Download citation
Download citation
link to html
The reaction of 2-phenyl-2H-1,2,3-triazole-4-carbaldehyde with triethylenetetramine leads to the formation of a new binucleating ligand, viz. the title compound, C33H33N13, demonstrating that this structure has the potential for more flexible rational design and tailoring. The title mol­ecule is rendered quite rigid by the formation of a five-membered imidazolidine ring and there are four independent instances of [pi]-[pi] inter­actions. Both sides of each of the three aromatic arms take part in these inter­actions, forming a neat three-dimensional array structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108019033/sf3079sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108019033/sf3079Isup2.hkl
Contains datablock I

CCDC reference: 686479

Comment top

The field of binucleating ligands and their metal complexes has been receiving considerable attention in recent years because of their importance in bioinorganic chemistry, molecular magnetism and catalysis (Nanda et al., 2006; Fondo et al., 2005). In the past decade, nitrogenous heterocyclic Schiff bases have gained more and more recognition because they may act as a polydentate ligand and present a variety of coordination modes (Drabent et al., 2004). Our interest in metal complexes with heterocyclic Schiff bases (Wang et al., 2001; Feng et al., 2007, 2008) has led us to prepare a new symmetrical binucleating ligand, (I), and we report here its structure.

A view of (I) is shown in Fig. 1, and selected bond lengths and angles are listed in Table 1. The molecular skeleton of the title compound contains an imidazolidine ring that adopts an envelope conformation. The N4—C10—C11—N5 and N6—C14—C15—N7 fragments both adopt gauche conformations [N4—C10—C11—N5 = -65.0 (2)° and N6—C14—C15—N7 = 65.9 (2)°]. The C1–C8/N1–N3 and C17–C24/N8–N10 ring systems are nearly coplanar, the dihedral angle between them being 5.90 (s.u. value?)°. Overall, the molecular structure resembles a Y. The C9N4 and C16N7 distances (Table 1) correspond to a formal CN double bond (Yang et al., 1995). The C—C and C—N distances within the saturated imidazolidine ring (N5/C12/C13/N6/C25) are in the 1.452 (2)–1.492 (3) Å range. Similar behaviour is found for [Ag(µ3-hmt)(p-nba)].2.5H2O (1.457–1.496 Å; hmt is hexamethylenetetramine; p-nba is 4-nitrobenzoate; Mukhopadhyay et al., 2001).

No classical hydrogen bonding is observed in the crystal structure. However, there exist strong intermolecular aromatic ππ interactions between the adjacent molecules resulting in a highly ordered packing, as shown in Fig. 2. Both sides of each of the three aromatic arms take part in these interactions to form a very neat (and no doubt favourable) three-dimensional array structure. There are four independent instances of ππ interactions in this novel structure. The face-to-face distances between the adjacent (exactly) parallel aromatic surfaces (d1 and d4) are 3.85 (1) and 3.41 (8)Å. The interactions d2 and d3 are between nonparallel planes. The maximum and minimum distances between interacting atoms from plane 2 to plane 3 are 3.942 (2) and 3.398 (3)Å. Its average value is 3.68Å. The corresponding values from atoms of plane 3 to plane 4 are 3.842 (3), 3.335 (2) and 3.54Å, respectively, indicating significant ππ stacking interaction.

Related literature top

For related literature, see: Drabent et al. (2004); Feng et al. (2007, 2008); Fondo et al. (2005); Mukhopadhyay et al. (2001); Nanda et al. (2006); Wang et al. (2001); Yang et al. (1995).

Experimental top

The title compound was synthesized by refluxing 2-phenyl-2H-1,2,3-triazole-4-carbaldehyde (3 mmol) and triethylenetetramine (1 mmol) in 40 ml of ethanol in the presence of glacial acetic acid (2 ml). The mixture was refluxed for 4 h under magnetic stirring. After cooling to room temperature, a white powdery product was obtained (yield 85%, m.p. 381.0–381.4 K). The colorless filtrate was allowed to evaporate slowly, affording X-ray quality crystals of the title compound. Analysis calculated for C33H33N13: C 64.80, H 5.44, N 29.77%; found: C 64.92, H 5.47, N 29.93%. IR (KBr pellet, cm-1): 3443 (b), 2922 (s), 2882 (s), 2826 (s), 1654 (vs), 1595 (vs), 1497 (s), 1346 (s), 752 (s).

Refinement top

H atoms were positioned geometrically, with C—H distances of 0.95–0.98 Å, and refined as riding, with Uiso(H) values of 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Perspective view along the a axis showing the three-dimensional supramolecular array in (I) and the intermolecular ππ stacking interactions.
N-[(2-Phenyl-2H-1,2,3-triazol-4-yl)methylene]-2-(2-(2-phenyl-2H-1,2,3- triazol-4-yl)-3-{2-[(2-phenyl-2H-1,2,3-triazol-4- yl)methyleneamino]ethyl}imidazolidin-1-yl)ethanamine top
Crystal data top
C33H33N13F(000) = 644
Mr = 611.72Dx = 1.264 Mg m3
Triclinic, P1Melting point = 381.0–381.4 K
a = 7.7473 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.350 (3) ÅCell parameters from 7072 reflections
c = 17.211 (4) Åθ = 3.0–27.5°
α = 87.487 (5)°µ = 0.08 mm1
β = 82.227 (5)°T = 293 K
γ = 80.247 (5)°Needle, colorless
V = 1607.7 (6) Å30.42 × 0.35 × 0.14 mm
Z = 2
Data collection top
Rigaku R-AXIS Spider
diffractometer
7203 independent reflections
Radiation source: fine-focus sealed tube3365 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
h = 109
Tmin = 0.967, Tmax = 0.989k = 1613
15461 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.186 w = 1/[σ2(Fo2) + (0.0954P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
7203 reflectionsΔρmax = 0.23 e Å3
416 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (2)
Crystal data top
C33H33N13γ = 80.247 (5)°
Mr = 611.72V = 1607.7 (6) Å3
Triclinic, P1Z = 2
a = 7.7473 (16) ÅMo Kα radiation
b = 12.350 (3) ŵ = 0.08 mm1
c = 17.211 (4) ÅT = 293 K
α = 87.487 (5)°0.42 × 0.35 × 0.14 mm
β = 82.227 (5)°
Data collection top
Rigaku R-AXIS Spider
diffractometer
7203 independent reflections
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
3365 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.989Rint = 0.033
15461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
7203 reflectionsΔρmin = 0.20 e Å3
416 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2570 (2)0.64280 (15)0.29745 (11)0.0749 (5)
N20.4313 (2)0.64132 (14)0.28887 (11)0.0719 (5)
N30.5224 (3)0.55686 (16)0.32562 (13)0.0859 (6)
N40.0459 (2)0.44129 (16)0.40981 (11)0.0739 (5)
N50.0578 (2)0.27374 (13)0.32005 (9)0.0606 (4)
N60.00592 (19)0.16426 (12)0.21458 (9)0.0579 (4)
N70.2345 (2)0.09230 (15)0.06853 (11)0.0694 (5)
N80.6916 (3)0.23691 (17)0.00767 (13)0.0915 (7)
N90.5886 (2)0.32226 (14)0.03821 (11)0.0695 (5)
N100.4169 (2)0.31615 (14)0.02812 (10)0.0683 (5)
N110.4736 (3)0.11312 (17)0.33388 (14)0.0946 (7)
N120.4070 (2)0.02547 (14)0.36276 (10)0.0645 (5)
N130.2371 (2)0.02825 (13)0.35609 (10)0.0617 (4)
C10.6973 (3)0.7100 (2)0.23488 (17)0.0943 (8)
H1B0.76410.64880.25600.113*
C20.7791 (4)0.7890 (3)0.19350 (19)0.1037 (9)
H2A0.90160.78180.18720.124*
C30.6811 (4)0.8782 (2)0.16151 (16)0.0924 (8)
H3B0.73660.93140.13320.111*
C40.5012 (4)0.8888 (2)0.17128 (16)0.0909 (8)
H4B0.43490.94940.14930.109*
C50.4167 (3)0.8113 (2)0.21294 (15)0.0819 (7)
H5A0.29410.81920.21950.098*
C60.5163 (3)0.72206 (18)0.24479 (13)0.0711 (6)
C70.2338 (3)0.55468 (18)0.34225 (13)0.0695 (6)
C80.3976 (3)0.5025 (2)0.35915 (15)0.0812 (7)
H8B0.41720.43860.38960.097*
C90.0635 (3)0.5213 (2)0.36404 (14)0.0749 (6)
H9A0.03480.56000.34370.090*
C100.1256 (3)0.4072 (2)0.42568 (14)0.0798 (7)
H10B0.20830.45290.39550.096*
H10C0.17020.41560.48090.096*
C110.1082 (3)0.2889 (2)0.40376 (13)0.0763 (6)
H11B0.02010.24450.43190.092*
H11C0.22000.26370.41950.092*
C120.2001 (3)0.30932 (19)0.27247 (13)0.0735 (6)
H12A0.20370.38590.25640.088*
H12B0.31330.30070.30170.088*
C130.1592 (3)0.23736 (19)0.20275 (14)0.0737 (6)
H13B0.25330.19540.20010.088*
H13C0.14400.28080.15470.088*
C140.0257 (3)0.05643 (17)0.18121 (13)0.0692 (6)
H14A0.08180.02610.19660.083*
H14B0.12150.00810.20220.083*
C150.0636 (3)0.06014 (19)0.09281 (13)0.0733 (6)
H15A0.06220.01170.07250.088*
H15B0.02740.11230.07160.088*
C160.2415 (3)0.18389 (18)0.03470 (13)0.0684 (6)
H16A0.13730.22830.02440.082*
C170.4072 (3)0.22177 (18)0.01149 (12)0.0677 (6)
C180.5768 (3)0.1737 (2)0.02308 (16)0.0882 (8)
H18A0.60590.10660.04880.106*
C190.6585 (3)0.41100 (17)0.07889 (13)0.0679 (6)
C200.5479 (3)0.49047 (18)0.11569 (13)0.0740 (6)
H20A0.42860.48650.11360.089*
C210.6171 (3)0.5752 (2)0.15532 (15)0.0828 (7)
H21A0.54320.62900.18020.099*
C220.7922 (4)0.5826 (2)0.15909 (16)0.0890 (7)
H22A0.83730.64060.18620.107*
C230.8995 (4)0.5032 (2)0.12239 (18)0.0995 (9)
H23A1.01890.50720.12480.119*
C240.8336 (3)0.4169 (2)0.08165 (17)0.0928 (8)
H24A0.90760.36360.05640.111*
C250.0096 (2)0.16039 (16)0.29910 (12)0.0588 (5)
H25A0.07040.11210.32460.071*
C260.1910 (2)0.12383 (17)0.31993 (12)0.0613 (5)
C270.3358 (3)0.1752 (2)0.30729 (18)0.0966 (9)
H27A0.33750.24410.28340.116*
C280.5110 (3)0.06550 (17)0.39783 (12)0.0649 (6)
C290.4362 (3)0.15426 (19)0.42628 (14)0.0800 (7)
H29A0.31750.15560.42360.096*
C300.5398 (4)0.2420 (2)0.45909 (16)0.0938 (8)
H30A0.49020.30290.47820.113*
C310.7130 (4)0.2404 (2)0.46378 (16)0.0981 (9)
H31A0.78130.29940.48650.118*
C320.7847 (4)0.1527 (3)0.4352 (2)0.1221 (12)
H32A0.90360.15190.43760.146*
C330.6840 (3)0.0631 (2)0.40207 (19)0.1092 (10)
H33A0.73440.00240.38310.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0704 (12)0.0749 (12)0.0754 (13)0.0076 (9)0.0185 (9)0.0056 (10)
N20.0751 (12)0.0651 (11)0.0734 (12)0.0065 (9)0.0237 (9)0.0061 (9)
N30.0799 (13)0.0751 (13)0.0994 (16)0.0083 (11)0.0295 (11)0.0077 (11)
N40.0726 (12)0.0766 (13)0.0719 (13)0.0005 (9)0.0182 (9)0.0128 (10)
N50.0558 (9)0.0678 (10)0.0575 (11)0.0052 (8)0.0101 (7)0.0033 (8)
N60.0539 (9)0.0601 (10)0.0599 (10)0.0064 (7)0.0119 (7)0.0031 (8)
N70.0694 (11)0.0701 (11)0.0666 (12)0.0057 (9)0.0083 (8)0.0024 (9)
N80.0762 (13)0.0865 (14)0.1087 (17)0.0012 (11)0.0257 (11)0.0255 (12)
N90.0700 (11)0.0675 (11)0.0690 (12)0.0022 (9)0.0150 (9)0.0034 (9)
N100.0700 (11)0.0696 (11)0.0639 (11)0.0047 (9)0.0119 (8)0.0020 (9)
N110.0685 (12)0.0927 (14)0.1307 (19)0.0306 (11)0.0347 (11)0.0440 (14)
N120.0594 (10)0.0672 (11)0.0700 (11)0.0163 (8)0.0155 (8)0.0108 (9)
N130.0559 (9)0.0658 (10)0.0642 (11)0.0116 (8)0.0108 (7)0.0045 (8)
C10.0816 (17)0.0949 (19)0.109 (2)0.0046 (14)0.0362 (15)0.0081 (16)
C20.0826 (17)0.117 (2)0.118 (2)0.0230 (17)0.0334 (16)0.0071 (19)
C30.103 (2)0.0915 (18)0.0907 (19)0.0264 (16)0.0282 (15)0.0022 (15)
C40.1001 (19)0.0820 (17)0.0883 (19)0.0036 (14)0.0196 (15)0.0026 (14)
C50.0816 (15)0.0756 (15)0.0827 (17)0.0071 (12)0.0165 (12)0.0023 (13)
C60.0806 (14)0.0678 (14)0.0651 (14)0.0021 (11)0.0207 (11)0.0085 (11)
C70.0755 (14)0.0664 (13)0.0643 (14)0.0044 (11)0.0191 (10)0.0084 (11)
C80.0757 (15)0.0730 (14)0.0912 (18)0.0076 (12)0.0246 (13)0.0067 (13)
C90.0718 (14)0.0790 (15)0.0697 (15)0.0109 (12)0.0209 (11)0.0112 (12)
C100.0699 (14)0.1016 (18)0.0652 (15)0.0020 (12)0.0084 (11)0.0195 (13)
C110.0728 (13)0.0934 (17)0.0603 (14)0.0100 (12)0.0036 (10)0.0042 (12)
C120.0626 (12)0.0821 (15)0.0731 (15)0.0030 (11)0.0158 (10)0.0076 (12)
C130.0602 (12)0.0846 (15)0.0753 (15)0.0013 (11)0.0192 (10)0.0093 (12)
C140.0699 (12)0.0645 (13)0.0769 (16)0.0177 (10)0.0122 (11)0.0102 (11)
C150.0746 (14)0.0748 (14)0.0731 (16)0.0125 (11)0.0144 (11)0.0129 (11)
C160.0707 (13)0.0709 (14)0.0621 (13)0.0013 (11)0.0154 (10)0.0043 (11)
C170.0725 (14)0.0684 (13)0.0602 (13)0.0018 (11)0.0132 (10)0.0020 (11)
C180.0777 (16)0.0836 (16)0.101 (2)0.0063 (13)0.0203 (13)0.0254 (15)
C190.0755 (14)0.0685 (13)0.0582 (13)0.0066 (11)0.0093 (10)0.0028 (10)
C200.0788 (14)0.0751 (15)0.0677 (15)0.0074 (12)0.0152 (11)0.0006 (12)
C210.0916 (17)0.0804 (16)0.0764 (17)0.0117 (13)0.0174 (13)0.0081 (13)
C220.0959 (18)0.0866 (17)0.0838 (18)0.0171 (15)0.0099 (14)0.0072 (14)
C230.0795 (16)0.106 (2)0.112 (2)0.0216 (15)0.0105 (15)0.0151 (17)
C240.0746 (16)0.0955 (18)0.107 (2)0.0092 (14)0.0181 (13)0.0180 (16)
C250.0523 (10)0.0641 (12)0.0614 (13)0.0131 (9)0.0093 (8)0.0048 (10)
C260.0566 (11)0.0663 (13)0.0625 (13)0.0148 (9)0.0108 (9)0.0088 (10)
C270.0684 (14)0.0916 (17)0.137 (2)0.0273 (13)0.0392 (14)0.0526 (17)
C280.0636 (12)0.0716 (13)0.0586 (13)0.0049 (10)0.0147 (9)0.0064 (10)
C290.0728 (14)0.0829 (16)0.0800 (16)0.0065 (12)0.0080 (11)0.0148 (13)
C300.0960 (19)0.0878 (17)0.0894 (19)0.0011 (14)0.0107 (14)0.0235 (14)
C310.104 (2)0.0917 (19)0.092 (2)0.0092 (16)0.0275 (15)0.0147 (15)
C320.0818 (18)0.125 (2)0.162 (3)0.0101 (18)0.0505 (19)0.046 (2)
C330.0757 (16)0.114 (2)0.145 (3)0.0261 (15)0.0426 (16)0.050 (2)
Geometric parameters (Å, º) top
N1—C71.329 (3)C11—H11B0.9700
N1—N21.336 (2)C11—H11C0.9700
N2—N31.342 (2)C12—C131.492 (3)
N2—C61.423 (3)C12—H12A0.9700
N3—C81.324 (3)C12—H12B0.9700
N4—C91.251 (3)C13—H13B0.9700
N4—C101.448 (3)C13—H13C0.9700
N5—C251.452 (2)C14—C151.510 (3)
N5—C111.453 (3)C14—H14A0.9700
N5—C121.458 (2)C14—H14B0.9700
N6—C141.449 (3)C15—H15A0.9700
N6—C251.457 (2)C15—H15B0.9700
N6—C131.469 (2)C16—C171.440 (3)
N7—C161.255 (3)C16—H16A0.9300
N7—C151.449 (3)C17—C181.384 (3)
N8—C181.324 (3)C18—H18A0.9300
N8—N91.343 (2)C19—C241.366 (3)
N9—N101.332 (2)C19—C201.380 (3)
N9—C191.420 (3)C20—C211.370 (3)
N10—C171.332 (3)C20—H20A0.9300
N11—N121.326 (2)C21—C221.368 (3)
N11—C271.327 (3)C21—H21A0.9300
N12—N131.331 (2)C22—C231.365 (3)
N12—C281.429 (2)C22—H22A0.9300
N13—C261.327 (2)C23—C241.382 (3)
C1—C61.373 (3)C23—H23A0.9300
C1—C21.374 (4)C24—H24A0.9300
C1—H1B0.9300C25—C261.488 (3)
C2—C31.367 (3)C25—H25A0.9800
C2—H2A0.9300C26—C271.368 (3)
C3—C41.365 (4)C27—H27A0.9300
C3—H3B0.9300C28—C331.357 (3)
C4—C51.372 (3)C28—C291.367 (3)
C4—H4B0.9300C29—C301.382 (3)
C5—C61.373 (3)C29—H29A0.9300
C5—H5A0.9300C30—C311.359 (4)
C7—C81.385 (3)C30—H30A0.9300
C7—C91.445 (3)C31—C321.345 (4)
C8—H8B0.9300C31—H31A0.9300
C9—H9A0.9300C32—C331.389 (3)
C10—C111.505 (3)C32—H32A0.9300
C10—H10B0.9700C33—H33A0.9300
C10—H10C0.9700
C7—N1—N2104.15 (17)C12—C13—H13C110.8
N1—N2—N3114.59 (19)H13B—C13—H13C108.8
N1—N2—C6123.61 (16)N6—C14—C15112.17 (17)
N3—N2—C6121.80 (19)N6—C14—H14A109.2
C8—N3—N2103.05 (18)C15—C14—H14A109.2
C9—N4—C10118.7 (2)N6—C14—H14B109.2
C25—N5—C11113.68 (15)C15—C14—H14B109.2
C25—N5—C12105.22 (16)H14A—C14—H14B107.9
C11—N5—C12114.60 (15)N7—C15—C14110.22 (18)
C14—N6—C25113.17 (15)N7—C15—H15A109.6
C14—N6—C13114.57 (16)C14—C15—H15A109.6
C25—N6—C13105.04 (15)N7—C15—H15B109.6
C16—N7—C15119.08 (19)C14—C15—H15B109.6
C18—N8—N9102.89 (19)H15A—C15—H15B108.1
N10—N9—N8114.72 (18)N7—C16—C17121.6 (2)
N10—N9—C19122.96 (16)N7—C16—H16A119.2
N8—N9—C19122.32 (19)C17—C16—H16A119.2
C17—N10—N9104.19 (16)N10—C17—C18107.9 (2)
N12—N11—C27102.46 (17)N10—C17—C16122.02 (19)
N11—N12—N13115.10 (15)C18—C17—C16130.0 (2)
N11—N12—C28122.23 (17)N8—C18—C17110.3 (2)
N13—N12—C28122.67 (17)N8—C18—H18A124.9
C26—N13—N12103.98 (15)C17—C18—H18A124.9
C6—C1—C2119.5 (2)C24—C19—C20120.6 (2)
C6—C1—H1B120.3C24—C19—N9120.03 (19)
C2—C1—H1B120.3C20—C19—N9119.3 (2)
C3—C2—C1120.3 (3)C21—C20—C19118.9 (2)
C3—C2—H2A119.9C21—C20—H20A120.6
C1—C2—H2A119.9C19—C20—H20A120.6
C4—C3—C2119.7 (3)C22—C21—C20121.5 (2)
C4—C3—H3B120.2C22—C21—H21A119.2
C2—C3—H3B120.2C20—C21—H21A119.2
C3—C4—C5121.1 (2)C23—C22—C21118.8 (2)
C3—C4—H4B119.5C23—C22—H22A120.6
C5—C4—H4B119.5C21—C22—H22A120.6
C4—C5—C6118.8 (2)C22—C23—C24121.1 (3)
C4—C5—H5A120.6C22—C23—H23A119.5
C6—C5—H5A120.6C24—C23—H23A119.5
C1—C6—C5120.7 (2)C19—C24—C23119.1 (2)
C1—C6—N2119.55 (19)C19—C24—H24A120.4
C5—C6—N2119.7 (2)C23—C24—H24A120.4
N1—C7—C8108.2 (2)N5—C25—N6102.03 (14)
N1—C7—C9123.20 (19)N5—C25—C26111.88 (17)
C8—C7—C9128.6 (2)N6—C25—C26112.15 (16)
N3—C8—C7110.0 (2)N5—C25—H25A110.2
N3—C8—H8B125.0N6—C25—H25A110.2
C7—C8—H8B125.0C26—C25—H25A110.2
N4—C9—C7121.1 (2)N13—C26—C27107.84 (18)
N4—C9—H9A119.4N13—C26—C25122.28 (18)
C7—C9—H9A119.4C27—C26—C25129.88 (19)
N4—C10—C11109.13 (18)N11—C27—C26110.6 (2)
N4—C10—H10B109.9N11—C27—H27A124.7
C11—C10—H10B109.9C26—C27—H27A124.7
N4—C10—H10C109.9C33—C28—C29120.58 (19)
C11—C10—H10C109.9C33—C28—N12119.5 (2)
H10B—C10—H10C108.3C29—C28—N12119.93 (19)
N5—C11—C10112.00 (18)C28—C29—C30119.0 (2)
N5—C11—H11B109.2C28—C29—H29A120.5
C10—C11—H11B109.2C30—C29—H29A120.5
N5—C11—H11C109.2C31—C30—C29120.9 (3)
C10—C11—H11C109.2C31—C30—H30A119.5
H11B—C11—H11C107.9C29—C30—H30A119.5
N5—C12—C13105.61 (15)C32—C31—C30119.3 (2)
N5—C12—H12A110.6C32—C31—H31A120.3
C13—C12—H12A110.6C30—C31—H31A120.3
N5—C12—H12B110.6C31—C32—C33121.1 (3)
C13—C12—H12B110.6C31—C32—H32A119.4
H12A—C12—H12B108.7C33—C32—H32A119.4
N6—C13—C12104.87 (16)C28—C33—C32119.1 (3)
N6—C13—H13B110.8C28—C33—H33A120.5
C12—C13—H13B110.8C32—C33—H33A120.5
N6—C13—H13C110.8
C7—N1—N2—N30.1 (2)N9—N10—C17—C16179.86 (19)
C7—N1—N2—C6179.7 (2)N7—C16—C17—N10176.4 (2)
N1—N2—N3—C80.0 (3)N7—C16—C17—C183.1 (4)
C6—N2—N3—C8179.8 (2)N9—N8—C18—C170.6 (3)
C18—N8—N9—N100.2 (3)N10—C17—C18—N80.8 (3)
C18—N8—N9—C19179.0 (2)C16—C17—C18—N8179.7 (2)
N8—N9—N10—C170.3 (3)N10—N9—C19—C24174.6 (2)
C19—N9—N10—C17179.44 (19)N8—N9—C19—C246.3 (3)
C27—N11—N12—N130.0 (3)N10—N9—C19—C205.7 (3)
C27—N11—N12—C28179.5 (2)N8—N9—C19—C20173.4 (2)
N11—N12—N13—C260.5 (3)C24—C19—C20—C210.3 (4)
C28—N12—N13—C26179.03 (19)N9—C19—C20—C21179.5 (2)
C6—C1—C2—C30.9 (5)C19—C20—C21—C220.0 (4)
C1—C2—C3—C40.4 (5)C20—C21—C22—C230.1 (4)
C2—C3—C4—C50.2 (4)C21—C22—C23—C240.3 (5)
C3—C4—C5—C60.2 (4)C20—C19—C24—C230.5 (4)
C2—C1—C6—C50.9 (4)N9—C19—C24—C23179.2 (2)
C2—C1—C6—N2178.8 (3)C22—C23—C24—C190.6 (5)
C4—C5—C6—C10.3 (4)C11—N5—C25—N6166.08 (15)
C4—C5—C6—N2179.4 (2)C12—N5—C25—N639.89 (18)
N1—N2—C6—C1175.7 (2)C11—N5—C25—C2673.9 (2)
N3—N2—C6—C14.4 (3)C12—N5—C25—C26159.96 (17)
N1—N2—C6—C54.5 (3)C14—N6—C25—N5165.61 (15)
N3—N2—C6—C5175.3 (2)C13—N6—C25—N539.93 (19)
N2—N1—C7—C80.1 (2)C14—N6—C25—C2674.5 (2)
N2—N1—C7—C9177.4 (2)C13—N6—C25—C26159.81 (17)
N2—N3—C8—C70.0 (3)N12—N13—C26—C270.8 (3)
N1—C7—C8—N30.1 (3)N12—N13—C26—C25178.94 (18)
C9—C7—C8—N3177.2 (2)N5—C25—C26—N13133.9 (2)
C10—N4—C9—C7176.1 (2)N6—C25—C26—N13112.1 (2)
N1—C7—C9—N4176.1 (2)N5—C25—C26—C2746.4 (3)
C8—C7—C9—N47.2 (4)N6—C25—C26—C2767.5 (3)
C9—N4—C10—C11122.2 (2)N12—N11—C27—C260.5 (3)
C25—N5—C11—C10163.14 (17)N13—C26—C27—N110.8 (3)
C12—N5—C11—C1075.8 (2)C25—C26—C27—N11178.8 (2)
N4—C10—C11—N565.0 (2)N11—N12—C28—C330.0 (4)
C25—N5—C12—C1324.7 (2)N13—N12—C28—C33179.4 (2)
C11—N5—C12—C13150.31 (19)N11—N12—C28—C29179.6 (2)
C14—N6—C13—C12149.58 (18)N13—N12—C28—C290.1 (3)
C25—N6—C13—C1224.8 (2)C33—C28—C29—C300.3 (4)
N5—C12—C13—N60.1 (2)N12—C28—C29—C30179.2 (2)
C25—N6—C14—C15166.82 (16)C28—C29—C30—C310.5 (4)
C13—N6—C14—C1572.8 (2)C29—C30—C31—C320.8 (5)
C16—N7—C15—C14111.9 (2)C30—C31—C32—C331.0 (5)
N6—C14—C15—N765.9 (2)C29—C28—C33—C320.5 (5)
C15—N7—C16—C17178.0 (2)N12—C28—C33—C32179.0 (3)
N9—N10—C17—C180.6 (2)C31—C32—C33—C280.8 (5)

Experimental details

Crystal data
Chemical formulaC33H33N13
Mr611.72
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7473 (16), 12.350 (3), 17.211 (4)
α, β, γ (°)87.487 (5), 82.227 (5), 80.247 (5)
V3)1607.7 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.35 × 0.14
Data collection
DiffractometerRigaku R-AXIS Spider
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.967, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
15461, 7203, 3365
Rint0.033
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.186, 1.02
No. of reflections7203
No. of parameters416
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.20

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N4—C91.251 (3)N6—C131.469 (2)
N5—C251.452 (2)N7—C161.255 (3)
N5—C121.458 (2)C12—C131.492 (3)
N6—C251.457 (2)C25—C261.488 (3)
C9—N4—C10118.7 (2)C16—N7—C15119.08 (19)
C11—N5—C12114.60 (15)N6—C13—C12104.87 (16)
C14—N6—C13114.57 (16)N5—C25—N6102.03 (14)
C25—N6—C13105.04 (15)
N4—C10—C11—N565.0 (2)C13—N6—C25—N539.93 (19)
C25—N5—C12—C1324.7 (2)N6—C25—C26—N13112.1 (2)
N6—C14—C15—N765.9 (2)N5—C25—C26—C2746.4 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds