Download citation
Download citation
link to html
The title compound, C9H15NOS, was prepared by the reduction of 2-thienyl 2-(dimethyl­amino)ethyl ketone hydro­chloride with sodium borohydride. In the crystal structure, O—H...N hydrogen bonds link pairs of mol­ecules into centrosymmetric dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806007550/sj2011sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806007550/sj2011Isup2.hkl
Contains datablock I

CCDC reference: 605179

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.037
  • wR factor = 0.099
  • Data-to-parameter ratio = 15.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT230_ALERT_2_C Hirshfeld Test Diff for C1 - C2 .. 5.37 su
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: SMART (Bruker 1997); cell refinement: SAINT (Bruker 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker 1997); software used to prepare material for publication: SHELXTL.

3-Hydroxy-N,N-dimethyl-3-(2-thienyl)propanamine top
Crystal data top
C9H15NOSZ = 2
Mr = 185.28F(000) = 200
Triclinic, P1Dx = 1.238 Mg m3
Hall symbol: -P 1Melting point: 72 K
a = 6.0670 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.6467 (17) ÅCell parameters from 1735 reflections
c = 11.678 (3) Åθ = 2.8–26.3°
α = 96.004 (4)°µ = 0.28 mm1
β = 104.036 (3)°T = 294 K
γ = 105.835 (3)°Block, colorless
V = 497.11 (19) Å30.24 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1726 independent reflections
Radiation source: fine-focus sealed tube1520 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
φ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 76
Tmin = 0.936, Tmax = 0.951k = 98
2505 measured reflectionsl = 713
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0413P)2 + 0.2073P]
where P = (Fo2 + 2Fc2)/3
1726 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.30 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.35251 (9)0.82014 (8)0.66420 (5)0.0566 (2)
N10.8591 (3)0.6573 (2)1.18681 (13)0.0387 (4)
O10.3229 (2)0.72991 (19)0.90804 (12)0.0432 (3)
H10.283 (4)0.6152 (14)0.8841 (19)0.052 (6)*
C10.4888 (4)0.7829 (3)0.55696 (19)0.0615 (6)
H1A0.42800.78710.47650.074*
C20.6940 (4)0.7466 (3)0.60159 (18)0.0558 (5)
H20.79180.72330.55560.067*
C30.7449 (3)0.7479 (3)0.72740 (16)0.0417 (4)
H30.88020.72570.77250.050*
C40.5742 (3)0.7853 (2)0.77489 (16)0.0366 (4)
C50.5612 (3)0.8076 (2)0.90226 (16)0.0369 (4)
H50.60910.94050.93330.044*
C60.7360 (3)0.7296 (3)0.98200 (16)0.0393 (4)
H6A0.68950.59690.95540.047*
H6B0.89460.78310.97380.047*
C70.7429 (3)0.7702 (3)1.11331 (16)0.0409 (4)
H7A0.82820.90001.14540.049*
H7B0.58080.74701.11890.049*
C81.1123 (3)0.7003 (3)1.19142 (19)0.0495 (5)
H8A1.19320.82851.22530.074*
H8B1.12630.67491.11170.074*
H8C1.18310.62541.24030.074*
C90.8357 (4)0.6885 (3)1.30837 (18)0.0561 (5)
H9A0.90320.60931.35460.084*
H9B0.66980.66141.30480.084*
H9C0.91880.81531.34560.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0442 (3)0.0737 (4)0.0543 (3)0.0249 (3)0.0073 (2)0.0198 (3)
N10.0371 (8)0.0416 (8)0.0353 (8)0.0095 (6)0.0098 (6)0.0064 (6)
O10.0338 (7)0.0482 (8)0.0513 (8)0.0149 (6)0.0168 (6)0.0080 (6)
C10.0625 (14)0.0762 (15)0.0397 (11)0.0149 (11)0.0076 (10)0.0181 (10)
C20.0544 (12)0.0751 (15)0.0423 (11)0.0224 (11)0.0189 (10)0.0108 (10)
C30.0410 (10)0.0479 (10)0.0396 (10)0.0181 (8)0.0116 (8)0.0103 (8)
C40.0335 (9)0.0341 (9)0.0401 (9)0.0084 (7)0.0076 (7)0.0094 (7)
C50.0336 (9)0.0347 (9)0.0434 (10)0.0116 (7)0.0114 (7)0.0071 (7)
C60.0344 (9)0.0461 (10)0.0405 (10)0.0153 (8)0.0125 (8)0.0089 (8)
C70.0386 (9)0.0468 (10)0.0380 (10)0.0162 (8)0.0098 (8)0.0051 (8)
C80.0379 (10)0.0509 (11)0.0571 (12)0.0139 (8)0.0074 (9)0.0131 (9)
C90.0636 (13)0.0633 (13)0.0395 (11)0.0161 (11)0.0147 (10)0.0098 (9)
Geometric parameters (Å, º) top
S1—C11.700 (2)C5—C61.526 (2)
S1—C41.7248 (18)C5—H50.9800
N1—C91.462 (2)C6—C71.520 (2)
N1—C81.467 (2)C6—H6A0.9700
N1—C71.474 (2)C6—H6B0.9700
O1—C51.427 (2)C7—H7A0.9700
O1—H10.841 (10)C7—H7B0.9700
C1—C21.343 (3)C8—H8A0.9600
C1—H1A0.9300C8—H8B0.9600
C2—C31.424 (3)C8—H8C0.9600
C2—H20.9300C9—H9A0.9600
C3—C41.367 (3)C9—H9B0.9600
C3—H30.9300C9—H9C0.9600
C4—C51.503 (3)
C1—S1—C492.22 (10)C7—C6—H6A109.2
C9—N1—C8109.83 (15)C5—C6—H6A109.2
C9—N1—C7109.72 (15)C7—C6—H6B109.2
C8—N1—C7111.46 (15)C5—C6—H6B109.2
C5—O1—H1107.6 (15)H6A—C6—H6B107.9
C2—C1—S1112.36 (16)N1—C7—C6112.78 (15)
C2—C1—H1A123.8N1—C7—H7A109.0
S1—C1—H1A123.8C6—C7—H7A109.0
C1—C2—C3112.33 (19)N1—C7—H7B109.0
C1—C2—H2123.8C6—C7—H7B109.0
C3—C2—H2123.8H7A—C7—H7B107.8
C4—C3—C2112.95 (17)N1—C8—H8A109.5
C4—C3—H3123.5N1—C8—H8B109.5
C2—C3—H3123.5H8A—C8—H8B109.5
C3—C4—C5130.68 (16)N1—C8—H8C109.5
C3—C4—S1110.14 (14)H8A—C8—H8C109.5
C5—C4—S1119.11 (13)H8B—C8—H8C109.5
O1—C5—C4111.38 (14)N1—C9—H9A109.5
O1—C5—C6111.81 (14)N1—C9—H9B109.5
C4—C5—C6111.74 (14)H9A—C9—H9B109.5
O1—C5—H5107.2N1—C9—H9C109.5
C4—C5—H5107.2H9A—C9—H9C109.5
C6—C5—H5107.2H9B—C9—H9C109.5
C7—C6—C5111.91 (14)
C4—S1—C1—C20.37 (19)S1—C4—C5—O141.05 (19)
S1—C1—C2—C30.2 (3)C3—C4—C5—C616.5 (3)
C1—C2—C3—C40.1 (3)S1—C4—C5—C6166.90 (12)
C2—C3—C4—C5177.21 (18)O1—C5—C6—C760.5 (2)
C2—C3—C4—S10.4 (2)C4—C5—C6—C7173.85 (14)
C1—S1—C4—C30.43 (15)C9—N1—C7—C6173.74 (15)
C1—S1—C4—C5177.67 (15)C8—N1—C7—C664.4 (2)
C3—C4—C5—O1142.38 (19)C5—C6—C7—N1164.99 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.84 (1)2.02 (1)2.855 (2)172 (2)
Symmetry code: (i) x+1, y+1, z+2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds