Download citation
Download citation
link to html
Methyl­ation of 5-methyl-2-nitramino­pyridine provides the title compound, C7H9N3O2, as the only product. The mol­ecule consists of two planar fragments, viz. an aromatic ring and a nitrimino substituent. The NNO2 group is twisted by 17 (2)° out of the plane of the pyridine ring. Despite a small torsion angle between these fragments, the geometry of the mol­ecule indicates the participation of the π-electrons in the C—N bond. The hydrogen bonds in the crystal structure seem to be too weak to generate any deformations observed in the mol­ecule.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806045946/sg2078sup1.cif
Contains datablocks global, 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806045946/sg20781sup2.hkl
Contains datablock 1

CCDC reference: 630451

Key indicators

  • Single-crystal X-ray study
  • T = 85 K
  • Mean [sigma](C-C)= 0.002 Å
  • R factor = 0.037
  • wR factor = 0.090
  • Data-to-parameter ratio = 11.8

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2002); cell refinement: CrysAlis RED (Oxford Diffraction, 2002); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

1,5-Dimethyl-2-nitrimino-1,2-dihydropyridine top
Crystal data top
C7H9N3O2F(000) = 704
Mr = 167.17Dx = 1.409 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1868 reflections
a = 14.3053 (17) Åθ = 2.8–28.0°
b = 7.6741 (10) ŵ = 0.11 mm1
c = 15.790 (2) ÅT = 85 K
β = 114.586 (12)°Plate, colourless
V = 1576.3 (4) Å30.15 × 0.15 × 0.10 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1456 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.0°, θmin = 2.8°
ω scansh = 1618
5421 measured reflectionsk = 99
1713 independent reflectionsl = 2017
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090All H-atom parameters refined
S = 1.07 w = 1/[σ2(Fo2) + (0.0333P)2 + 1.7281P]
where P = (Fo2 + 2Fc2)/3
1713 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Experimental. 1H NMR (DMSO-d6, δ, p.p.m.): 8.23 (dd, 3J = 9.4 Hz, 4J = 2.3 Hz, 1H, H4), 8.11 (d, 4J = 2.3 Hz, 1H, C6), 7.90 (d, 3J = 9.4 Hz, 1H, H3), 3.79 (s, 3H, N-methyl group), 2.24 (s, 3H, Ar-methyl group); 13C NMR (DMSO-d6, δ, p.p.m.): 155.1 (C2), 144.0 (C6), 140.5 (C4), 124.6 (C5), 117.6 (C3), 42.4 (N-methyl group), 16.7 (Ar-methyl group); IR (KBr, ν, cm-1): 1412, 1257 (N-nitro group).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20349 (8)0.50738 (14)0.40361 (7)0.0129 (2)
H1A0.0483 (13)0.498 (2)0.3406 (11)0.023 (4)*
H1B0.1011 (13)0.367 (2)0.4306 (13)0.032 (5)*
H1C0.0988 (12)0.319 (2)0.3308 (11)0.020 (4)*
C20.22804 (9)0.58983 (16)0.33769 (8)0.0127 (3)
C30.32343 (9)0.68028 (17)0.37076 (9)0.0154 (3)
H30.3409 (12)0.744 (2)0.3262 (11)0.019 (4)*
C40.38919 (10)0.67736 (17)0.46401 (9)0.0160 (3)
H40.4547 (12)0.742 (2)0.4859 (11)0.020 (4)*
C50.36389 (9)0.58534 (16)0.52921 (8)0.0147 (3)
H5A0.4002 (14)0.543 (2)0.6696 (13)0.034 (5)*
H5B0.4902 (15)0.488 (3)0.6468 (13)0.037 (5)*
H5C0.4703 (13)0.690 (2)0.6572 (11)0.027 (4)*
C60.26911 (9)0.50436 (16)0.49565 (8)0.0137 (3)
H60.2448 (11)0.444 (2)0.5348 (10)0.013 (4)*
C110.10337 (10)0.41482 (18)0.37451 (9)0.0163 (3)
C150.43599 (10)0.57605 (18)0.63121 (9)0.0177 (3)
N110.15013 (8)0.57819 (14)0.25006 (7)0.0153 (2)
N120.17194 (8)0.61738 (14)0.17783 (7)0.0146 (2)
O130.09775 (7)0.61441 (14)0.09939 (6)0.0237 (2)
O140.26038 (8)0.64818 (17)0.18476 (7)0.0324 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0123 (5)0.0155 (5)0.0116 (5)0.0002 (4)0.0058 (4)0.0003 (4)
C20.0138 (6)0.0130 (6)0.0125 (6)0.0026 (4)0.0067 (5)0.0002 (5)
C30.0159 (6)0.0165 (6)0.0149 (6)0.0017 (5)0.0076 (5)0.0000 (5)
C40.0142 (6)0.0180 (6)0.0156 (6)0.0012 (5)0.0060 (5)0.0023 (5)
C50.0164 (6)0.0156 (6)0.0110 (6)0.0027 (5)0.0044 (5)0.0015 (5)
C60.0164 (6)0.0153 (6)0.0110 (6)0.0024 (5)0.0071 (5)0.0007 (5)
C110.0133 (6)0.0223 (7)0.0142 (6)0.0032 (5)0.0067 (5)0.0007 (5)
C150.0183 (6)0.0207 (7)0.0110 (6)0.0006 (5)0.0029 (5)0.0004 (5)
N110.0138 (5)0.0221 (6)0.0108 (5)0.0003 (4)0.0060 (4)0.0018 (4)
N120.0174 (5)0.0150 (5)0.0126 (5)0.0005 (4)0.0073 (4)0.0006 (4)
O130.0201 (5)0.0386 (6)0.0101 (4)0.0081 (4)0.0041 (4)0.0042 (4)
O140.0226 (5)0.0622 (8)0.0174 (5)0.0187 (5)0.0131 (4)0.0106 (5)
Geometric parameters (Å, º) top
N1—C61.3633 (16)C6—H60.947 (15)
N1—C21.3824 (16)C11—H1A0.984 (17)
N1—C111.4898 (15)C11—H1B0.972 (19)
C2—N111.3716 (15)C11—H1C0.994 (17)
C2—C31.4225 (17)C15—H5A0.976 (19)
C3—C41.3787 (17)C15—H5B0.98 (2)
C3—H30.970 (16)C15—H5C1.000 (18)
C4—C51.4141 (18)N11—N121.3359 (15)
C4—H40.986 (16)N12—O141.2463 (14)
C5—C61.3810 (17)N12—O131.2518 (14)
C5—C151.5102 (17)
C6—N1—C2122.17 (10)C5—C6—H6122.6 (9)
C6—N1—C11117.89 (10)N1—C11—H1A107.9 (10)
C2—N1—C11119.92 (10)N1—C11—H1B107.0 (10)
N11—C2—N1112.04 (10)H1A—C11—H1B114.8 (14)
N11—C2—C3130.91 (11)N1—C11—H1C110.2 (9)
N1—C2—C3116.89 (11)H1A—C11—H1C107.4 (13)
C4—C3—C2120.54 (12)H1B—C11—H1C109.5 (14)
C4—C3—H3121.0 (9)C5—C15—H5A111.9 (11)
C2—C3—H3118.5 (9)C5—C15—H5B114.8 (11)
C3—C4—C5121.20 (12)H5A—C15—H5B103.2 (15)
C3—C4—H4119.5 (9)C5—C15—H5C113.4 (10)
C5—C4—H4119.2 (9)H5A—C15—H5C105.6 (14)
C6—C5—C4116.95 (11)H5B—C15—H5C107.1 (14)
C6—C5—C15120.92 (12)N12—N11—C2117.78 (10)
C4—C5—C15122.13 (11)O14—N12—O13120.13 (11)
N1—C6—C5122.14 (11)O14—N12—N11123.84 (11)
N1—C6—H6115.3 (9)O13—N12—N11115.96 (10)
C6—N1—C2—N11179.17 (11)C2—N1—C6—C50.82 (18)
C11—N1—C2—N112.11 (15)C11—N1—C6—C5179.56 (11)
C6—N1—C2—C33.22 (17)C4—C5—C6—N11.97 (18)
C11—N1—C2—C3178.06 (11)C15—C5—C6—N1178.51 (11)
N11—C2—C3—C4177.89 (12)N1—C2—N11—N12165.40 (10)
N1—C2—C3—C42.86 (18)C3—C2—N11—N1219.4 (2)
C2—C3—C4—C50.16 (19)C2—N11—N12—O146.81 (18)
C3—C4—C5—C62.26 (18)C2—N11—N12—O13176.28 (11)
C3—C4—C5—C15178.22 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H1C···O14i0.99 (2)2.50 (2)3.2217 (17)129 (1)
C3—H3···O140.97 (2)2.17 (2)2.7009 (16)113 (1)
C4—H4···O13ii0.99 (2)2.36 (2)3.2738 (16)154 (1)
C15—H5A···O14iii0.98 (2)2.57 (2)3.4285 (18)147 (1)
C6—H6···O14iii0.95 (2)2.39 (2)3.2576 (16)152 (1)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x, y+1, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds