 (9)
Ba1—Ba2—Snx60.762 (11)Ba2xix—Sn—Ba2xxi58.528 (11)
Ba1—Ba2—O45.054 (8)Ba2xii—Sn—Ba2iii177.390 (14)
Ba1—Ba2—Ox140.132 (17)Ba2xii—Sn—Ba2xx58.528 (11)
Ba1xvi—Ba2—Ba1xvii84.921 (14)Ba2xii—Sn—Ba2v119.933 (9)
Ba1xvi—Ba2—Ba1x90.057 (10)Ba2xii—Sn—Ba2vi90.056 (11)
Ba1xvi—Ba2—Ba2ii113.987 (14)Ba2xii—Sn—Ba2xxi92.553 (16)
Ba1xvi—Ba2—Ba2xii59.938 (11)Ba2iii—Sn—Ba2xx119.933 (9)
Ba1xvi—Ba2—Ba2vi119.935 (12)Ba2iii—Sn—Ba2v61.514 (12)
Ba1xvi—Ba2—Ba2xiii60.065 (8)Ba2iii—Sn—Ba2vi87.334 (16)
Ba1xvi—Ba2—Sn122.139 (15)Ba2iii—Sn—Ba2xxi90.056 (11)
Ba1xvi—Ba2—Snxiv56.294 (16)Ba2xx—Sn—Ba2v177.390 (14)
Ba1xvi—Ba2—Snxv59.244 (11)Ba2xx—Sn—Ba2vi60.067 (9)
Ba1xvi—Ba2—Snx119.130 (9)Ba2xx—Sn—Ba2xxi121.50 (2)
Ba1xvi—Ba2—O129.810 (17)Ba2v—Sn—Ba2vi118.46 (2)
Ba1xvi—Ba2—Ox45.003 (8)Ba2v—Sn—Ba2xxi60.067 (9)
Ba1xvii—Ba2—Ba1x173.727 (13)Ba2vi—Sn—Ba2xxi177.390 (14)
Ba1xvii—Ba2—Ba2ii59.938 (11)Ba1—O—Ba1xvii180.0 (5)
Ba1xvii—Ba2—Ba2xii113.987 (14)Ba1—O—Ba289.949 (13)
Ba1xvii—Ba2—Ba2vi60.065 (8)Ba1—O—Ba2ii90.051 (13)
Ba1xvii—Ba2—Ba2xiii119.935 (12)Ba1—O—Ba2iv90.051 (13)
Ba1xvii—Ba2—Sn119.130 (9)Ba1—O—Ba2vi89.949 (13)
Ba1xvii—Ba2—Snxiv59.244 (11)Ba1xvii—O—Ba290.051 (13)
Ba1xvii—Ba2—Snxv56.294 (16)Ba1xvii—O—Ba2ii89.949 (13)
Ba1xvii—Ba2—Snx122.139 (15)Ba1xvii—O—Ba2iv89.949 (13)
Ba1xvii—Ba2—O45.003 (8)Ba1xvii—O—Ba2vi90.051 (13)
Ba1xvii—Ba2—Ox129.810 (17)Ba2—O—Ba2ii90.118 (11)
Ba1x—Ba2—Ba2ii125.866 (13)Ba2—O—Ba2iv180.0 (5)
Ba1x—Ba2—Ba2xii60.027 (11)Ba2—O—Ba2vi89.882 (11)
Ba1x—Ba2—Ba2vi119.965 (11)Ba2ii—O—Ba2iv89.882 (11)
Ba1x—Ba2—Ba2xiii60.036 (8)Ba2ii—O—Ba2vi180.0 (5)
Ba1x—Ba2—Sn60.762 (11)Ba2iv—O—Ba2vi90.118 (11)
Ba1x—Ba2—Snxiv120.594 (9)
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x, y, z; (v) x+1/2, y+1/2, z+1/2; (vi) x, y, z; (vii) x1/2, y+1/2, z+1/2; (viii) x1, y, z; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z; (xi) x, y, z+1/2; (xii) x+1, y, z; (xiii) x, y+1, z; (xiv) x1/2, y+1/2, z1/2; (xv) x+1, y, z1/2; (xvi) x+1/2, y+1/2, z1/2; (xvii) x, y, z1/2; (xviii) x+1, y, z; (xix) x+1/2, y1/2, z+1/2; (xx) x+1, y, z; (xxi) x+1/2, y+1/2, z+1/2.
(Eu3GeO_100K) top
Crystal data top
Eu3GeOF(000) = 916
Mr = 544.5Dx = 7.314 Mg m3
Orthorhombic, PbnmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P -2xab;-2yabc;-2zcCell parameters from 9414 reflections
a = 7.0448 (4) Åθ = 3.5–35.1°
b = 7.0448 (4) ŵ = 43.37 mm1
c = 9.9628 (6) ÅT = 100 K
V = 494.45 (5) Å3Block, grey
Z = 40.05 × 0.04 × 0.02 mm
Data collection top
SMART APEX II, Bruker AXS
diffractometer
2886 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ωscanθmax = 35.2°, θmin = 4.1°
Absorption correction: multi-scan
Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany.
h = 1111
Tmin = 0.035, Tmax = 0.108k = 1111
10331 measured reflectionsl = 1615
2934 independent reflections
Refinement top
Refinement on F0 constraints
R[F > 3σ(F)] = 0.049Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F) = 0.063(Δ/σ)max = 0.011
S = 1.46Δρmax = 2.87 e Å3
2934 reflectionsΔρmin = 4.17 e Å3
34 parametersExtinction correction: B-C type 2 (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 44E1 (6)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.06223 (11)0.00835 (6)0.250.00695 (17)
Eu20.21950 (6)0.28019 (7)0.03219 (4)0.00815 (11)
Ge0.4942 (3)9.02340 (16)0.250.0080 (3)
O0000.007 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.0075 (3)0.0090 (3)0.0043 (3)0.00005 (12)00
Eu20.0083 (2)0.00808 (19)0.00809 (17)0.00188 (13)0.00024 (12)0.00009 (11)
Ge0.0066 (5)0.0096 (4)0.0078 (6)0.0010 (5)00
O0.009 (5)0.006 (5)0.006 (7)0.0040 (19)0.002 (3)0.001 (2)
Geometric parameters (Å, º) top
Eu1—Eu23.5749 (7)Eu1—O2.5297 (3)
Eu1—Eu2i3.5775 (6)Eu1—Oi2.5297 (3)
Eu1—Eu2ii3.5718 (7)Eu2—Eu2iii3.6055 (7)
Eu1—Eu2iii3.5849 (6)Eu2—Eu2viii3.6055 (7)
Eu1—Eu2iv3.5775 (6)Eu2—Eu2vii3.5485 (8)
Eu1—Eu2v3.5749 (7)Eu2—Eu2ix3.5485 (8)
Eu1—Eu2vi3.5849 (6)Eu2—Ge3.4246 (13)
Eu1—Eu2vii3.5718 (7)Eu2—Ge3.1483 (12)
Eu1—Ge3.133 (2)Eu2—Ge3.5123 (11)
Eu1—Ge3.927 (2)Eu2—O2.5279 (5)
Eu1—Ge3.3334 (13)Eu2—Oviii2.5309 (5)
Eu1—Ge3.7765 (13)
Eu2—Eu1—Eu2i162.43 (2)Eu1xi—Eu2—Eu2iii144.853 (17)
Eu2—Eu1—Eu2ii103.34 (2)Eu1xi—Eu2—Eu2viii59.793 (14)
Eu2—Eu1—Eu2iii60.473 (11)Eu1xi—Eu2—Eu2vii109.398 (15)
Eu2—Eu1—Eu2iv89.959 (10)Eu1xi—Eu2—Eu2ix60.273 (12)
Eu2—Eu1—Eu2v74.749 (16)Eu1xi—Eu2—Ge56.86 (2)
Eu2—Eu1—Eu2vi117.338 (16)Eu1xi—Eu2—Ge71.19 (3)
Eu2—Eu1—Eu2vii59.540 (14)Eu1xi—Eu2—Ge128.86 (3)
Eu2—Eu1—Ge120.88 (2)Eu1xi—Eu2—O144.710 (16)
Eu2—Eu1—Ge54.080 (16)Eu1xi—Eu2—Oviii45.090 (9)
Eu2—Eu1—Ge118.88 (3)Eu1viii—Eu2—Eu2iii109.418 (16)
Eu2—Eu1—Ge50.62 (2)Eu1viii—Eu2—Eu2viii59.626 (14)
Eu2—Eu1—O45.001 (10)Eu1viii—Eu2—Eu2vii113.147 (14)
Eu2—Eu1—Oi119.23 (2)Eu1viii—Eu2—Eu2ix60.198 (11)
Eu2i—Eu1—Eu2ii60.571 (11)Eu1viii—Eu2—Ge119.43 (3)
Eu2i—Eu1—Eu2iii136.34 (2)Eu1viii—Eu2—Ge120.11 (2)
Eu2i—Eu1—Eu2iv103.596 (17)Eu1viii—Eu2—Ge52.37 (3)
Eu2i—Eu1—Eu2v89.959 (10)Eu1viii—Eu2—O120.864 (15)
Eu2i—Eu1—Eu2vi59.396 (12)Eu1viii—Eu2—Oviii44.881 (11)
Eu2i—Eu1—Eu2vii117.614 (17)Eu2iii—Eu2—Eu2viii155.351 (15)
Eu2i—Eu1—Ge74.295 (19)Eu2iii—Eu2—Eu2vii90.069 (14)
Eu2i—Eu1—Ge109.857 (17)Eu2iii—Eu2—Eu2ix103.618 (15)
Eu2i—Eu1—Ge60.971 (18)Eu2iii—Eu2—Ge127.05 (3)
Eu2i—Eu1—Ge124.769 (13)Eu2iii—Eu2—Ge73.71 (3)
Eu2i—Eu1—O147.123 (18)Eu2iii—Eu2—Ge57.50 (3)
Eu2i—Eu1—Oi44.959 (9)Eu2iii—Eu2—O44.578 (10)
Eu2ii—Eu1—Eu2iii162.44 (2)Eu2iii—Eu2—Oviii144.334 (17)
Eu2ii—Eu1—Eu2iv117.614 (17)Eu2viii—Eu2—Eu2vii76.382 (13)
Eu2ii—Eu1—Eu2v59.540 (14)Eu2viii—Eu2—Eu2ix89.931 (14)
Eu2ii—Eu1—Eu2vi90.029 (10)Eu2viii—Eu2—Ge59.88 (3)
Eu2ii—Eu1—Eu2vii74.824 (17)Eu2viii—Eu2—Ge130.85 (3)
Eu2ii—Eu1—Ge134.751 (17)Eu2viii—Eu2—Ge110.21 (3)
Eu2ii—Eu1—Ge49.373 (15)Eu2viii—Eu2—O118.876 (17)
Eu2ii—Eu1—Ge59.34 (3)Eu2viii—Eu2—Oviii44.510 (10)
Eu2ii—Eu1—Ge109.15 (3)Eu2vii—Eu2—Eu2ix166.087 (16)
Eu2ii—Eu1—O119.39 (2)Eu2vii—Eu2—Ge53.64 (2)
Eu2ii—Eu1—Oi45.119 (11)Eu2vii—Eu2—Ge126.74 (2)
Eu2iii—Eu1—Eu2iv59.396 (12)Eu2vii—Eu2—Ge116.47 (2)
Eu2iii—Eu1—Eu2v117.338 (16)Eu2vii—Eu2—O45.491 (10)
Eu2iii—Eu1—Eu2vi103.297 (19)Eu2vii—Eu2—Oviii120.848 (16)
Eu2iii—Eu1—Eu2vii90.029 (10)Eu2ix—Eu2—Ge117.12 (2)
Eu2iii—Eu1—Ge62.623 (16)Eu2ix—Eu2—Ge61.17 (2)
Eu2iii—Eu1—Ge113.747 (16)Eu2ix—Eu2—Ge70.35 (2)
Eu2iii—Eu1—Ge120.353 (18)Eu2ix—Eu2—O148.124 (17)
Eu2iii—Eu1—Ge67.025 (18)Eu2ix—Eu2—Oviii45.421 (10)
Eu2iii—Eu1—O44.909 (9)Ge—Eu2—Ge96.95 (3)
Eu2iii—Eu1—Oi146.73 (2)Ge—Eu2—Ge166.08 (3)
Eu2iv—Eu1—Eu2v162.43 (2)Ge—Eu2—O90.78 (3)
Eu2iv—Eu1—Eu2vi136.34 (2)Ge—Eu2—Oviii87.83 (3)
Eu2iv—Eu1—Eu2vii60.571 (11)Ge—Eu2—Ge96.96 (3)
Eu2iv—Eu1—Ge74.295 (19)Ge—Eu2—O102.70 (3)
Eu2iv—Eu1—Ge109.857 (17)Ge—Eu2—Oviii97.34 (3)
Eu2iv—Eu1—Ge60.971 (18)Ge—Eu2—O85.97 (3)
Eu2iv—Eu1—Ge124.769 (13)Ge—Eu2—Oviii90.59 (3)
Eu2iv—Eu1—O44.959 (9)O—Eu2—Oviii159.931 (18)
Eu2iv—Eu1—Oi147.123 (18)Eu1—Ge—Eu1172.64 (4)
Eu2v—Eu1—Eu2vi60.473 (11)Eu1—Ge—Eu194.02 (4)
Eu2v—Eu1—Eu2vii103.34 (2)Eu1—Ge—Eu1101.53 (4)
Eu2v—Eu1—Ge120.88 (2)Eu1—Ge—Eu257.71 (3)
Eu2v—Eu1—Ge54.080 (16)Eu1—Ge—Eu259.44 (3)
Eu2v—Eu1—Ge118.88 (3)Eu1—Ge—Eu2118.26 (3)
Eu2v—Eu1—Ge50.62 (2)Eu1—Ge—Eu257.71 (3)
Eu2v—Eu1—O119.23 (2)Eu1—Ge—Eu2118.26 (3)
Eu2v—Eu1—Oi45.001 (10)Eu1—Ge—Eu259.44 (3)
Eu2vi—Eu1—Eu2vii162.44 (2)Eu1—Ge—Eu178.62 (4)
Eu2vi—Eu1—Ge62.623 (16)Eu1—Ge—Eu185.83 (4)
Eu2vi—Eu1—Ge113.747 (16)Eu1—Ge—Eu2126.97 (3)
Eu2vi—Eu1—Ge120.353 (18)Eu1—Ge—Eu2115.99 (4)
Eu2vi—Eu1—Ge67.025 (18)Eu1—Ge—Eu265.01 (3)
Eu2vi—Eu1—O146.73 (2)Eu1—Ge—Eu2126.97 (3)
Eu2vi—Eu1—Oi44.909 (9)Eu1—Ge—Eu265.01 (3)
Eu2vii—Eu1—Ge134.751 (17)Eu1—Ge—Eu2115.99 (4)
Eu2vii—Eu1—Ge49.373 (15)Eu1—Ge—Eu1164.45 (6)
Eu2vii—Eu1—Ge59.34 (3)Eu1—Ge—Eu2126.56 (3)
Eu2vii—Eu1—Ge109.15 (3)Eu1—Ge—Eu261.37 (2)
Eu2vii—Eu1—O45.119 (11)Eu1—Ge—Eu2109.48 (3)
Eu2vii—Eu1—Oi119.39 (2)Eu1—Ge—Eu2126.56 (3)
Ge—Eu1—Ge172.64 (3)Eu1—Ge—Eu2109.48 (3)
Ge—Eu1—Ge102.35 (4)Eu1—Ge—Eu261.37 (2)
Ge—Eu1—Ge93.19 (4)Eu1—Ge—Eu263.80 (2)
Ge—Eu1—O99.857 (17)Eu1—Ge—Eu2127.39 (3)
Ge—Eu1—Oi99.857 (17)Eu1—Ge—Eu262.95 (2)
Ge—Eu1—Ge85.00 (4)Eu1—Ge—Eu263.80 (2)
Ge—Eu1—Ge79.45 (4)Eu1—Ge—Eu262.95 (2)
Ge—Eu1—O79.960 (17)Eu1—Ge—Eu2127.39 (3)
Ge—Eu1—Oi79.960 (17)Eu2—Ge—Eu2117.00 (6)
Ge—Eu1—Ge164.45 (5)Eu2—Ge—Eu262.616 (15)
Ge—Eu1—O89.891 (12)Eu2—Ge—Eu278.64 (4)
Ge—Eu1—Oi89.891 (12)Eu2—Ge—Eu2123.67 (3)
Ge—Eu1—O87.419 (12)Eu2—Ge—Eu265.19 (3)
Ge—Eu1—Oi87.419 (12)Eu2—Ge—Eu2169.17 (3)
O—Eu1—Oi159.86 (3)Eu2—Ge—Eu265.19 (3)
Eu1—Eu2—Eu1x90.041 (14)Eu2—Ge—Eu283.036 (11)
Eu1—Eu2—Eu1xi104.102 (14)Eu2—Ge—Eu287.15 (4)
Eu1—Eu2—Eu1viii165.720 (16)Eu2—Ge—Eu2123.67 (3)
Eu1—Eu2—Eu2iii59.901 (14)Eu2—Ge—Eu2106.34 (4)
Eu1—Eu2—Eu2viii125.681 (18)Eu2—Ge—Eu283.036 (11)
Eu1—Eu2—Eu2vii60.187 (13)Eu2—Ge—Eu262.616 (15)
Eu1—Eu2—Eu2ix129.172 (15)Eu2—Ge—Eu2117.00 (6)
Eu1—Eu2—Ge68.21 (3)Eu2—Ge—Eu2169.17 (3)
Eu1—Eu2—Ge68.01 (2)Eu1—O—Eu1x180.0 (5)
Eu1—Eu2—Ge117.33 (3)Eu1—O—Eu289.958 (16)
Eu1—Eu2—O45.041 (9)Eu1—O—Eu2iii90.210 (17)
Eu1—Eu2—Oviii149.122 (16)Eu1—O—Eu2iv90.042 (16)
Eu1x—Eu2—Eu1xi155.51 (2)Eu1—O—Eu2vii89.790 (17)
Eu1x—Eu2—Eu1viii75.911 (13)Eu1x—O—Eu290.042 (16)
Eu1x—Eu2—Eu2iii59.636 (15)Eu1x—O—Eu2iii89.790 (17)
Eu1x—Eu2—Eu2viii95.717 (17)Eu1x—O—Eu2iv89.958 (16)
Eu1x—Eu2—Eu2vii60.405 (12)Eu1x—O—Eu2vii90.210 (17)
Eu1x—Eu2—Eu2ix124.672 (14)Eu2—O—Eu2iii90.912 (15)
Eu1x—Eu2—Ge112.97 (2)Eu2—O—Eu2iv180.0 (5)
Eu1x—Eu2—Ge133.22 (4)Eu2—O—Eu2vii89.088 (15)
Eu1x—Eu2—Ge56.08 (2)Eu2iii—O—Eu2iv89.088 (15)
Eu1x—Eu2—O44.999 (10)Eu2iii—O—Eu2vii180.0 (5)
Eu1x—Eu2—Oviii118.018 (16)Eu2iv—O—Eu2vii90.912 (15)
Eu1xi—Eu2—Eu1viii89.971 (15)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y+1/2, z; (iv) x, y, z; (v) x, y, z+1/2; (vi) x1/2, y+1/2, z+1/2; (vii) x+1/2, y1/2, z; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y+1/2, z; (x) x, y, z1/2; (xi) x+1/2, y+1/2, z+1/2.
(Ca3SiO_295K) top
Crystal data top
Ca3SiOF(000) = 328
Mr = 164.3Dx = 2.603 Mg m3
Orthorhombic, IbmmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I -2xc;-2y;-2zcCell parameters from 502 reflections
a = 6.6679 (16) Åθ = 4.3–34.3°
b = 6.6679 (16) ŵ = 4.02 mm1
c = 9.430 (2) ÅT = 295 K
V = 419.26 (17) Å3Block, grey
Z = 40.02 × 0.02 × 0.01 mm
Data collection top
SMART APEX I, Bruker AXS
diffractometer
991 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ωscanθmax = 35.4°, θmin = 3.7°
Absorption correction: multi-scan
Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany.
h = 1010
Tmin = 0.143, Tmax = 0.273k = 1010
2722 measured reflectionsl = 1514
1444 independent reflections
Refinement top
Refinement on F0 constraints
R[F > 3σ(F)] = 0.090Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F) = 0.087(Δ/σ)max = 0.001
S = 1.40Δρmax = 0.97 e Å3
1444 reflectionsΔρmin = 1.19 e Å3
19 parametersExtinction correction: B-C type 2 (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 109E2 (5)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.0182 (10)00.250.0287 (17)
Ca20.250.250.01433 (18)0.0196 (7)
Si0.5113 (13)00.250.0118 (14)
O0000.0143 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.028 (3)0.056 (4)0.0020 (7)000
Ca20.0114 (9)0.0244 (17)0.0230 (6)0.0032 (6)00
Si0.008 (3)0.011 (3)0.0168 (13)000
Geometric parameters (Å, º) top
Ca1—Ca23.304 (4)Ca1—O2.3606 (11)
Ca1—Ca2i3.373 (3)Ca1—Oxi2.3606 (11)
Ca1—Ca2ii3.373 (3)Ca2—Ca2ii3.3449 (16)
Ca1—Ca2iii3.304 (4)Ca2—Ca2xii3.3449 (16)
Ca1—Ca2iv3.373 (3)Ca2—Ca2vi3.3340 (16)
Ca1—Ca2v3.304 (4)Ca2—Ca2xiii3.3340 (16)
Ca1—Ca2vi3.304 (4)Ca2—Si3.279 (5)
Ca1—Ca2vii3.373 (3)Ca2—Sixiv3.395 (4)
Ca1—Siviii3.137 (11)Ca2—Sixv3.395 (4)
Ca1—Si3.531 (11)Ca2—Six3.279 (5)
Ca1—Siix3.3343 (16)Ca2—O2.3613 (8)
Ca1—Six3.3343 (16)Ca2—Ox2.3613 (8)
Ca2—Ca1—Ca2i173.88 (17)Ca1x—Ca2—Sixiv119.99 (6)
Ca2—Ca1—Ca2ii60.11 (2)Ca1x—Ca2—Sixv119.20 (16)
Ca2—Ca1—Ca2iii114.46 (19)Ca1x—Ca2—Six64.87 (16)
Ca2—Ca1—Ca2iv90.02 (3)Ca1x—Ca2—O140.97 (8)
Ca2—Ca1—Ca2v84.54 (11)Ca1x—Ca2—Ox45.59 (5)
Ca2—Ca1—Ca2vi60.60 (7)Ca2ii—Ca2—Ca2xii170.73 (7)
Ca2—Ca1—Ca2vii119.71 (3)Ca2ii—Ca2—Ca2vi90.000 (3)
Ca2—Ca1—Siviii122.77 (9)Ca2ii—Ca2—Ca2xiii90.000 (3)
Ca2—Ca1—Si57.23 (9)Ca2ii—Ca2—Si125.76 (14)
Ca2—Ca1—Siix119.80 (14)Ca2ii—Ca2—Sixiv58.22 (13)
Ca2—Ca1—Six59.21 (10)Ca2ii—Ca2—Sixv114.08 (14)
Ca2—Ca1—O45.61 (6)Ca2ii—Ca2—Six61.65 (13)
Ca2—Ca1—Oxi130.08 (18)Ca2ii—Ca2—O44.906 (10)
Ca2i—Ca1—Ca2ii125.47 (19)Ca2ii—Ca2—Ox134.348 (16)
Ca2i—Ca1—Ca2iii60.11 (2)Ca2xii—Ca2—Ca2vi90.000 (3)
Ca2i—Ca1—Ca2iv95.27 (11)Ca2xii—Ca2—Ca2xiii90.000 (3)
Ca2i—Ca1—Ca2v90.02 (3)Ca2xii—Ca2—Si61.65 (13)
Ca2i—Ca1—Ca2vi119.71 (3)Ca2xii—Ca2—Sixiv114.08 (14)
Ca2i—Ca1—Ca2vii59.23 (6)Ca2xii—Ca2—Sixv58.22 (13)
Ca2i—Ca1—Siviii62.73 (10)Ca2xii—Ca2—Six125.76 (14)
Ca2i—Ca1—Si117.27 (10)Ca2xii—Ca2—O134.348 (16)
Ca2i—Ca1—Siix60.81 (9)Ca2xii—Ca2—Ox44.906 (10)
Ca2i—Ca1—Six120.03 (12)Ca2vi—Ca2—Ca2xiii180.0 (5)
Ca2i—Ca1—O139.59 (15)Ca2vi—Ca2—Si59.45 (5)
Ca2i—Ca1—Oxi44.41 (5)Ca2vi—Ca2—Sixiv119.41 (6)
Ca2ii—Ca1—Ca2iii173.88 (17)Ca2vi—Ca2—Sixv60.59 (5)
Ca2ii—Ca1—Ca2iv59.23 (6)Ca2vi—Ca2—Six120.55 (6)
Ca2ii—Ca1—Ca2v119.71 (3)Ca2vi—Ca2—O45.094 (10)
Ca2ii—Ca1—Ca2vi90.02 (3)Ca2vi—Ca2—Ox134.906 (11)
Ca2ii—Ca1—Ca2vii95.27 (11)Ca2xiii—Ca2—Si120.55 (6)
Ca2ii—Ca1—Siviii62.73 (10)Ca2xiii—Ca2—Sixiv60.59 (5)
Ca2ii—Ca1—Si117.27 (10)Ca2xiii—Ca2—Sixv119.41 (6)
Ca2ii—Ca1—Siix120.03 (12)Ca2xiii—Ca2—Six59.45 (5)
Ca2ii—Ca1—Six60.81 (9)Ca2xiii—Ca2—O134.906 (11)
Ca2ii—Ca1—O44.41 (5)Ca2xiii—Ca2—Ox45.094 (10)
Ca2ii—Ca1—Oxi139.59 (15)Si—Ca2—Sixiv175.07 (16)
Ca2iii—Ca1—Ca2iv119.71 (3)Si—Ca2—Sixv89.94 (11)
Ca2iii—Ca1—Ca2v60.60 (7)Si—Ca2—Six94.67 (12)
Ca2iii—Ca1—Ca2vi84.54 (11)Si—Ca2—O93.15 (11)
Ca2iii—Ca1—Ca2vii90.02 (3)Si—Ca2—Ox91.29 (11)
Ca2iii—Ca1—Siviii122.77 (9)Sixiv—Ca2—Sixv85.51 (11)
Ca2iii—Ca1—Si57.23 (9)Sixiv—Ca2—Six89.94 (11)
Ca2iii—Ca1—Siix59.21 (10)Sixiv—Ca2—O88.49 (11)
Ca2iii—Ca1—Six119.80 (14)Sixiv—Ca2—Ox86.69 (11)
Ca2iii—Ca1—O130.08 (18)Sixv—Ca2—Six175.07 (16)
Ca2iii—Ca1—Oxi45.61 (6)Sixv—Ca2—O86.69 (11)
Ca2iv—Ca1—Ca2v173.88 (17)Sixv—Ca2—Ox88.49 (11)
Ca2iv—Ca1—Ca2vi60.11 (2)Six—Ca2—O91.29 (11)
Ca2iv—Ca1—Ca2vii125.47 (19)Six—Ca2—Ox93.15 (11)
Ca2iv—Ca1—Siviii62.73 (10)O—Ca2—Ox173.44 (8)
Ca2iv—Ca1—Si117.27 (10)Ca1—Si—Ca1xviii180.0 (5)
Ca2iv—Ca1—Siix60.81 (9)Ca1—Si—Ca1ix90.79 (19)
Ca2iv—Ca1—Six120.03 (12)Ca1—Si—Ca1x90.79 (19)
Ca2iv—Ca1—O44.41 (5)Ca1—Si—Ca257.90 (13)
Ca2iv—Ca1—Oxi139.59 (15)Ca1—Si—Ca2xix117.96 (13)
Ca2v—Ca1—Ca2vi114.46 (19)Ca1—Si—Ca2xii117.96 (13)
Ca2v—Ca1—Ca2vii60.11 (2)Ca1—Si—Ca2iii57.90 (13)
Ca2v—Ca1—Siviii122.77 (9)Ca1—Si—Ca2xx117.96 (13)
Ca2v—Ca1—Si57.23 (9)Ca1—Si—Ca2v57.90 (13)
Ca2v—Ca1—Siix119.80 (14)Ca1—Si—Ca2vi57.90 (13)
Ca2v—Ca1—Six59.21 (10)Ca1—Si—Ca2xxi117.96 (13)
Ca2v—Ca1—O130.08 (18)Ca1xviii—Si—Ca1ix89.21 (19)
Ca2v—Ca1—Oxi45.61 (6)Ca1xviii—Si—Ca1x89.21 (19)
Ca2vi—Ca1—Ca2vii173.88 (17)Ca1xviii—Si—Ca2122.10 (13)
Ca2vi—Ca1—Siviii122.77 (9)Ca1xviii—Si—Ca2xix62.04 (13)
Ca2vi—Ca1—Si57.23 (9)Ca1xviii—Si—Ca2xii62.04 (13)
Ca2vi—Ca1—Siix59.21 (10)Ca1xviii—Si—Ca2iii122.10 (13)
Ca2vi—Ca1—Six119.80 (14)Ca1xviii—Si—Ca2xx62.04 (13)
Ca2vi—Ca1—O45.61 (6)Ca1xviii—Si—Ca2v122.10 (13)
Ca2vi—Ca1—Oxi130.08 (18)Ca1xviii—Si—Ca2vi122.10 (13)
Ca2vii—Ca1—Siviii62.73 (10)Ca1xviii—Si—Ca2xxi62.04 (13)
Ca2vii—Ca1—Si117.27 (10)Ca1ix—Si—Ca1x178.4 (3)
Ca2vii—Ca1—Siix120.03 (12)Ca1ix—Si—Ca2121.04 (15)
Ca2vii—Ca1—Six60.81 (9)Ca1ix—Si—Ca2xix60.17 (7)
Ca2vii—Ca1—O139.59 (15)Ca1ix—Si—Ca2xii118.98 (14)
Ca2vii—Ca1—Oxi44.41 (5)Ca1ix—Si—Ca2iii59.94 (8)
Siviii—Ca1—Si180.0 (5)Ca1ix—Si—Ca2xx60.17 (7)
Siviii—Ca1—Siix90.79 (19)Ca1ix—Si—Ca2v121.04 (15)
Siviii—Ca1—Six90.79 (19)Ca1ix—Si—Ca2vi59.94 (8)
Siviii—Ca1—O92.95 (15)Ca1ix—Si—Ca2xxi118.98 (14)
Siviii—Ca1—Oxi92.95 (15)Ca1x—Si—Ca259.94 (8)
Si—Ca1—Siix89.21 (19)Ca1x—Si—Ca2xix118.98 (14)
Si—Ca1—Six89.21 (19)Ca1x—Si—Ca2xii60.17 (7)
Si—Ca1—O87.05 (15)Ca1x—Si—Ca2iii121.04 (15)
Si—Ca1—Oxi87.05 (15)Ca1x—Si—Ca2xx118.98 (14)
Siix—Ca1—Six178.4 (3)Ca1x—Si—Ca2v59.94 (8)
Siix—Ca1—O89.959 (11)Ca1x—Si—Ca2vi121.04 (15)
Siix—Ca1—Oxi89.959 (11)Ca1x—Si—Ca2xxi60.17 (7)
Six—Ca1—O89.959 (11)Ca2—Si—Ca2xix175.1 (2)
Six—Ca1—Oxi89.959 (11)Ca2—Si—Ca2xii60.13 (2)
O—Ca1—Oxi174.1 (3)Ca2—Si—Ca2iii115.8 (3)
Ca1—Ca2—Ca1xvi173.88 (13)Ca2—Si—Ca2xx90.06 (3)
Ca1—Ca2—Ca1xvii89.98 (8)Ca2—Si—Ca2v85.33 (15)
Ca1—Ca2—Ca1x95.46 (9)Ca2—Si—Ca2vi61.11 (10)
Ca1—Ca2—Ca2ii60.98 (10)Ca2—Si—Ca2xxi119.81 (3)
Ca1—Ca2—Ca2xii126.43 (10)Ca2xix—Si—Ca2xii124.1 (3)
Ca1—Ca2—Ca2vi59.70 (4)Ca2xix—Si—Ca2iii60.13 (2)
Ca1—Ca2—Ca2xiii120.30 (5)Ca2xix—Si—Ca2xx94.49 (15)
Ca1—Ca2—Si64.87 (16)Ca2xix—Si—Ca2v90.06 (3)
Ca1—Ca2—Sixiv119.20 (16)Ca2xix—Si—Ca2vi119.81 (3)
Ca1—Ca2—Sixv119.99 (6)Ca2xix—Si—Ca2xxi58.82 (8)
Ca1—Ca2—Six60.86 (7)Ca2xii—Si—Ca2iii175.1 (2)
Ca1—Ca2—O45.59 (5)Ca2xii—Si—Ca2xx58.82 (8)
Ca1—Ca2—Ox140.97 (8)Ca2xii—Si—Ca2v119.81 (3)
Ca1xvi—Ca2—Ca1xvii84.73 (9)Ca2xii—Si—Ca2vi90.06 (3)
Ca1xvi—Ca2—Ca1x89.98 (8)Ca2xii—Si—Ca2xxi94.49 (15)
Ca1xvi—Ca2—Ca2ii113.39 (11)Ca2iii—Si—Ca2xx119.81 (3)
Ca1xvi—Ca2—Ca2xii58.91 (10)Ca2iii—Si—Ca2v61.11 (10)
Ca1xvi—Ca2—Ca2vi119.61 (5)Ca2iii—Si—Ca2vi85.33 (15)
Ca1xvi—Ca2—Ca2xiii60.39 (4)Ca2iii—Si—Ca2xxi90.06 (3)
Ca1xvi—Ca2—Si120.56 (16)Ca2xx—Si—Ca2v175.1 (2)
Ca1xvi—Ca2—Sixiv55.22 (16)Ca2xx—Si—Ca2vi60.13 (2)
Ca1xvi—Ca2—Sixv59.03 (5)Ca2xx—Si—Ca2xxi124.1 (3)
Ca1xvi—Ca2—Six119.54 (5)Ca2v—Si—Ca2vi115.8 (3)
Ca1xvi—Ca2—O129.05 (8)Ca2v—Si—Ca2xxi60.13 (2)
Ca1xvi—Ca2—Ox44.39 (6)Ca2vi—Si—Ca2xxi175.1 (2)
Ca1xvii—Ca2—Ca1x173.88 (13)Ca1—O—Ca1xvii180.0 (5)
Ca1xvii—Ca2—Ca2ii58.91 (10)Ca1—O—Ca288.81 (12)
Ca1xvii—Ca2—Ca2xii113.39 (11)Ca1—O—Ca2ii91.19 (12)
Ca1xvii—Ca2—Ca2vi60.39 (4)Ca1—O—Ca2iv91.19 (12)
Ca1xvii—Ca2—Ca2xiii119.61 (5)Ca1—O—Ca2vi88.81 (12)
Ca1xvii—Ca2—Si119.54 (5)Ca1xvii—O—Ca291.19 (12)
Ca1xvii—Ca2—Sixiv59.03 (5)Ca1xvii—O—Ca2ii88.81 (12)
Ca1xvii—Ca2—Sixv55.22 (16)Ca1xvii—O—Ca2iv88.81 (12)
Ca1xvii—Ca2—Six120.56 (16)Ca1xvii—O—Ca2vi91.19 (12)
Ca1xvii—Ca2—O44.39 (6)Ca2—O—Ca2ii90.19 (2)
Ca1xvii—Ca2—Ox129.05 (8)Ca2—O—Ca2iv180.0 (5)
Ca1x—Ca2—Ca2ii126.43 (10)Ca2—O—Ca2vi89.81 (2)
Ca1x—Ca2—Ca2xii60.98 (10)Ca2ii—O—Ca2iv89.81 (2)
Ca1x—Ca2—Ca2vi120.30 (5)Ca2ii—O—Ca2vi180.0 (5)
Ca1x—Ca2—Ca2xiii59.70 (4)Ca2iv—O—Ca2vi90.19 (2)
Ca1x—Ca2—Si60.86 (7)
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x, y, z; (v) x+1/2, y+1/2, z+1/2; (vi) x, y, z; (vii) x1/2, y+1/2, z+1/2; (viii) x1, y, z; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z; (xi) x, y, z+1/2; (xii) x+1, y, z; (xiii) x, y+1, z; (xiv) x1/2, y+1/2, z1/2; (xv) x+1, y, z1/2; (xvi) x+1/2, y+1/2, z1/2; (xvii) x, y, z1/2; (xviii) x+1, y, z; (xix) x+1/2, y1/2, z+1/2; (xx) x+1, y, z; (xxi) x+1/2, y+1/2, z+1/2.
(Ca3GeO_100K) top
Crystal data top
Ca3GeOF(000) = 400
Mr = 208.8Dx = 3.296 Mg m3
Orthorhombic, IbmmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I -2xc;-2y;-2zcCell parameters from 1561 reflections
a = 6.6761 (7) Åθ = 4.3–35.3°
b = 6.6761 (7) ŵ = 10.73 mm1
c = 9.4414 (5) ÅT = 100 K
V = 420.81 (7) Å3Block, grey
Z = 40.03 × 0.02 × 0.02 mm
Data collection top
SMART APEX I, Bruker AXS
diffractometer
1601 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ωscanθmax = 35.3°, θmin = 3.7°
Absorption correction: multi-scan
Sheldrick, G. M. (2012) SADABS - Bruker AXS area detector scaling and absorption, version 2012/1, University of Göttingen. Germany.
h = 1010
Tmin = 0.192, Tmax = 0.273k = 1010
3170 measured reflectionsl = 1414
1650 independent reflections
Refinement top
Refinement on F0 constraints
R[F > 3σ(F)] = 0.026Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
wR(F) = 0.029(Δ/σ)max = 0.002
S = 1.05Δρmax = 0.37 e Å3
1650 reflectionsΔρmin = 0.36 e Å3
23 parametersExtinction correction: B-C type 2 (Becker & Coppens, 1974)
0 restraintsExtinction coefficient: 18E1 (6)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.02827 (11)00.250.01110 (19)
Ca20.250.250.01402 (6)0.01119 (15)
Ge0.49974 (8)00.250.00971 (12)
O0000.0090 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0128 (3)0.0137 (4)0.0068 (2)000
Ca20.0104 (3)0.0105 (3)0.01262 (19)0.00307 (12)00
Ge0.0103 (2)0.0103 (3)0.00852 (15)000
O0.0082 (13)0.0091 (15)0.0097 (9)00.0009 (8)0
Geometric parameters (Å, º) top
Ca1—Ca23.3468 (6)Ca1—O2.3679 (3)
Ca1—Ca2i3.3452 (6)Ca1—Oxi2.3679 (3)
Ca1—Ca2ii3.3452 (6)Ca2—Ca2ii3.3485 (7)
Ca1—Ca2iii3.3468 (6)Ca2—Ca2xii3.3485 (7)
Ca1—Ca2iv3.3452 (6)Ca2—Ca2vi3.3380 (7)
Ca1—Ca2v3.3468 (6)Ca2—Ca2xiii3.3380 (7)
Ca1—Ca2vi3.3468 (6)Ca2—Ge3.2449 (5)
Ca1—Ca2vii3.3452 (6)Ca2—Gexiv3.4338 (5)
Ca1—Geviii3.1511 (11)Ca2—Gexv3.4338 (5)
Ca1—Ge3.5250 (12)Ca2—Gex3.2449 (5)
Ca1—Geix3.3435 (7)Ca2—O2.3641 (4)
Ca1—Gex3.3435 (7)Ca2—Ox2.3641 (4)
Ca2—Ca1—Ca2i172.10 (2)Ca1x—Ca2—Gexiv120.728 (7)
Ca2—Ca1—Ca2ii60.050 (8)Ca1x—Ca2—Gexv117.102 (14)
Ca2—Ca1—Ca2iii112.57 (2)Ca1x—Ca2—Gex64.635 (16)
Ca2—Ca1—Ca2iv89.908 (10)Ca1x—Ca2—O141.37 (2)
Ca2—Ca1—Ca2v83.474 (16)Ca1x—Ca2—Ox45.033 (9)
Ca2—Ca1—Ca2vi59.828 (11)Ca2ii—Ca2—Ca2xii170.93 (2)
Ca2—Ca1—Ca2vii119.530 (8)Ca2ii—Ca2—Ca2vi90.0000 (10)
Ca2—Ca1—Geviii123.717 (12)Ca2ii—Ca2—Ca2xiii90.0000 (10)
Ca2—Ca1—Ge56.283 (12)Ca2ii—Ca2—Ge124.506 (15)
Ca2—Ca1—Geix117.792 (15)Ca2ii—Ca2—Gexiv57.150 (11)
Ca2—Ca1—Gex58.027 (8)Ca2ii—Ca2—Gexv115.319 (16)
Ca2—Ca1—O44.941 (10)Ca2ii—Ca2—Gex62.747 (12)
Ca2—Ca1—Oxi128.27 (2)Ca2ii—Ca2—O44.910 (4)
Ca2i—Ca1—Ca2ii127.47 (2)Ca2ii—Ca2—Ox134.376 (6)
Ca2i—Ca1—Ca2iii60.050 (8)Ca2xii—Ca2—Ca2vi90.0000 (10)
Ca2i—Ca1—Ca2iv96.345 (16)Ca2xii—Ca2—Ca2xiii90.0000 (10)
Ca2i—Ca1—Ca2v89.908 (10)Ca2xii—Ca2—Ge62.747 (12)
Ca2i—Ca1—Ca2vi119.530 (8)Ca2xii—Ca2—Gexiv115.319 (16)
Ca2i—Ca1—Ca2vii59.858 (10)Ca2xii—Ca2—Gexv57.150 (11)
Ca2i—Ca1—Geviii63.736 (12)Ca2xii—Ca2—Gex124.506 (15)
Ca2i—Ca1—Ge116.264 (12)Ca2xii—Ca2—O134.376 (6)
Ca2i—Ca1—Geix61.777 (7)Ca2xii—Ca2—Ox44.910 (4)
Ca2i—Ca1—Gex121.556 (11)Ca2vi—Ca2—Ca2xiii180.0 (5)
Ca2i—Ca1—O141.083 (17)Ca2vi—Ca2—Ge59.046 (9)
Ca2i—Ca1—Oxi44.967 (9)Ca2vi—Ca2—Gexiv119.082 (14)
Ca2ii—Ca1—Ca2iii172.10 (2)Ca2vi—Ca2—Gexv60.918 (9)
Ca2ii—Ca1—Ca2iv59.858 (10)Ca2vi—Ca2—Gex120.954 (14)
Ca2ii—Ca1—Ca2v119.530 (8)Ca2vi—Ca2—O45.090 (4)
Ca2ii—Ca1—Ca2vi89.908 (10)Ca2vi—Ca2—Ox134.910 (5)
Ca2ii—Ca1—Ca2vii96.345 (16)Ca2xiii—Ca2—Ge120.954 (14)
Ca2ii—Ca1—Geviii63.736 (12)Ca2xiii—Ca2—Gexiv60.918 (9)
Ca2ii—Ca1—Ge116.264 (12)Ca2xiii—Ca2—Gexv119.082 (14)
Ca2ii—Ca1—Geix121.556 (11)Ca2xiii—Ca2—Gex59.046 (9)
Ca2ii—Ca1—Gex61.777 (7)Ca2xiii—Ca2—O134.910 (5)
Ca2ii—Ca1—O44.967 (9)Ca2xiii—Ca2—Ox45.090 (4)
Ca2ii—Ca1—Oxi141.083 (17)Ge—Ca2—Gexiv176.815 (14)
Ca2iii—Ca1—Ca2iv119.530 (8)Ge—Ca2—Gexv89.910 (8)
Ca2iii—Ca1—Ca2v59.828 (11)Ge—Ca2—Gex93.275 (16)
Ca2iii—Ca1—Ca2vi83.474 (16)Ge—Ca2—O92.181 (12)
Ca2iii—Ca1—Ca2vii89.908 (10)Ge—Ca2—Ox92.225 (12)
Ca2iii—Ca1—Geviii123.717 (12)Gexiv—Ca2—Gexv86.906 (14)
Ca2iii—Ca1—Ge56.283 (12)Gexiv—Ca2—Gex89.910 (8)
Ca2iii—Ca1—Geix58.027 (8)Gexiv—Ca2—O87.650 (12)
Ca2iii—Ca1—Gex117.792 (15)Gexiv—Ca2—Ox87.691 (13)
Ca2iii—Ca1—O128.27 (2)Gexv—Ca2—Gex176.815 (14)
Ca2iii—Ca1—Oxi44.941 (10)Gexv—Ca2—O87.691 (13)
Ca2iv—Ca1—Ca2v172.10 (2)Gexv—Ca2—Ox87.650 (12)
Ca2iv—Ca1—Ca2vi60.050 (8)Gex—Ca2—O92.225 (12)
Ca2iv—Ca1—Ca2vii127.47 (2)Gex—Ca2—Ox92.181 (12)
Ca2iv—Ca1—Geviii63.736 (12)O—Ca2—Ox173.58 (3)
Ca2iv—Ca1—Ge116.264 (12)Ca1—Ge—Ca1xviii180.0 (5)
Ca2iv—Ca1—Geix61.777 (7)Ca1—Ge—Ca1ix93.266 (15)
Ca2iv—Ca1—Gex121.556 (11)Ca1—Ge—Ca1x93.266 (15)
Ca2iv—Ca1—O44.967 (9)Ca1—Ge—Ca259.082 (9)
Ca2iv—Ca1—Oxi141.083 (17)Ca1—Ge—Ca2xix119.116 (9)
Ca2v—Ca1—Ca2vi112.57 (2)Ca1—Ge—Ca2xii119.116 (9)
Ca2v—Ca1—Ca2vii60.050 (8)Ca1—Ge—Ca2iii59.082 (9)
Ca2v—Ca1—Geviii123.717 (12)Ca1—Ge—Ca2xx119.116 (9)
Ca2v—Ca1—Ge56.283 (12)Ca1—Ge—Ca2v59.082 (9)
Ca2v—Ca1—Geix117.792 (15)Ca1—Ge—Ca2vi59.082 (9)
Ca2v—Ca1—Gex58.027 (8)Ca1—Ge—Ca2xxi119.116 (9)
Ca2v—Ca1—O128.27 (2)Ca1xviii—Ge—Ca1ix86.734 (15)
Ca2v—Ca1—Oxi44.941 (10)Ca1xviii—Ge—Ca1x86.734 (15)
Ca2vi—Ca1—Ca2vii172.10 (2)Ca1xviii—Ge—Ca2120.918 (9)
Ca2vi—Ca1—Geviii123.717 (12)Ca1xviii—Ge—Ca2xix60.884 (9)
Ca2vi—Ca1—Ge56.283 (12)Ca1xviii—Ge—Ca2xii60.884 (9)
Ca2vi—Ca1—Geix58.027 (8)Ca1xviii—Ge—Ca2iii120.918 (9)
Ca2vi—Ca1—Gex117.792 (15)Ca1xviii—Ge—Ca2xx60.884 (9)
Ca2vi—Ca1—O44.941 (10)Ca1xviii—Ge—Ca2v120.918 (9)
Ca2vi—Ca1—Oxi128.27 (2)Ca1xviii—Ge—Ca2vi120.918 (9)
Ca2vii—Ca1—Geviii63.736 (12)Ca1xviii—Ge—Ca2xxi60.884 (9)
Ca2vii—Ca1—Ge116.264 (12)Ca1ix—Ge—Ca1x173.47 (2)
Ca2vii—Ca1—Geix121.556 (11)Ca1ix—Ge—Ca2122.874 (11)
Ca2vii—Ca1—Gex61.777 (7)Ca1ix—Ge—Ca2xix59.137 (9)
Ca2vii—Ca1—O141.083 (17)Ca1ix—Ge—Ca2xii117.229 (11)
Ca2vii—Ca1—Oxi44.967 (9)Ca1ix—Ge—Ca2iii61.037 (9)
Geviii—Ca1—Ge180.0 (5)Ca1ix—Ge—Ca2xx59.137 (9)
Geviii—Ca1—Geix93.266 (15)Ca1ix—Ge—Ca2v122.874 (11)
Geviii—Ca1—Gex93.266 (15)Ca1ix—Ge—Ca2vi61.037 (9)
Geviii—Ca1—O94.571 (18)Ca1ix—Ge—Ca2xxi117.229 (11)
Geviii—Ca1—Oxi94.571 (18)Ca1x—Ge—Ca261.037 (9)
Ge—Ca1—Geix86.734 (15)Ca1x—Ge—Ca2xix117.229 (11)
Ge—Ca1—Gex86.734 (15)Ca1x—Ge—Ca2xii59.137 (9)
Ge—Ca1—O85.429 (18)Ca1x—Ge—Ca2iii122.874 (11)
Ge—Ca1—Oxi85.429 (18)Ca1x—Ge—Ca2xx117.229 (11)
Geix—Ca1—Gex173.47 (3)Ca1x—Ge—Ca2v61.037 (9)
Geix—Ca1—O89.740 (2)Ca1x—Ge—Ca2vi122.874 (11)
Geix—Ca1—Oxi89.740 (2)Ca1x—Ge—Ca2xxi59.137 (9)
Gex—Ca1—O89.740 (2)Ca2—Ge—Ca2xix176.815 (12)
Gex—Ca1—Oxi89.740 (2)Ca2—Ge—Ca2xii60.103 (8)
O—Ca1—Oxi170.86 (4)Ca2—Ge—Ca2iii118.164 (17)
Ca1—Ca2—Ca1xvi172.099 (18)Ca2—Ge—Ca2xx90.090 (10)
Ca1—Ca2—Ca1xvii90.092 (10)Ca2—Ge—Ca2v86.725 (14)
Ca1—Ca2—Ca1x96.526 (17)Ca2—Ge—Ca2vi61.909 (10)
Ca1—Ca2—Ca2ii59.952 (13)Ca2—Ge—Ca2xxi119.897 (8)
Ca1—Ca2—Ca2xii127.300 (17)Ca2xix—Ge—Ca2xii121.769 (17)
Ca1—Ca2—Ca2vi60.086 (9)Ca2xix—Ge—Ca2iii60.103 (8)
Ca1—Ca2—Ca2xiii119.914 (13)Ca2xix—Ge—Ca2xx93.094 (13)
Ca1—Ca2—Ge64.635 (16)Ca2xix—Ge—Ca2v90.090 (10)
Ca1—Ca2—Gexiv117.102 (14)Ca2xix—Ge—Ca2vi119.897 (8)
Ca1—Ca2—Gexv120.728 (7)Ca2xix—Ge—Ca2xxi58.164 (9)
Ca1—Ca2—Gex60.936 (10)Ca2xii—Ge—Ca2iii176.815 (12)
Ca1—Ca2—O45.033 (9)Ca2xii—Ge—Ca2xx58.164 (9)
Ca1—Ca2—Ox141.37 (2)Ca2xii—Ge—Ca2v119.897 (8)
Ca1xvi—Ca2—Ca1xvii83.655 (16)Ca2xii—Ge—Ca2vi90.090 (10)
Ca1xvi—Ca2—Ca1x90.092 (10)Ca2xii—Ge—Ca2xxi93.094 (13)
Ca1xvi—Ca2—Ca2ii112.471 (18)Ca2iii—Ge—Ca2xx119.897 (8)
Ca1xvi—Ca2—Ca2xii59.998 (14)Ca2iii—Ge—Ca2v61.909 (10)
Ca1xvi—Ca2—Ca2vi119.929 (14)Ca2iii—Ge—Ca2vi86.725 (14)
Ca1xvi—Ca2—Ca2xiii60.071 (10)Ca2iii—Ge—Ca2xxi90.090 (10)
Ca1xvi—Ca2—Ge122.744 (15)Ca2xx—Ge—Ca2v176.815 (12)
Ca1xvi—Ca2—Gexiv55.380 (16)Ca2xx—Ge—Ca2vi60.103 (8)
Ca1xvi—Ca2—Gexv59.086 (10)Ca2xx—Ge—Ca2xxi121.769 (17)
Ca1xvi—Ca2—Gex118.841 (8)Ca2v—Ge—Ca2vi118.164 (17)
Ca1xvi—Ca2—O128.53 (2)Ca2v—Ge—Ca2xxi60.103 (8)
Ca1xvi—Ca2—Ox45.059 (10)Ca2vi—Ge—Ca2xxi176.815 (12)
Ca1xvii—Ca2—Ca1x172.099 (18)Ca1—O—Ca1xvii180.0 (5)
Ca1xvii—Ca2—Ca2ii59.998 (14)Ca1—O—Ca290.026 (18)
Ca1xvii—Ca2—Ca2xii112.471 (18)Ca1—O—Ca2ii89.974 (18)
Ca1xvii—Ca2—Ca2vi60.071 (10)Ca1—O—Ca2iv89.974 (18)
Ca1xvii—Ca2—Ca2xiii119.929 (14)Ca1—O—Ca2vi90.026 (18)
Ca1xvii—Ca2—Ge118.841 (8)Ca1xvii—O—Ca289.974 (18)
Ca1xvii—Ca2—Gexiv59.086 (10)Ca1xvii—O—Ca2ii90.026 (18)
Ca1xvii—Ca2—Gexv55.380 (16)Ca1xvii—O—Ca2iv90.026 (18)
Ca1xvii—Ca2—Gex122.744 (15)Ca1xvii—O—Ca2vi89.974 (18)
Ca1xvii—Ca2—O45.059 (10)Ca2—O—Ca2ii90.180 (9)
Ca1xvii—Ca2—Ox128.53 (2)Ca2—O—Ca2iv180.0 (5)
Ca1x—Ca2—Ca2ii127.300 (17)Ca2—O—Ca2vi89.820 (9)
Ca1x—Ca2—Ca2xii59.952 (13)Ca2ii—O—Ca2iv89.820 (9)
Ca1x—Ca2—Ca2vi119.914 (13)Ca2ii—O—Ca2vi180.0 (5)
Ca1x—Ca2—Ca2xiii60.086 (9)Ca2iv—O—Ca2vi90.180 (9)
Ca1x—Ca2—Ge60.936 (10)
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x, y, z; (iii) x+1/2, y1/2, z+1/2; (iv) x, y, z; (v) x+1/2, y+1/2, z+1/2; (vi) x, y, z; (vii) x1/2, y+1/2, z+1/2; (viii) x1, y, z; (ix) x+1/2, y1/2, z; (x) x+1/2, y+1/2, z; (xi) x, y, z+1/2; (xii) x+1, y, z; (xiii) x, y+1, z; (xiv) x1/2, y+1/2, z1/2; (xv) x+1, y, z1/2; (xvi) x+1/2, y+1/2, z1/2; (xvii) x, y, z1/2; (xviii) x+1, y, z; (xix) x+1/2, y1/2, z+1/2; (xx) x+1, y, z; (xxi) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds