Two hydrated complexes of monomeric dihydroxyacetone (DHA; the simplest ketose),
viz. the calcium bromide complex bis(
-dihydroxyacetone)bis[tetraaquacalcium(II)] tetrabromide (isomorphous with the chloride compound reported previously), [Ca
2(C
3H
6O
3)
2(H
2O)
8]Br
4, (2
e), and the cadmium chloride complex poly[[bis(
-dihydroxyacetone)bis[bis(dihydroxyacetone)cadmium(II)]] [diaquatetradeca-
-chlorido-dichloridohexacadmium(II)] tetrahydrate], {[Cd
2(C
3H
6O
3)
6][Cd
6Cl
16(H
2O)
2]·4H
2O}
n, (2
f), are described. The Ca
2+ or Cd
2+ ions are bridged by the carbonyl O atoms from two DHA molecules to form centrosymmetric dimers, with Ca
Ca distances of 4.334 (2) and 4.300 (2) Å in (2
e), and a Cd
Cd distance of 4.195 (1) Å in (2
f). Almost identical in shape, the eight-coordinate polyhedra of the Ca
2+ and Cd
2+ ions are composed of 2
n O atoms from
n DHA molecules [
n = 2 in (2
e) and
n = 4 in (2
f)] and are completed by four water molecules in (2
e). DHA molecules chelate the cations
via both the hydroxyl and carbonyl groups and exist in an extended conformation, with both hydroxyl groups being synperiplanar to the carbonyl O atom. The crystal structures are stabilized by similar extensive O-H
X (
X = Cl or Br) and O-H
O hydrogen-bond networks involving all hydroxyl groups and the water molecules.
Supporting information
CCDC references: 682797; 682798
Large colourless plates of (2 e) were obtained by slow evaporation of an aqueous
solution containing a 1:0.5 molar ratio mixture of commercial
CaBr2·2H2O (131 mg) and DHA-dimer (50 mg) at 277 K. The specimen used
for X-ray diffraction measurements was obtained by cutting an appropriate
fragment from a large crystal of (2 e). When starting from substrate ratios of
1:1 and 1:2, another complex of DHA with CaBr2 was formed, denoted (2 d).
Differential scanning calorimetry experiments on crystals of (2 d) revealed a
phase transition at about 200 K. It proceeds differently during cooling and
heating of the crystals and reveals a series of several broad transitions.
Nevertheless, the diffraction patterns obtained from the same or/and different
crystals of (2 d) at different temperatures were always similar, regardless of
the speed of change of the temperature. Analysis of the Ewald sphere revealed
the systematic occurrence of weak reflections, trebling the cell volume. Most
probably, these weak reflections result from modulation rather than from
superstructure. Omitting all the weak reflections gave only an approximate
model of the compound, with the formula
[Ca2(DHA)4(H2O)4]Br4·0.6H2O, and this is not presented in
this paper.
Slow evaporation at 277 K of aqueous solutions containing different mixtures of
CdCl2·2.5H2O and commercial DHA-dimer (molar ratios 1:0.5, 1:1 and
1:2) always gave large colourless parallelepipeds (with a tendency to
twinning) of a cadmium complex of DHA of the same composition,
[Cd2(DHA)6][Cd6Cl16(H2O)2]·4H2O, (2f). A small
single-crystal from the 1:1 sample (63.4 mg C dC l2·2.5H2O and 50 mg
DHA-dimer) was chosen for X-ray diffraction data collection.
Since the calcium bromide complex (2 e) is isomorphous with the calcium chloride
complex (2 b), the cell setting of (2 e) was related to that in (2 b), which
resulted in non-standard axial order. The refinement of the structure of (2 e)
was started using the heavy-atom coordinates from (2 b). Two of the Br- ions
in (2 e) are slightly disordered into the Br1, Br10 and Br2, Br20 positions,
with the occupancy factors being 0.975 (6) and 0.025 (6) for Br1 and Br10,
respectively, and 0.982 (3) and 0.018 (3) for Br2 and Br20, respectively. Due to
the low occupancy of Br10 and Br20, only the Br1 and Br2 positions are
discussed. All of the non-H atoms were refined anisotropically, except for the
low-occupied positions of the disordered atoms in (2 e), i.e. Br10 and
Br20.
All H atoms in (2 d) and (2 e) [Should this be (2 e) and (2f)?] were found in
difference Fourier maps. In the final refinement cycles, all O-bonded H atoms
in (2 e) were refined isotropically, while the remaining H atoms in (2 e) and
(2f) were positioned geometrically and treated as riding atoms, with C—H =
0.99 Å and O—H = 0.84 Å, and with Uiso(H) = 1.2Ueq(C)
or 1.5Ueq(O). Water H atoms in (2f) were refined with Uiso =
1.5Ueq(O).
For both compounds, data collection: CrysAlis CCD in KM-4 CCD Software (Oxford Diffraction, 2004); cell refinement: CrysAlis RED in KM-4 CCD Software (Oxford Diffraction, 2004); data reduction: CrysAlis RED in KM-4 CCD Software (Oxford Diffraction, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
(2e) bis(µ-dihydroxyacetone)bis[tetraaquacalcium(II)] tetrabromide
top
Crystal data top
[Ca2(C3H6O3)2(H2O)8]Br4 | V = 1202.9 (5) Å3 |
Mr = 724.08 | Z = 2 |
Triclinic, P1 | F(000) = 712 |
Hall symbol: -P 1 | Dx = 1.999 Mg m−3 |
a = 9.225 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.143 (2) Å | µ = 7.17 mm−1 |
c = 14.504 (3) Å | T = 100 K |
α = 90.73 (3)° | Plate, colourless |
β = 100.01 (3)° | 0.41 × 0.36 × 0.17 mm |
γ = 92.84 (3)° | |
Data collection top
Kuma KM4 κ-geometry diffractometer with Sapphire CCD camera | 6788 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 5914 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
ω scans | θmax = 30.0°, θmin = 3.3° |
Absorption correction: analytical (CrysAlis RED in KM-4 CCD Software; Oxford Diffraction, 2004) | h = −12→12 |
Tmin = 0.100, Tmax = 0.283 | k = −12→9 |
18605 measured reflections | l = −20→20 |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.057 | w = 1/[σ2(Fo2) + (0.0226P)2 + 1.5084P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.002 |
6788 reflections | Δρmax = 0.56 e Å−3 |
326 parameters | Δρmin = −0.51 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0042 (3) |
Crystal data top
[Ca2(C3H6O3)2(H2O)8]Br4 | γ = 92.84 (3)° |
Mr = 724.08 | V = 1202.9 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.225 (2) Å | Mo Kα radiation |
b = 9.143 (2) Å | µ = 7.17 mm−1 |
c = 14.504 (3) Å | T = 100 K |
α = 90.73 (3)° | 0.41 × 0.36 × 0.17 mm |
β = 100.01 (3)° | |
Data collection top
Kuma KM4 κ-geometry diffractometer with Sapphire CCD camera | 6788 independent reflections |
Absorption correction: analytical (CrysAlis RED in KM-4 CCD Software; Oxford Diffraction, 2004) | 5914 reflections with I > 2σ(I) |
Tmin = 0.100, Tmax = 0.283 | Rint = 0.035 |
18605 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.057 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.56 e Å−3 |
6788 reflections | Δρmin = −0.51 e Å−3 |
326 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Ca1 | 0.63285 (5) | 0.70145 (5) | 0.53599 (3) | 0.00952 (9) | |
Ca2 | 0.86425 (5) | −0.14340 (5) | 0.06977 (3) | 0.00968 (9) | |
Br1 | −0.08780 (13) | 0.18346 (14) | 0.60201 (4) | 0.0187 (2) | 0.975 (6) |
Br10 | −0.055 (3) | 0.151 (2) | 0.5945 (10) | 0.008 (4)* | 0.025 (6) |
Br2 | 0.51783 (6) | 0.55834 (7) | 0.83392 (3) | 0.01355 (13) | 0.982 (4) |
Br20 | 0.480 (4) | 0.517 (4) | 0.8217 (17) | 0.023 (6)* | 0.018 (4) |
Br3 | 0.54270 (2) | 1.05372 (2) | 0.786199 (15) | 0.01241 (6) | |
Br4 | 1.02493 (2) | 0.62171 (2) | −0.200618 (15) | 0.01209 (6) | |
O1 | 0.46396 (18) | 0.80712 (18) | 0.62929 (12) | 0.0138 (3) | |
O2 | 0.39955 (17) | 0.55151 (17) | 0.54709 (11) | 0.0112 (3) | |
O3 | 0.1726 (2) | 0.37366 (19) | 0.53995 (14) | 0.0195 (4) | |
O11 | 0.66830 (19) | 0.02448 (18) | 0.06410 (13) | 0.0156 (3) | |
O21 | 0.90772 (17) | 0.10635 (16) | 0.00636 (11) | 0.0106 (3) | |
O31 | 0.98118 (18) | 0.34748 (18) | −0.07075 (13) | 0.0154 (3) | |
C1 | 0.3257 (2) | 0.7400 (2) | 0.64072 (17) | 0.0132 (4) | |
C2 | 0.3080 (2) | 0.5927 (2) | 0.59223 (15) | 0.0110 (4) | |
C3 | 0.1756 (3) | 0.4967 (3) | 0.60107 (18) | 0.0175 (5) | |
C11 | 0.6734 (2) | 0.1713 (2) | 0.03371 (17) | 0.0126 (4) | |
C21 | 0.8140 (2) | 0.1973 (2) | −0.00252 (15) | 0.0099 (4) | |
C31 | 0.8346 (2) | 0.3368 (2) | −0.05349 (17) | 0.0138 (4) | |
O1W | 0.4665 (2) | 0.7297 (2) | 0.39579 (13) | 0.0192 (4) | |
O2W | 0.7011 (2) | 0.53261 (19) | 0.66324 (13) | 0.0140 (3) | |
O3W | 0.8466 (2) | 0.8183 (2) | 0.63258 (15) | 0.0232 (4) | |
O4W | 0.6571 (3) | 0.9509 (2) | 0.49154 (17) | 0.0277 (5) | |
O5W | 0.7991 (2) | −0.18762 (19) | −0.09965 (12) | 0.0139 (3) | |
O6W | 1.0636 (2) | −0.0472 (2) | 0.18447 (13) | 0.0183 (4) | |
O7W | 0.6744 (2) | −0.3330 (2) | 0.04917 (14) | 0.0191 (4) | |
O8W | 0.7946 (2) | −0.1919 (2) | 0.22102 (13) | 0.0202 (4) | |
H1 | 0.492 (4) | 0.860 (4) | 0.671 (3) | 0.031 (10)* | |
H3 | 0.102 (4) | 0.320 (4) | 0.551 (3) | 0.037 (10)* | |
H1A | 0.2447 | 0.8017 | 0.6133 | 0.016* | |
H1B | 0.3223 | 0.7288 | 0.7081 | 0.016* | |
H3A | 0.1815 | 0.4644 | 0.6665 | 0.021* | |
H3B | 0.0849 | 0.5509 | 0.5837 | 0.021* | |
H11 | 0.607 (4) | 0.020 (4) | 0.094 (3) | 0.026 (9)* | |
H31 | 0.985 (4) | 0.413 (4) | −0.105 (3) | 0.032 (10)* | |
H11A | 0.6698 | 0.2399 | 0.0865 | 0.015* | |
H11B | 0.5882 | 0.1869 | −0.0163 | 0.015* | |
H31A | 0.7642 | 0.3360 | −0.1134 | 0.017* | |
H31B | 0.8163 | 0.4219 | −0.0150 | 0.017* | |
H1W | 0.466 (5) | 0.777 (5) | 0.351 (3) | 0.053 (13)* | |
H2W | 0.403 (4) | 0.666 (4) | 0.381 (3) | 0.038 (11)* | |
H3W | 0.786 (5) | 0.530 (4) | 0.691 (3) | 0.036 (10)* | |
H4W | 0.663 (5) | 0.539 (4) | 0.703 (3) | 0.038 (11)* | |
H5W | 0.895 (5) | 0.786 (5) | 0.682 (3) | 0.053 (13)* | |
H6W | 0.871 (4) | 0.889 (5) | 0.626 (3) | 0.037 (11)* | |
H7W | 0.601 (5) | 0.993 (5) | 0.458 (3) | 0.044 (12)* | |
H8W | 0.710 (5) | 0.998 (5) | 0.507 (3) | 0.047 (14)* | |
H9W | 0.859 (5) | −0.239 (5) | −0.118 (3) | 0.058 (14)* | |
H10W | 0.725 (5) | −0.216 (4) | −0.123 (3) | 0.040 (11)* | |
H11W | 1.093 (4) | −0.096 (5) | 0.226 (3) | 0.041 (11)* | |
H12W | 1.132 (4) | 0.005 (4) | 0.170 (2) | 0.027 (9)* | |
H13W | 0.639 (4) | −0.364 (4) | −0.001 (3) | 0.018 (8)* | |
H14W | 0.640 (5) | −0.387 (5) | 0.088 (3) | 0.051 (12)* | |
H15W | 0.854 (5) | −0.183 (5) | 0.270 (3) | 0.050 (12)* | |
H16W | 0.719 (5) | −0.170 (4) | 0.232 (3) | 0.039 (11)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ca1 | 0.0096 (2) | 0.00916 (18) | 0.0096 (2) | −0.00049 (14) | 0.00141 (15) | 0.00070 (15) |
Ca2 | 0.00818 (19) | 0.01002 (18) | 0.0113 (2) | 0.00057 (14) | 0.00264 (15) | 0.00216 (15) |
Br1 | 0.0156 (3) | 0.0215 (3) | 0.01675 (15) | −0.0085 (3) | −0.00141 (15) | 0.00596 (15) |
Br2 | 0.01202 (18) | 0.0156 (2) | 0.01324 (14) | −0.00064 (15) | 0.00322 (10) | 0.00132 (11) |
Br3 | 0.01319 (11) | 0.01305 (10) | 0.01134 (10) | −0.00063 (7) | 0.00352 (8) | −0.00033 (8) |
Br4 | 0.01207 (10) | 0.01260 (10) | 0.01153 (10) | 0.00160 (7) | 0.00157 (8) | 0.00117 (8) |
O1 | 0.0131 (8) | 0.0130 (7) | 0.0149 (8) | −0.0030 (6) | 0.0028 (6) | −0.0058 (6) |
O2 | 0.0123 (8) | 0.0113 (7) | 0.0105 (7) | 0.0003 (6) | 0.0035 (6) | −0.0007 (6) |
O3 | 0.0158 (9) | 0.0173 (8) | 0.0270 (10) | −0.0096 (7) | 0.0123 (7) | −0.0093 (7) |
O11 | 0.0119 (8) | 0.0158 (8) | 0.0222 (9) | 0.0036 (6) | 0.0104 (7) | 0.0065 (7) |
O21 | 0.0097 (7) | 0.0095 (7) | 0.0130 (8) | 0.0025 (5) | 0.0027 (6) | 0.0007 (6) |
O31 | 0.0126 (8) | 0.0109 (7) | 0.0237 (9) | 0.0018 (6) | 0.0052 (7) | 0.0068 (7) |
C1 | 0.0117 (10) | 0.0136 (10) | 0.0155 (11) | 0.0015 (8) | 0.0059 (8) | −0.0010 (8) |
C2 | 0.0114 (10) | 0.0145 (10) | 0.0063 (9) | 0.0002 (8) | −0.0006 (7) | 0.0016 (8) |
C3 | 0.0163 (11) | 0.0168 (11) | 0.0214 (12) | −0.0029 (9) | 0.0104 (9) | −0.0066 (9) |
C11 | 0.0101 (10) | 0.0130 (10) | 0.0152 (11) | 0.0027 (8) | 0.0032 (8) | 0.0016 (8) |
C21 | 0.0102 (10) | 0.0100 (9) | 0.0091 (10) | 0.0013 (7) | 0.0002 (7) | −0.0021 (7) |
C31 | 0.0114 (10) | 0.0111 (9) | 0.0190 (11) | 0.0036 (8) | 0.0022 (8) | 0.0039 (8) |
O1W | 0.0221 (9) | 0.0176 (8) | 0.0144 (9) | −0.0073 (7) | −0.0048 (7) | 0.0059 (7) |
O2W | 0.0119 (8) | 0.0180 (8) | 0.0119 (8) | −0.0006 (6) | 0.0014 (7) | 0.0027 (6) |
O3W | 0.0283 (10) | 0.0130 (9) | 0.0222 (10) | −0.0050 (7) | −0.0108 (8) | 0.0036 (7) |
O4W | 0.0222 (10) | 0.0156 (9) | 0.0374 (13) | −0.0074 (8) | −0.0153 (9) | 0.0108 (8) |
O5W | 0.0099 (8) | 0.0164 (8) | 0.0145 (8) | −0.0008 (6) | 0.0007 (6) | −0.0015 (6) |
O6W | 0.0172 (9) | 0.0213 (9) | 0.0150 (9) | −0.0067 (7) | 0.0004 (7) | 0.0033 (7) |
O7W | 0.0190 (9) | 0.0212 (9) | 0.0165 (9) | −0.0078 (7) | 0.0039 (7) | 0.0010 (7) |
O8W | 0.0125 (9) | 0.0338 (10) | 0.0146 (9) | 0.0009 (7) | 0.0028 (7) | 0.0040 (8) |
Geometric parameters (Å, º) top
Ca1—O1 | 2.458 (2) | C3—H3B | 0.99 |
Ca1—O2 | 2.524 (2) | O11—C11 | 1.419 (3) |
Ca1—O2i | 2.574 (2) | O11—H11 | 0.77 (4) |
Ca1—O3i | 2.387 (2) | O21—C21 | 1.221 (3) |
Ca1—O1W | 2.351 (2) | O21—Ca2ii | 2.5505 (17) |
Ca1—O2W | 2.439 (2) | O31—C31 | 1.416 (3) |
Ca1—O3W | 2.405 (2) | O31—Ca2ii | 2.4025 (18) |
Ca1—O4W | 2.388 (2) | O31—H31 | 0.78 (4) |
Ca1—Ca1i | 4.334 (2) | C11—C21 | 1.492 (3) |
Ca2—O11 | 2.420 (2) | C11—H11A | 0.99 |
Ca2—O21 | 2.512 (2) | C11—H11B | 0.99 |
Ca2—O21ii | 2.550 (2) | C21—C31 | 1.503 (3) |
Ca2—O31ii | 2.402 (2) | C31—H31A | 0.99 |
Ca2—O5W | 2.450 (2) | C31—H31B | 0.99 |
Ca2—O6W | 2.380 (2) | O1W—H1W | 0.78 (5) |
Ca2—O7W | 2.380 (2) | O1W—H2W | 0.80 (4) |
Ca2—O8W | 2.431 (2) | O2W—H3W | 0.82 (4) |
Ca2—Ca2ii | 4.300 (2) | O2W—H4W | 0.73 (4) |
O1—C1 | 1.425 (3) | O3W—H5W | 0.84 (5) |
O1—H1 | 0.77 (4) | O3W—H6W | 0.69 (4) |
O2—C2 | 1.225 (3) | O4W—H7W | 0.77 (5) |
O2—Ca1i | 2.5740 (18) | O4W—H8W | 0.64 (5) |
O3—C3 | 1.419 (3) | O5W—H9W | 0.82 (5) |
O3—Ca1i | 2.3867 (19) | O5W—H10W | 0.74 (4) |
O3—H3 | 0.84 (4) | O6W—H11W | 0.77 (4) |
C1—C2 | 1.500 (3) | O6W—H12W | 0.83 (4) |
C1—H1A | 0.99 | O7W—H13W | 0.78 (4) |
C1—H1B | 0.99 | O7W—H14W | 0.85 (5) |
C2—C3 | 1.493 (3) | O8W—H15W | 0.82 (5) |
C3—H3A | 0.99 | O8W—H16W | 0.78 (4) |
| | | |
O1W—Ca1—O3i | 94.51 (7) | C1—O1—Ca1 | 124.54 (13) |
O1W—Ca1—O4W | 72.42 (8) | C1—O1—H1 | 109 (3) |
O3i—Ca1—O4W | 93.81 (8) | Ca1—O1—H1 | 122 (3) |
O1W—Ca1—O3W | 141.91 (7) | C2—O2—Ca1 | 122.66 (14) |
O3i—Ca1—O3W | 77.91 (7) | C2—O2—Ca1i | 120.83 (14) |
O4W—Ca1—O3W | 70.95 (8) | Ca1—O2—Ca1i | 116.45 (6) |
O1W—Ca1—O2W | 142.93 (7) | C3—O3—Ca1i | 127.14 (14) |
O3i—Ca1—O2W | 91.42 (7) | C3—O3—H3 | 104 (3) |
O4W—Ca1—O2W | 143.62 (8) | Ca1i—O3—H3 | 126 (3) |
O3W—Ca1—O2W | 75.06 (7) | O1—C1—C2 | 108.4 (2) |
O1W—Ca1—O1 | 91.85 (7) | O1—C1—H1A | 110.0 |
O3i—Ca1—O1 | 170.43 (6) | C2—C1—H1A | 110.0 |
O4W—Ca1—O1 | 81.29 (8) | O1—C1—H1B | 110.0 |
O3W—Ca1—O1 | 92.68 (7) | C2—C1—H1B | 110.0 |
O2W—Ca1—O1 | 87.79 (7) | H1A—C1—H1B | 108.4 |
O1W—Ca1—O2 | 72.42 (7) | O2—C2—C1 | 121.2 (2) |
O3i—Ca1—O2 | 125.88 (6) | O2—C2—C3 | 120.8 (2) |
O4W—Ca1—O2 | 128.07 (7) | C1—C2—C3 | 118.0 (2) |
O3W—Ca1—O2 | 141.39 (7) | O3—C3—C2 | 107.6 (2) |
O2W—Ca1—O2 | 74.51 (6) | O3—C3—H3A | 110.2 |
O1—Ca1—O2 | 63.01 (6) | C2—C3—H3A | 110.2 |
O1W—Ca1—O2i | 74.11 (7) | O3—C3—H3B | 110.2 |
O3i—Ca1—O2i | 62.36 (6) | C2—C3—H3B | 110.2 |
O4W—Ca1—O2i | 136.73 (7) | H3A—C3—H3B | 108.5 |
O3W—Ca1—O2i | 129.80 (7) | C11—O11—Ca2 | 125.62 (13) |
O2W—Ca1—O2i | 76.50 (6) | C11—O11—H11 | 105 (3) |
O1—Ca1—O2i | 126.52 (6) | Ca2—O11—H11 | 125 (3) |
O2—Ca1—O2i | 63.55 (6) | C21—O21—Ca2 | 122.23 (14) |
O1W—Ca1—Ca1i | 70.22 (6) | C21—O21—Ca2ii | 120.35 (14) |
O3i—Ca1—Ca1i | 93.77 (5) | Ca2—O21—Ca2ii | 116.28 (6) |
O4W—Ca1—Ca1i | 142.32 (6) | C31—O31—Ca2ii | 124.21 (13) |
O3W—Ca1—Ca1i | 146.64 (6) | C31—O31—H31 | 106 (3) |
O2W—Ca1—Ca1i | 72.89 (5) | Ca2ii—O31—H31 | 122 (3) |
O1—Ca1—Ca1i | 95.11 (5) | O11—C11—C21 | 107.5 (2) |
O2—Ca1—Ca1i | 32.12 (4) | O11—C11—H11A | 110.2 |
O2i—Ca1—Ca1i | 31.43 (4) | C21—C11—H11A | 110.2 |
O6W—Ca2—O7W | 140.44 (7) | O11—C11—H11B | 110.2 |
O6W—Ca2—O31ii | 82.60 (7) | C21—C11—H11B | 110.2 |
O7W—Ca2—O31ii | 82.32 (7) | H11A—C11—H11B | 108.5 |
O6W—Ca2—O11 | 106.71 (7) | O21—C21—C11 | 121.2 (2) |
O7W—Ca2—O11 | 86.08 (7) | O21—C21—C31 | 120.9 (2) |
O31ii—Ca2—O11 | 168.40 (6) | C11—C21—C31 | 117.9 (2) |
O6W—Ca2—O8W | 73.78 (7) | O31—C31—C21 | 108.3 (2) |
O7W—Ca2—O8W | 71.61 (7) | O31—C31—H31A | 110.0 |
O31ii—Ca2—O8W | 95.67 (7) | C21—C31—H31A | 110.0 |
O11—Ca2—O8W | 80.73 (7) | O31—C31—H31B | 110.0 |
O6W—Ca2—O5W | 140.38 (7) | C21—C31—H31B | 110.0 |
O7W—Ca2—O5W | 74.42 (7) | H31A—C31—H31B | 108.4 |
O31ii—Ca2—O5W | 86.22 (7) | Ca1—O1W—H1W | 136 (3) |
O11—Ca2—O5W | 90.54 (7) | Ca1—O1W—H2W | 117 (3) |
O8W—Ca2—O5W | 145.37 (7) | H1W—O1W—H2W | 105 (4) |
O6W—Ca2—O21 | 79.11 (7) | Ca1—O2W—H3W | 122 (3) |
O7W—Ca2—O21 | 137.71 (7) | Ca1—O2W—H4W | 116 (3) |
O31ii—Ca2—O21 | 126.87 (6) | H3W—O2W—H4W | 100 (4) |
O11—Ca2—O21 | 62.93 (6) | Ca1—O3W—H5W | 127 (3) |
O8W—Ca2—O21 | 125.32 (7) | Ca1—O3W—H6W | 123 (4) |
O5W—Ca2—O21 | 77.67 (6) | H5W—O3W—H6W | 110 (5) |
O6W—Ca2—O21ii | 71.18 (6) | Ca1—O4W—H7W | 127 (3) |
O7W—Ca2—O21ii | 130.99 (6) | Ca1—O4W—H8W | 127 (4) |
O31ii—Ca2—O21ii | 63.18 (6) | H7W—O4W—H8W | 106 (5) |
O11—Ca2—O21ii | 125.86 (6) | Ca2—O5W—H9W | 110 (3) |
O8W—Ca2—O21ii | 140.86 (7) | Ca2—O5W—H10W | 123 (3) |
O5W—Ca2—O21ii | 69.84 (6) | H9W—O5W—H10W | 107 (4) |
O21—Ca2—O21ii | 63.72 (6) | Ca2—O6W—H11W | 118 (3) |
O6W—Ca2—Ca2ii | 72.44 (5) | Ca2—O6W—H12W | 122 (2) |
O7W—Ca2—Ca2ii | 145.20 (6) | H11W—O6W—H12W | 110 (4) |
O31ii—Ca2—Ca2ii | 94.76 (5) | Ca2—O7W—H13W | 121 (2) |
O11—Ca2—Ca2ii | 94.68 (5) | Ca2—O7W—H14W | 131 (3) |
O8W—Ca2—Ca2ii | 142.92 (6) | H13W—O7W—H14W | 107 (4) |
O5W—Ca2—Ca2ii | 70.78 (5) | Ca2—O8W—H15W | 122 (3) |
O21—Ca2—Ca2ii | 32.13 (4) | Ca2—O8W—H16W | 122 (3) |
O21ii—Ca2—Ca2ii | 31.59 (4) | H15W—O8W—H16W | 106 (4) |
| | | |
O1W—Ca1—O1—C1 | 67.17 (17) | O7W—Ca2—O11—C11 | −152.38 (18) |
O4W—Ca1—O1—C1 | 139.08 (18) | O31ii—Ca2—O11—C11 | −151.7 (3) |
O3W—Ca1—O1—C1 | −150.66 (17) | O8W—Ca2—O11—C11 | 135.64 (19) |
O2W—Ca1—O1—C1 | −75.73 (17) | O5W—Ca2—O11—C11 | −78.03 (18) |
O2—Ca1—O1—C1 | −2.01 (15) | O21—Ca2—O11—C11 | −2.19 (16) |
O2i—Ca1—O1—C1 | −4.35 (19) | O21ii—Ca2—O11—C11 | −12.8 (2) |
Ca1i—Ca1—O1—C1 | −3.13 (17) | Ca2ii—Ca2—O11—C11 | −7.27 (18) |
O1W—Ca1—O2—C2 | −102.08 (17) | O6W—Ca2—O21—C21 | −117.90 (18) |
O3i—Ca1—O2—C2 | 175.23 (16) | O7W—Ca2—O21—C21 | 44.9 (2) |
O4W—Ca1—O2—C2 | −52.7 (2) | O31ii—Ca2—O21—C21 | 170.05 (16) |
O3W—Ca1—O2—C2 | 55.8 (2) | O11—Ca2—O21—C21 | −2.61 (16) |
O2W—Ca1—O2—C2 | 94.93 (17) | O8W—Ca2—O21—C21 | −56.90 (19) |
O1—Ca1—O2—C2 | −0.59 (16) | O5W—Ca2—O21—C21 | 94.43 (17) |
O2i—Ca1—O2—C2 | 177.3 (2) | O21ii—Ca2—O21—C21 | 167.8 (2) |
Ca1i—Ca1—O2—C2 | 177.3 (2) | Ca2ii—Ca2—O21—C21 | 167.8 (2) |
O1W—Ca1—O2—Ca1i | 80.61 (8) | O6W—Ca2—O21—Ca2ii | 74.26 (8) |
O3i—Ca1—O2—Ca1i | −2.08 (10) | O7W—Ca2—O21—Ca2ii | −122.97 (9) |
O4W—Ca1—O2—Ca1i | 130.04 (9) | O31ii—Ca2—O21—Ca2ii | 2.21 (10) |
O3W—Ca1—O2—Ca1i | −121.52 (10) | O11—Ca2—O21—Ca2ii | −170.45 (9) |
O2W—Ca1—O2—Ca1i | −82.37 (8) | O8W—Ca2—O21—Ca2ii | 135.26 (8) |
O1—Ca1—O2—Ca1i | −177.90 (9) | O5W—Ca2—O21—Ca2ii | −73.41 (8) |
O2i—Ca1—O2—Ca1i | 0.0 | O21ii—Ca2—O21—Ca2ii | 0.0 |
Ca1—O1—C1—C2 | 3.8 (2) | Ca2—O11—C11—C21 | 5.5 (3) |
Ca1—O2—C2—C3 | −176.63 (16) | Ca2—O21—C21—C11 | 6.8 (3) |
Ca1i—O2—C2—C3 | 0.6 (3) | Ca2ii—O21—C21—C11 | 174.20 (15) |
Ca1—O2—C2—C1 | 2.9 (3) | Ca2—O21—C21—C31 | −170.94 (15) |
Ca1i—O2—C2—C1 | −179.88 (15) | Ca2ii—O21—C21—C31 | −3.6 (3) |
O1—C1—C2—O2 | −4.2 (3) | O11—C11—C21—O21 | −7.7 (3) |
O1—C1—C2—C3 | 175.4 (2) | O11—C11—C21—C31 | 170.1 (2) |
Ca1i—O3—C3—C2 | 13.5 (3) | Ca2ii—O31—C31—C21 | 20.0 (3) |
O2—C2—C3—O3 | −8.1 (3) | O21—C21—C31—O31 | −9.6 (3) |
C1—C2—C3—O3 | 172.3 (2) | C11—C21—C31—O31 | 172.6 (2) |
O6W—Ca2—O11—C11 | 65.78 (19) | | |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Br3 | 0.77 (4) | 2.39 (4) | 3.150 (2) | 169 (4) |
O3—H3···Br1 | 0.84 (4) | 2.33 (4) | 3.159 (2) | 172 (4) |
O11—H11···Br3i | 0.77 (4) | 2.48 (4) | 3.222 (2) | 162 (3) |
O31—H31···Br4 | 0.78 (4) | 2.43 (4) | 3.206 (2) | 173 (4) |
O1W—H1W···Br3iii | 0.78 (5) | 2.53 (5) | 3.312 (2) | 175 (4) |
O1W—H2W···O2Wi | 0.80 (4) | 2.06 (4) | 2.828 (3) | 161 (4) |
O2W—H4W···Br2 | 0.73 (4) | 2.52 (4) | 3.244 (2) | 177 (4) |
O2W—H3W···Br4iv | 0.82 (4) | 2.57 (4) | 3.340 (2) | 157 (3) |
O3W—H6W···Br1v | 0.69 (4) | 2.73 (4) | 3.412 (2) | 169 (4) |
O3W—H5W···Br4iv | 0.84 (5) | 2.47 (5) | 3.288 (2) | 163 (4) |
O4W—H8W···Br1v | 0.64 (5) | 2.64 (5) | 3.276 (3) | 169 (5) |
O4W—H7W···O1iii | 0.77 (5) | 2.28 (5) | 2.979 (3) | 152 (4) |
O5W—H10W···Br2vi | 0.74 (4) | 2.73 (4) | 3.396 (2) | 151 (4) |
O5W—H9W···Br4vii | 0.82 (5) | 2.49 (5) | 3.298 (2) | 170 (4) |
O6W—H11W···Br1viii | 0.77 (4) | 2.64 (4) | 3.328 (2) | 150 (4) |
O6W—H12W···O5Wii | 0.83 (4) | 2.10 (4) | 2.840 (3) | 149 (3) |
O7W—H13W···Br2vi | 0.78 (4) | 2.54 (4) | 3.321 (2) | 175 (3) |
O7W—H14W···Br2viii | 0.85 (5) | 2.50 (5) | 3.322 (2) | 164 (4) |
O8W—H15W···Br1viii | 0.82 (5) | 2.59 (5) | 3.387 (2) | 165 (4) |
O8W—H16W···Br3i | 0.78 (4) | 2.66 (4) | 3.401 (2) | 160 (4) |
C1—H1B···Br2 | 0.99 | 2.87 | 3.526 (3) | 125 |
C3—H3A···Br4ix | 0.99 | 3.00 | 3.602 (3) | 121 |
C11—H11A···Br2i | 0.99 | 2.95 | 3.794 (3) | 144 |
C11—H11B···Br3vi | 0.99 | 3.05 | 3.710 (3) | 125 |
C31—H31A···Br2x | 0.99 | 3.13 | 3.785 (3) | 125 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+2, −y, −z; (iii) −x+1, −y+2, −z+1; (iv) x, y, z+1; (v) x+1, y+1, z; (vi) x, y−1, z−1; (vii) x, y−1, z; (viii) −x+1, −y, −z+1; (ix) x−1, y, z+1; (x) x, y, z−1. |
(2f) poly[{bis(µ-dihydroxyacetone)bis[bis(dihydroxyacetone)cadmium(II)}
[diaquatetradeca-µ-chlorido-dichloridohexacadmium(II)] tetrahydrate]
top
Crystal data top
[Cd2(C3H6O3)6][Cd6Cl16(H2O)2]·4H2O | Z = 2 |
Mr = 2114.96 | F(000) = 2008 |
Monoclinic, P21/n | Dx = 2.594 Mg m−3 |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 11.170 (3) Å | µ = 3.94 mm−1 |
b = 17.119 (3) Å | T = 100 K |
c = 14.225 (3) Å | Parallelepiped, colourless |
β = 95.42 (3)° | 0.19 × 0.08 × 0.04 mm |
V = 2707.9 (10) Å3 | |
Data collection top
Kuma KM4 κ-geometry diffractometer with Sapphire CCD camera | 7856 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 5800 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.051 |
ω scans | θmax = 30.0°, θmin = 3.3° |
Absorption correction: analytical (CrysAlis RED in KM-4 CCD Software; Oxford Diffraction, 2004) | h = −15→12 |
Tmin = 0.550, Tmax = 0.850 | k = −24→24 |
38913 measured reflections | l = −20→20 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.006P)2] where P = (Fo2 + 2Fc2)/3 |
7856 reflections | (Δ/σ)max = 0.001 |
322 parameters | Δρmax = 1.02 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
Crystal data top
[Cd2(C3H6O3)6][Cd6Cl16(H2O)2]·4H2O | V = 2707.9 (10) Å3 |
Mr = 2114.96 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.170 (3) Å | µ = 3.94 mm−1 |
b = 17.119 (3) Å | T = 100 K |
c = 14.225 (3) Å | 0.19 × 0.08 × 0.04 mm |
β = 95.42 (3)° | |
Data collection top
Kuma KM4 κ-geometry diffractometer with Sapphire CCD camera | 7856 independent reflections |
Absorption correction: analytical (CrysAlis RED in KM-4 CCD Software; Oxford Diffraction, 2004) | 5800 reflections with I > 2σ(I) |
Tmin = 0.550, Tmax = 0.850 | Rint = 0.051 |
38913 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 1.02 e Å−3 |
7856 reflections | Δρmin = −0.60 e Å−3 |
322 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cd1 | 0.319672 (18) | 0.465334 (12) | 0.498216 (16) | 0.01027 (5) | |
Cd2 | 0.572487 (18) | 0.087048 (13) | 0.424834 (16) | 0.01031 (5) | |
Cd3 | 0.24097 (2) | 0.070741 (11) | 0.425621 (17) | 0.00993 (5) | |
Cd4 | −0.091810 (18) | 0.088855 (13) | 0.421726 (16) | 0.01013 (5) | |
Cl1 | 0.72384 (6) | 0.07307 (4) | 0.30044 (5) | 0.01171 (15) | |
Cl2 | 0.54850 (6) | 0.23422 (4) | 0.42923 (6) | 0.01488 (15) | |
Cl3 | 0.42159 (6) | 0.07355 (4) | 0.55909 (5) | 0.01058 (16) | |
Cl4 | 0.39153 (6) | 0.06458 (4) | 0.30073 (5) | 0.01283 (15) | |
Cl5 | 0.24202 (6) | −0.08493 (4) | 0.44422 (5) | 0.00965 (15) | |
Cl6 | 0.06281 (6) | 0.07522 (4) | 0.29948 (5) | 0.01170 (15) | |
Cl7 | 0.08956 (6) | 0.07314 (4) | 0.55509 (5) | 0.01012 (15) | |
Cl8 | −0.08331 (7) | 0.23712 (4) | 0.41625 (6) | 0.01763 (16) | |
O1 | 0.43080 (17) | 0.37363 (11) | 0.58599 (15) | 0.0141 (5) | |
O2 | 0.19595 (17) | 0.36586 (11) | 0.55523 (14) | 0.0131 (4) | |
O3 | 0.04632 (16) | 0.25986 (12) | 0.63366 (15) | 0.0150 (4) | |
O11 | 0.27611 (16) | 0.54872 (12) | 0.62401 (14) | 0.0151 (4) | |
O21 | 0.49360 (16) | 0.54035 (11) | 0.57673 (14) | 0.0112 (4) | |
O31 | 0.69068 (17) | 0.60571 (13) | 0.64531 (16) | 0.0199 (5) | |
O12 | 0.12527 (17) | 0.51076 (10) | 0.45451 (16) | 0.0125 (4) | |
O22 | 0.32487 (16) | 0.58577 (11) | 0.41791 (14) | 0.0122 (4) | |
O32 | 0.35247 (16) | 0.73406 (12) | 0.36360 (15) | 0.0135 (4) | |
C1 | 0.3760 (2) | 0.31223 (16) | 0.6330 (2) | 0.0120 (6) | |
C2 | 0.2424 (2) | 0.31707 (16) | 0.6096 (2) | 0.0108 (6) | |
C3 | 0.1713 (2) | 0.25687 (16) | 0.6567 (2) | 0.0132 (6) | |
C11 | 0.3643 (2) | 0.58764 (18) | 0.6860 (2) | 0.0139 (6) | |
C21 | 0.4838 (2) | 0.57800 (15) | 0.6492 (2) | 0.0102 (6) | |
C31 | 0.5926 (2) | 0.61543 (17) | 0.7005 (2) | 0.0144 (6) | |
C12 | 0.1151 (2) | 0.59239 (16) | 0.4349 (2) | 0.0111 (6) | |
C22 | 0.2328 (2) | 0.62430 (16) | 0.4086 (2) | 0.0100 (6) | |
C32 | 0.2339 (2) | 0.70740 (16) | 0.3737 (2) | 0.0147 (7) | |
O1W | 0.2660 (2) | 0.20634 (12) | 0.43647 (16) | 0.0155 (5) | |
O2W | 0.0408 (2) | 0.55934 (13) | 0.67754 (17) | 0.0179 (5) | |
O3W | 0.8866 (2) | 0.69741 (14) | 0.69807 (17) | 0.0230 (5) | |
H1 | 0.5052 | 0.3736 | 0.6019 | 0.021* | |
H3 | 0.0299 | 0.2450 | 0.5777 | 0.023* | |
H1A | 0.3959 | 0.3170 | 0.7021 | 0.014* | |
H1B | 0.4060 | 0.2612 | 0.6125 | 0.014* | |
H3A | 0.2002 | 0.2045 | 0.6399 | 0.016* | |
H3B | 0.1878 | 0.2629 | 0.7259 | 0.016* | |
H11 | 0.2078 | 0.5556 | 0.6428 | 0.023* | |
H31 | 0.7524 | 0.6263 | 0.6731 | 0.030* | |
H11A | 0.3661 | 0.5651 | 0.7502 | 0.017* | |
H11B | 0.3443 | 0.6438 | 0.6897 | 0.017* | |
H31A | 0.5775 | 0.6717 | 0.7103 | 0.017* | |
H31B | 0.6109 | 0.5906 | 0.7630 | 0.017* | |
H12 | 0.0754 | 0.4862 | 0.4178 | 0.019* | |
H32 | 0.3858 | 0.7473 | 0.4166 | 0.020* | |
H12A | 0.0913 | 0.6202 | 0.4913 | 0.013* | |
H12B | 0.0518 | 0.6012 | 0.3824 | 0.013* | |
H32A | 0.1852 | 0.7110 | 0.3120 | 0.018* | |
H32B | 0.1966 | 0.7417 | 0.4188 | 0.018* | |
H1W | 0.336 (3) | 0.2157 (19) | 0.434 (2) | 0.023* | |
H2W | 0.232 (3) | 0.233 (2) | 0.401 (3) | 0.023* | |
H3W | 0.043 (3) | 0.539 (2) | 0.724 (3) | 0.027* | |
H4W | 0.008 (3) | 0.597 (2) | 0.687 (3) | 0.027* | |
H5W | 0.953 (3) | 0.719 (2) | 0.666 (3) | 0.035* | |
H6W | 0.872 (3) | 0.706 (2) | 0.748 (3) | 0.035* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cd1 | 0.01022 (9) | 0.00908 (9) | 0.01143 (10) | −0.00043 (8) | 0.00061 (7) | 0.00044 (9) |
Cd2 | 0.00842 (10) | 0.01160 (11) | 0.01089 (12) | 0.00070 (8) | 0.00087 (9) | 0.00080 (9) |
Cd3 | 0.00799 (10) | 0.01115 (10) | 0.01064 (11) | 0.00033 (8) | 0.00080 (9) | 0.00086 (10) |
Cd4 | 0.00818 (10) | 0.01145 (11) | 0.01078 (12) | −0.00005 (8) | 0.00103 (9) | 0.00050 (9) |
Cl1 | 0.0098 (3) | 0.0161 (4) | 0.0094 (4) | 0.0008 (3) | 0.0015 (3) | 0.0009 (3) |
Cl2 | 0.0164 (3) | 0.0114 (3) | 0.0166 (4) | 0.0000 (3) | 0.0003 (3) | 0.0011 (3) |
Cl3 | 0.0094 (3) | 0.0118 (4) | 0.0105 (4) | −0.0002 (3) | 0.0003 (3) | 0.0007 (3) |
Cl4 | 0.0093 (3) | 0.0198 (4) | 0.0094 (4) | 0.0007 (3) | 0.0009 (3) | 0.0003 (3) |
Cl5 | 0.0089 (3) | 0.0095 (3) | 0.0105 (4) | 0.0005 (3) | 0.0006 (3) | −0.0004 (3) |
Cl6 | 0.0094 (3) | 0.0170 (4) | 0.0086 (4) | 0.0019 (3) | 0.0003 (3) | 0.0006 (3) |
Cl7 | 0.0091 (3) | 0.0120 (4) | 0.0092 (4) | 0.0000 (2) | 0.0008 (3) | −0.0008 (3) |
Cl8 | 0.0232 (4) | 0.0122 (4) | 0.0184 (4) | −0.0012 (3) | 0.0068 (3) | −0.0014 (3) |
O1 | 0.0071 (9) | 0.0157 (11) | 0.0191 (13) | −0.0022 (8) | −0.0004 (9) | 0.0074 (9) |
O2 | 0.0132 (10) | 0.0120 (10) | 0.0135 (11) | −0.0002 (8) | −0.0016 (9) | 0.0004 (9) |
O3 | 0.0095 (9) | 0.0169 (11) | 0.0190 (12) | −0.0020 (8) | 0.0028 (9) | −0.0020 (10) |
O11 | 0.0125 (9) | 0.0180 (11) | 0.0150 (11) | −0.0030 (8) | 0.0023 (8) | −0.0042 (9) |
O21 | 0.0131 (9) | 0.0116 (10) | 0.0090 (10) | −0.0015 (8) | 0.0012 (8) | −0.0012 (9) |
O31 | 0.0129 (10) | 0.0287 (13) | 0.0182 (13) | −0.0057 (9) | 0.0022 (9) | −0.0094 (10) |
O12 | 0.0125 (10) | 0.0080 (10) | 0.0165 (12) | −0.0026 (7) | −0.0011 (9) | 0.0019 (9) |
O22 | 0.0107 (9) | 0.0113 (10) | 0.0149 (11) | 0.0010 (8) | 0.0020 (8) | 0.0010 (9) |
O32 | 0.0120 (10) | 0.0142 (10) | 0.0143 (11) | −0.0024 (8) | 0.0020 (9) | 0.0009 (9) |
C1 | 0.0126 (14) | 0.0107 (14) | 0.0124 (15) | −0.0006 (11) | −0.0005 (12) | 0.0010 (12) |
C2 | 0.0125 (13) | 0.0082 (13) | 0.0117 (15) | 0.0015 (11) | 0.0004 (12) | −0.0043 (12) |
C3 | 0.0110 (13) | 0.0120 (14) | 0.0165 (17) | −0.0026 (11) | 0.0011 (12) | 0.0008 (13) |
C11 | 0.0162 (14) | 0.0162 (15) | 0.0093 (16) | −0.0006 (12) | 0.0018 (12) | −0.0004 (13) |
C21 | 0.0163 (14) | 0.0063 (14) | 0.0077 (14) | 0.0009 (10) | −0.0008 (11) | 0.0029 (12) |
C31 | 0.0134 (14) | 0.0172 (15) | 0.0123 (16) | −0.0014 (11) | 0.0003 (12) | −0.0019 (13) |
C12 | 0.0117 (13) | 0.0107 (13) | 0.0105 (15) | 0.0013 (11) | −0.0002 (11) | −0.0008 (12) |
C22 | 0.0145 (14) | 0.0121 (13) | 0.0032 (15) | −0.0003 (11) | −0.0001 (12) | −0.0043 (12) |
C32 | 0.0093 (13) | 0.0127 (15) | 0.0225 (18) | 0.0002 (11) | 0.0039 (13) | 0.0020 (13) |
O1W | 0.0144 (11) | 0.0153 (11) | 0.0166 (13) | −0.0008 (8) | 0.0007 (10) | 0.0010 (9) |
O2W | 0.0200 (11) | 0.0166 (12) | 0.0172 (13) | 0.0025 (9) | 0.0028 (10) | 0.0024 (11) |
O3W | 0.0242 (12) | 0.0274 (13) | 0.0185 (13) | −0.0084 (10) | 0.0075 (11) | −0.0070 (11) |
Geometric parameters (Å, º) top
Cd1—O1 | 2.296 (2) | O3—C3 | 1.405 (3) |
Cd1—O2 | 2.383 (2) | O3—H3 | 0.84 |
Cd1—O11 | 2.375 (2) | C1—C2 | 1.499 (4) |
Cd1—O21 | 2.502 (2) | C1—H1A | 0.99 |
Cd1—O12 | 2.335 (2) | C1—H1B | 0.99 |
Cd1—O22 | 2.360 (2) | C2—C3 | 1.498 (4) |
Cd1—O21i | 2.432 (2) | C3—H3A | 0.99 |
Cd1—O31i | 2.370 (2) | C3—H3B | 0.99 |
Cd1—Cd1i | 4.1954 (11) | O11—C11 | 1.424 (3) |
Cd2—Cl1 | 2.5713 (10) | O11—H11 | 0.84 |
Cd2—Cl2 | 2.5350 (9) | O21—C21 | 1.229 (3) |
Cd2—Cl3 | 2.6740 (11) | O21—Cd1i | 2.4324 (19) |
Cd2—Cl4 | 2.5839 (11) | O31—C31 | 1.417 (3) |
Cd2—Cl3ii | 2.7591 (9) | O31—H31 | 0.84 |
Cd2—Cl5ii | 2.6523 (12) | C11—C21 | 1.488 (4) |
Cd3—O1W | 2.341 (2) | C11—H11A | 0.99 |
Cd3—Cl3 | 2.6370 (11) | C11—H11B | 0.99 |
Cd3—Cl4 | 2.5613 (10) | C21—C31 | 1.501 (4) |
Cd3—Cl5 | 2.6780 (8) | C31—H31A | 0.99 |
Cd3—Cl6 | 2.5516 (11) | C31—H31B | 0.99 |
Cd3—Cl7 | 2.6158 (11) | O12—C12 | 1.427 (3) |
Cd4—Cl6 | 2.5746 (10) | O12—H12 | 0.84 |
Cd4—Cl7 | 2.6551 (12) | O22—C22 | 1.218 (3) |
Cd4—Cl8 | 2.5414 (9) | O32—C32 | 1.421 (3) |
Cd4—Cl1iii | 2.5726 (11) | O32—H32 | 0.84 |
Cd4—Cl5iv | 2.6572 (11) | C12—C22 | 1.504 (4) |
Cd4—Cl7iv | 2.7925 (9) | C12—H12A | 0.99 |
Cd2—Cd3 | 3.7147 (10) | C12—H12B | 0.99 |
Cd3—Cd4 | 3.7252 (10) | C22—C32 | 1.507 (4) |
Cd4—Cd2iii | 3.7544 (10) | C32—H32A | 0.99 |
Cl1—Cd4v | 2.5726 (11) | C32—H32B | 0.99 |
Cl3—Cd2ii | 2.7591 (9) | O1W—H1W | 0.80 (3) |
Cl5—Cd2ii | 2.6523 (12) | O1W—H2W | 0.76 (4) |
Cl5—Cd4iv | 2.6572 (11) | O2W—H3W | 0.74 (4) |
Cl7—Cd4iv | 2.7925 (9) | O2W—H4W | 0.77 (3) |
O1—C1 | 1.416 (3) | O3W—H5W | 0.98 (4) |
O1—H1 | 0.84 | O3W—H6W | 0.76 (4) |
O2—C2 | 1.221 (3) | | |
| | | |
O22—Cd1—O31i | 91.88 (8) | Cd3—Cl7—Cd4 | 89.94 (3) |
O22—Cd1—O2 | 146.14 (6) | Cd3—Cl7—Cd4iv | 93.92 (2) |
O31i—Cd1—O2 | 86.78 (7) | Cd4—Cl7—Cd4iv | 100.53 (2) |
O22—Cd1—O21i | 76.20 (6) | C1—O1—H1 | 109.5 |
O31i—Cd1—O21i | 64.91 (7) | C2—O2—Cd1 | 118.61 (17) |
O2—Cd1—O21i | 132.02 (7) | C3—O3—H3 | 109.5 |
O22—Cd1—O21 | 73.39 (7) | O1—C1—C2 | 108.6 (2) |
O31i—Cd1—O21 | 128.36 (7) | O1—C1—H1A | 110.0 |
O2—Cd1—O21 | 131.73 (7) | C2—C1—H1A | 110.0 |
O21i—Cd1—O21 | 63.53 (8) | O1—C1—H1B | 110.0 |
Cl2—Cd2—Cl1 | 100.80 (2) | C2—C1—H1B | 110.0 |
Cl2—Cd2—Cl4 | 95.00 (2) | H1A—C1—H1B | 108.3 |
Cl1—Cd2—Cl4 | 92.22 (3) | O2—C2—C1 | 122.2 (3) |
Cl2—Cd2—Cl5ii | 94.22 (2) | O2—C2—C3 | 122.8 (2) |
Cl1—Cd2—Cl5ii | 87.78 (3) | C1—C2—C3 | 114.9 (2) |
Cl4—Cd2—Cl5ii | 170.61 (2) | O3—C3—C2 | 115.3 (2) |
Cl2—Cd2—Cl3 | 89.60 (2) | O3—C3—H3A | 108.4 |
Cl1—Cd2—Cl3 | 169.50 (2) | C2—C3—H3A | 108.4 |
Cl4—Cd2—Cl3 | 88.28 (3) | O3—C3—H3B | 108.4 |
Cl5ii—Cd2—Cl3 | 90.03 (3) | C2—C3—H3B | 108.4 |
Cl2—Cd2—Cl3ii | 171.91 (2) | H3A—C3—H3B | 107.5 |
Cl1—Cd2—Cl3ii | 87.25 (2) | C11—O11—H11 | 109.5 |
Cl4—Cd2—Cl3ii | 85.37 (2) | C21—O21—Cd1i | 122.45 (17) |
Cl5ii—Cd2—Cl3ii | 85.25 (2) | C21—O21—Cd1 | 121.09 (17) |
Cl3—Cd2—Cl3ii | 82.33 (2) | Cd1i—O21—Cd1 | 116.47 (8) |
O1W—Cd3—Cl6 | 95.56 (6) | C31—O31—H31 | 109.5 |
O1W—Cd3—Cl4 | 90.26 (6) | O11—C11—C21 | 108.7 (2) |
Cl6—Cd3—Cl4 | 91.89 (3) | O11—C11—H11A | 109.9 |
O1W—Cd3—Cl7 | 91.09 (6) | C21—C11—H11A | 109.9 |
Cl6—Cd3—Cl7 | 88.94 (3) | O11—C11—H11B | 109.9 |
Cl4—Cd3—Cl7 | 178.34 (2) | C21—C11—H11B | 109.9 |
O1W—Cd3—Cl3 | 81.72 (6) | H11A—C11—H11B | 108.3 |
Cl6—Cd3—Cl3 | 176.93 (2) | O21—C21—C11 | 120.5 (2) |
Cl4—Cd3—Cl3 | 89.56 (3) | O21—C21—C31 | 120.0 (3) |
Cl7—Cd3—Cl3 | 89.68 (3) | C11—C21—C31 | 119.6 (2) |
O1W—Cd3—Cl5 | 168.73 (6) | O31—C31—C21 | 108.3 (2) |
Cl6—Cd3—Cl5 | 95.46 (2) | O31—C31—H31A | 110.0 |
Cl4—Cd3—Cl5 | 91.75 (2) | C21—C31—H31A | 110.0 |
Cl7—Cd3—Cl5 | 86.74 (2) | O31—C31—H31B | 110.0 |
Cl3—Cd3—Cl5 | 87.20 (2) | C21—C31—H31B | 110.0 |
Cl8—Cd4—Cl1iii | 96.56 (2) | H31A—C31—H31B | 108.4 |
Cl8—Cd4—Cl6 | 92.32 (2) | C12—O12—H12 | 109.5 |
Cl1iii—Cd4—Cl6 | 94.76 (3) | C22—O22—Cd1 | 117.81 (18) |
Cl8—Cd4—Cl7 | 95.45 (2) | C32—O32—H32 | 109.5 |
Cl1iii—Cd4—Cl7 | 167.66 (2) | O12—C12—C22 | 110.4 (2) |
Cl6—Cd4—Cl7 | 87.60 (3) | O12—C12—H12A | 109.6 |
Cl8—Cd4—Cl5iv | 94.31 (2) | C22—C12—H12A | 109.6 |
Cl1iii—Cd4—Cl5iv | 87.65 (3) | O12—C12—H12B | 109.6 |
Cl6—Cd4—Cl5iv | 172.64 (2) | C22—C12—H12B | 109.6 |
Cl7—Cd4—Cl5iv | 88.60 (3) | H12A—C12—H12B | 108.1 |
Cl8—Cd4—Cl7iv | 174.54 (3) | O22—C22—C12 | 121.7 (3) |
Cl1iii—Cd4—Cl7iv | 88.43 (2) | O22—C22—C32 | 120.9 (2) |
Cl6—Cd4—Cl7iv | 89.46 (2) | C12—C22—C32 | 117.4 (2) |
Cl7—Cd4—Cl7iv | 79.47 (2) | O32—C32—C22 | 111.9 (2) |
Cl5iv—Cd4—Cl7iv | 83.65 (2) | O32—C32—H32A | 109.2 |
Cd2—Cl1—Cd4v | 93.75 (3) | C22—C32—H32A | 109.2 |
Cd3—Cl3—Cd2 | 88.76 (3) | O32—C32—H32B | 109.2 |
Cd3—Cl3—Cd2ii | 92.99 (2) | C22—C32—H32B | 109.2 |
Cd2—Cl3—Cd2ii | 97.67 (2) | H32A—C32—H32B | 107.9 |
Cd3—Cl4—Cd2 | 92.43 (3) | Cd3—O1W—H1W | 108 (2) |
Cd2ii—Cl5—Cd4iv | 90.00 (3) | Cd3—O1W—H2W | 120 (3) |
Cd2ii—Cl5—Cd3 | 94.52 (2) | H1W—O1W—H2W | 106 (4) |
Cd4iv—Cl5—Cd3 | 95.67 (2) | H3W—O2W—H4W | 103 (4) |
Cd3—Cl6—Cd4 | 93.22 (3) | H5W—O3W—H6W | 127 (4) |
| | | |
Cl2—Cd2—Cl1—Cd4v | 86.87 (3) | Cl5—Cd3—Cl7—Cd4 | −99.65 (2) |
Cl4—Cd2—Cl1—Cd4v | −177.61 (2) | O1W—Cd3—Cl7—Cd4iv | −168.02 (6) |
Cl5ii—Cd2—Cl1—Cd4v | −7.00 (2) | Cl6—Cd3—Cl7—Cd4iv | 96.44 (2) |
Cl3—Cd2—Cl1—Cd4v | −85.09 (14) | Cl3—Cd3—Cl7—Cd4iv | −86.31 (2) |
Cl3ii—Cd2—Cl1—Cd4v | −92.35 (2) | Cl5—Cd3—Cl7—Cd4iv | 0.91 (2) |
O1W—Cd3—Cl3—Cd2 | −82.97 (6) | Cl8—Cd4—Cl7—Cd3 | −88.02 (2) |
Cl4—Cd3—Cl3—Cd2 | 7.35 (2) | Cl1iii—Cd4—Cl7—Cd3 | 105.46 (11) |
Cl7—Cd3—Cl3—Cd2 | −174.13 (2) | Cl6—Cd4—Cl7—Cd3 | 4.08 (2) |
Cl5—Cd3—Cl3—Cd2 | 99.12 (2) | Cl5iv—Cd4—Cl7—Cd3 | 177.78 (2) |
O1W—Cd3—Cl3—Cd2ii | 179.41 (6) | Cl7iv—Cd4—Cl7—Cd3 | 93.98 (3) |
Cl4—Cd3—Cl3—Cd2ii | −90.27 (2) | Cl8—Cd4—Cl7—Cd4iv | 178.00 (2) |
Cl7—Cd3—Cl3—Cd2ii | 88.26 (2) | Cl1iii—Cd4—Cl7—Cd4iv | 11.48 (12) |
Cl5—Cd3—Cl3—Cd2ii | 1.50 (2) | Cl6—Cd4—Cl7—Cd4iv | −89.90 (2) |
Cl2—Cd2—Cl3—Cd3 | 87.72 (2) | Cl5iv—Cd4—Cl7—Cd4iv | 83.80 (2) |
Cl1—Cd2—Cl3—Cd3 | −100.17 (14) | Cl7iv—Cd4—Cl7—Cd4iv | 0.0 |
Cl4—Cd2—Cl3—Cd3 | −7.29 (2) | O22—Cd1—O2—C2 | −167.90 (19) |
Cl5ii—Cd2—Cl3—Cd3 | −178.05 (2) | O31i—Cd1—O2—C2 | 103.5 (2) |
Cl3ii—Cd2—Cl3—Cd3 | −92.85 (2) | O21i—Cd1—O2—C2 | 52.0 (2) |
Cl2—Cd2—Cl3—Cd2ii | −179.42 (2) | O21—Cd1—O2—C2 | −38.0 (2) |
Cl1—Cd2—Cl3—Cd2ii | −7.32 (15) | Cd1—O2—C2—C3 | 174.0 (2) |
Cl4—Cd2—Cl3—Cd2ii | 85.56 (2) | Cd1—O2—C2—C1 | −7.1 (4) |
Cl5ii—Cd2—Cl3—Cd2ii | −85.20 (2) | O1—C1—C2—O2 | 2.6 (4) |
Cl3ii—Cd2—Cl3—Cd2ii | 0.0 | O1—C1—C2—C3 | −178.3 (2) |
O1W—Cd3—Cl4—Cd2 | 74.11 (6) | O2—C2—C3—O3 | 0.3 (4) |
Cl6—Cd3—Cl4—Cd2 | 169.68 (2) | C1—C2—C3—O3 | −178.7 (2) |
Cl3—Cd3—Cl4—Cd2 | −7.61 (2) | O22—Cd1—O21—C21 | 97.2 (2) |
Cl5—Cd3—Cl4—Cd2 | −94.80 (2) | O31i—Cd1—O21—C21 | 176.15 (19) |
Cl2—Cd2—Cl4—Cd3 | −81.94 (3) | O2—Cd1—O21—C21 | −56.3 (2) |
Cl1—Cd2—Cl4—Cd3 | 177.02 (2) | O21i—Cd1—O21—C21 | 179.8 (2) |
Cl3—Cd2—Cl4—Cd3 | 7.51 (2) | O22—Cd1—O21—Cd1i | −82.56 (9) |
Cl3ii—Cd2—Cl4—Cd3 | 89.95 (2) | O31i—Cd1—O21—Cd1i | −3.65 (13) |
O1W—Cd3—Cl5—Cd2ii | −12.2 (3) | O2—Cd1—O21—Cd1i | 123.92 (9) |
Cl6—Cd3—Cl5—Cd2ii | 179.98 (2) | O21i—Cd1—O21—Cd1i | 0.0 |
Cl4—Cd3—Cl5—Cd2ii | 87.91 (3) | Cd1i—O21—C21—C11 | 172.57 (18) |
Cl7—Cd3—Cl5—Cd2ii | −91.40 (3) | Cd1—O21—C21—C11 | −7.2 (3) |
Cl3—Cd3—Cl5—Cd2ii | −1.57 (2) | Cd1i—O21—C21—C31 | −6.7 (3) |
O1W—Cd3—Cl5—Cd4iv | 78.2 (3) | Cd1—O21—C21—C31 | 173.50 (18) |
Cl6—Cd3—Cl5—Cd4iv | −89.57 (3) | O11—C11—C21—O21 | −0.8 (4) |
Cl4—Cd3—Cl5—Cd4iv | 178.36 (2) | O11—C11—C21—C31 | 178.5 (2) |
Cl7—Cd3—Cl5—Cd4iv | −0.95 (3) | O21—C21—C31—O31 | 6.4 (4) |
Cl3—Cd3—Cl5—Cd4iv | 88.88 (3) | C11—C21—C31—O31 | −172.9 (2) |
O1W—Cd3—Cl6—Cd4 | −86.75 (6) | O31i—Cd1—O22—C22 | 102.8 (2) |
Cl4—Cd3—Cl6—Cd4 | −177.19 (2) | O2—Cd1—O22—C22 | 15.8 (3) |
Cl7—Cd3—Cl6—Cd4 | 4.25 (2) | O21i—Cd1—O22—C22 | 166.4 (2) |
Cl5—Cd3—Cl6—Cd4 | 90.87 (2) | O21—Cd1—O22—C22 | −127.5 (2) |
Cl8—Cd4—Cl6—Cd3 | 91.17 (3) | Cd1—O22—C22—C12 | −8.2 (3) |
Cl1iii—Cd4—Cl6—Cd3 | −172.05 (2) | Cd1—O22—C22—C32 | 169.2 (2) |
Cl7—Cd4—Cl6—Cd3 | −4.19 (2) | O12—C12—C22—O22 | −10.0 (4) |
Cl7iv—Cd4—Cl6—Cd3 | −83.67 (2) | O12—C12—C22—C32 | 172.5 (2) |
O1W—Cd3—Cl7—Cd4 | 91.43 (6) | O22—C22—C32—O32 | −5.6 (4) |
Cl6—Cd3—Cl7—Cd4 | −4.11 (2) | C12—C22—C32—O32 | 171.9 (2) |
Cl3—Cd3—Cl7—Cd4 | 173.14 (2) | | |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) x−1, y, z; (iv) −x, −y, −z+1; (v) x+1, y, z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O22i | 0.84 | 2.07 | 2.822 (3) | 150 |
O1—H1···O32i | 0.84 | 2.45 | 3.073 (3) | 131 |
O3—H3···Cl8 | 0.84 | 2.52 | 3.312 (2) | 158 |
O11—H11···O2W | 0.84 | 1.98 | 2.810 (3) | 172 |
O31—H31···O3W | 0.84 | 1.94 | 2.740 (3) | 160 |
O12—H12···O2Wvi | 0.84 | 1.95 | 2.784 (3) | 173 |
O32—H32···Cl2i | 0.84 | 2.27 | 3.096 (2) | 169 |
O1W—H1W···Cl2 | 0.80 (3) | 2.41 (3) | 3.203 (2) | 176 (3) |
O1W—H2W···O3Wi | 0.76 (4) | 2.19 (4) | 2.944 (3) | 173 (4) |
O2W—H3W···Cl4vii | 0.74 (4) | 2.74 (4) | 3.302 (3) | 134 (3) |
O2W—H4W···O3Wiii | 0.77 (3) | 2.20 (4) | 2.955 (3) | 170 (4) |
O3W—H5W···Cl8i | 0.98 (4) | 2.09 (4) | 3.067 (3) | 174 (3) |
O3W—H6W···O32viii | 0.76 (4) | 1.96 (4) | 2.690 (3) | 159 (4) |
C1—H1A···Cl1vii | 0.99 | 3.11 | 3.630 (3) | 114 |
C1—H1A···Cl6ix | 0.99 | 2.88 | 3.570 (3) | 127 |
C1—H1A···Cl8ix | 0.99 | 3.17 | 4.099 (3) | 157 |
C3—H3A···Cl7 | 0.99 | 2.79 | 3.545 (3) | 134 |
C3—H3B···Cl1vii | 0.99 | 3.02 | 3.574 (3) | 117 |
C11—H11B···Cl2i | 0.99 | 3.01 | 3.638 (3) | 123 |
C11—H11A···Cl1vii | 0.99 | 2.97 | 3.628 (3) | 125 |
C11—H11A···Cl7x | 0.99 | 2.77 | 3.679 (3) | 153 |
C31—H31B···Cl5ix | 0.99 | 2.84 | 3.740 (3) | 151 |
C31—H31B···Cl6ix | 0.99 | 2.94 | 3.582 (3) | 123 |
C31—H31A···Cl2i | 0.99 | 2.83 | 3.459 (3) | 122 |
C12—H12A···Cl8vi | 0.99 | 2.78 | 3.643 (3) | 146 |
C12—H12B···Cl4xi | 0.99 | 2.81 | 3.379 (3) | 117 |
C12—H12B···O3vi | 0.99 | 2.62 | 3.204 (3) | 118 |
C32—H32B···Cl5xii | 0.99 | 3.03 | 3.693 (3) | 126 |
C32—H32B···Cl8vi | 0.99 | 2.79 | 3.689 (3) | 151 |
C32—H32A···Cl4xi | 0.99 | 3.05 | 3.667 (3) | 121 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (iii) x−1, y, z; (vi) −x, −y+1, −z+1; (vii) x−1/2, −y+1/2, z+1/2; (viii) x+1/2, −y+3/2, z+1/2; (ix) x+1/2, −y+1/2, z+1/2; (x) −x+1/2, y+1/2, −z+3/2; (xi) −x+1/2, y+1/2, −z+1/2; (xii) x, y+1, z. |
Experimental details
| (2e) | (2f) |
Crystal data |
Chemical formula | [Ca2(C3H6O3)2(H2O)8]Br4 | [Cd2(C3H6O3)6][Cd6Cl16(H2O)2]·4H2O |
Mr | 724.08 | 2114.96 |
Crystal system, space group | Triclinic, P1 | Monoclinic, P21/n |
Temperature (K) | 100 | 100 |
a, b, c (Å) | 9.225 (2), 9.143 (2), 14.504 (3) | 11.170 (3), 17.119 (3), 14.225 (3) |
α, β, γ (°) | 90.73 (3), 100.01 (3), 92.84 (3) | 90, 95.42 (3), 90 |
V (Å3) | 1202.9 (5) | 2707.9 (10) |
Z | 2 | 2 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 7.17 | 3.94 |
Crystal size (mm) | 0.41 × 0.36 × 0.17 | 0.19 × 0.08 × 0.04 |
|
Data collection |
Diffractometer | Kuma KM4 κ-geometry diffractometer with Sapphire CCD camera | Kuma KM4 κ-geometry diffractometer with Sapphire CCD camera |
Absorption correction | Analytical (CrysAlis RED in KM-4 CCD Software; Oxford Diffraction, 2004) | Analytical (CrysAlis RED in KM-4 CCD Software; Oxford Diffraction, 2004) |
Tmin, Tmax | 0.100, 0.283 | 0.550, 0.850 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18605, 6788, 5914 | 38913, 7856, 5800 |
Rint | 0.035 | 0.051 |
(sin θ/λ)max (Å−1) | 0.703 | 0.703 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.057, 1.04 | 0.029, 0.036, 1.00 |
No. of reflections | 6788 | 7856 |
No. of parameters | 326 | 322 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.56, −0.51 | 1.02, −0.60 |
Selected geometric parameters (Å, º) for (2e) topO1—C1 | 1.425 (3) | O11—C11 | 1.419 (3) |
O2—C2 | 1.225 (3) | O21—C21 | 1.221 (3) |
O3—C3 | 1.419 (3) | O31—C31 | 1.416 (3) |
| | | |
O1—C1—C2—O2 | −4.2 (3) | O11—C11—C21—O21 | −7.7 (3) |
O1—C1—C2—C3 | 175.4 (2) | O11—C11—C21—C31 | 170.1 (2) |
O2—C2—C3—O3 | −8.1 (3) | O21—C21—C31—O31 | −9.6 (3) |
C1—C2—C3—O3 | 172.3 (2) | C11—C21—C31—O31 | 172.6 (2) |
Hydrogen-bond geometry (Å, º) for (2e) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···Br3 | 0.77 (4) | 2.39 (4) | 3.150 (2) | 169 (4) |
O3—H3···Br1 | 0.84 (4) | 2.33 (4) | 3.159 (2) | 172 (4) |
O11—H11···Br3i | 0.77 (4) | 2.48 (4) | 3.222 (2) | 162 (3) |
O31—H31···Br4 | 0.78 (4) | 2.43 (4) | 3.206 (2) | 173 (4) |
O1W—H1W···Br3ii | 0.78 (5) | 2.53 (5) | 3.312 (2) | 175 (4) |
O1W—H2W···O2Wi | 0.80 (4) | 2.06 (4) | 2.828 (3) | 161 (4) |
O2W—H4W···Br2 | 0.73 (4) | 2.52 (4) | 3.244 (2) | 177 (4) |
O2W—H3W···Br4iii | 0.82 (4) | 2.57 (4) | 3.340 (2) | 157 (3) |
O3W—H6W···Br1iv | 0.69 (4) | 2.73 (4) | 3.412 (2) | 169 (4) |
O3W—H5W···Br4iii | 0.84 (5) | 2.47 (5) | 3.288 (2) | 163 (4) |
O4W—H8W···Br1iv | 0.64 (5) | 2.64 (5) | 3.276 (3) | 169 (5) |
O4W—H7W···O1ii | 0.77 (5) | 2.28 (5) | 2.979 (3) | 152 (4) |
O5W—H10W···Br2v | 0.74 (4) | 2.73 (4) | 3.396 (2) | 151 (4) |
O5W—H9W···Br4vi | 0.82 (5) | 2.49 (5) | 3.298 (2) | 170 (4) |
O6W—H11W···Br1vii | 0.77 (4) | 2.64 (4) | 3.328 (2) | 150 (4) |
O6W—H12W···O5Wviii | 0.83 (4) | 2.10 (4) | 2.840 (3) | 149 (3) |
O7W—H13W···Br2v | 0.78 (4) | 2.54 (4) | 3.321 (2) | 175 (3) |
O7W—H14W···Br2vii | 0.85 (5) | 2.50 (5) | 3.322 (2) | 164 (4) |
O8W—H15W···Br1vii | 0.82 (5) | 2.59 (5) | 3.387 (2) | 165 (4) |
O8W—H16W···Br3i | 0.78 (4) | 2.66 (4) | 3.401 (2) | 160 (4) |
C1—H1B···Br2 | 0.99 | 2.87 | 3.526 (3) | 125 |
C3—H3A···Br4ix | 0.99 | 3.00 | 3.602 (3) | 121 |
C11—H11A···Br2i | 0.99 | 2.95 | 3.794 (3) | 144 |
C11—H11B···Br3v | 0.99 | 3.05 | 3.710 (3) | 125 |
C31—H31A···Br2x | 0.99 | 3.13 | 3.785 (3) | 125 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x, y−1, z−1; (vi) x, y−1, z; (vii) −x+1, −y, −z+1; (viii) −x+2, −y, −z; (ix) x−1, y, z+1; (x) x, y, z−1. |
Selected geometric parameters (Å, º) for (2f) topO1—C1 | 1.416 (3) | O31—C31 | 1.417 (3) |
O2—C2 | 1.221 (3) | O12—C12 | 1.427 (3) |
O3—C3 | 1.405 (3) | O22—C22 | 1.218 (3) |
O11—C11 | 1.424 (3) | O32—C32 | 1.421 (3) |
O21—C21 | 1.229 (3) | | |
| | | |
O1—C1—C2—O2 | 2.6 (4) | O21—C21—C31—O31 | 6.4 (4) |
O1—C1—C2—C3 | −178.3 (2) | C11—C21—C31—O31 | −172.9 (2) |
O2—C2—C3—O3 | 0.3 (4) | O12—C12—C22—O22 | −10.0 (4) |
C1—C2—C3—O3 | −178.7 (2) | O12—C12—C22—C32 | 172.5 (2) |
O11—C11—C21—O21 | −0.8 (4) | O22—C22—C32—O32 | −5.6 (4) |
O11—C11—C21—C31 | 178.5 (2) | C12—C22—C32—O32 | 171.9 (2) |
Hydrogen-bond geometry (Å, º) for (2f) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O22i | 0.84 | 2.07 | 2.822 (3) | 150 |
O1—H1···O32i | 0.84 | 2.45 | 3.073 (3) | 131 |
O3—H3···Cl8 | 0.84 | 2.52 | 3.312 (2) | 158 |
O11—H11···O2W | 0.84 | 1.98 | 2.810 (3) | 172 |
O31—H31···O3W | 0.84 | 1.94 | 2.740 (3) | 160 |
O12—H12···O2Wii | 0.84 | 1.95 | 2.784 (3) | 173 |
O32—H32···Cl2i | 0.84 | 2.27 | 3.096 (2) | 169 |
O1W—H1W···Cl2 | 0.80 (3) | 2.41 (3) | 3.203 (2) | 176 (3) |
O1W—H2W···O3Wi | 0.76 (4) | 2.19 (4) | 2.944 (3) | 173 (4) |
O2W—H3W···Cl4iii | 0.74 (4) | 2.74 (4) | 3.302 (3) | 134 (3) |
O2W—H4W···O3Wiv | 0.77 (3) | 2.20 (4) | 2.955 (3) | 170 (4) |
O3W—H5W···Cl8i | 0.98 (4) | 2.09 (4) | 3.067 (3) | 174 (3) |
O3W—H6W···O32v | 0.76 (4) | 1.96 (4) | 2.690 (3) | 159 (4) |
C1—H1A···Cl1iii | 0.99 | 3.11 | 3.630 (3) | 114 |
C1—H1A···Cl6vi | 0.99 | 2.88 | 3.570 (3) | 127 |
C1—H1A···Cl8vi | 0.99 | 3.17 | 4.099 (3) | 157 |
C3—H3A···Cl7 | 0.99 | 2.79 | 3.545 (3) | 134 |
C3—H3B···Cl1iii | 0.99 | 3.02 | 3.574 (3) | 117 |
C11—H11B···Cl2i | 0.99 | 3.01 | 3.638 (3) | 123 |
C11—H11A···Cl1iii | 0.99 | 2.97 | 3.628 (3) | 125 |
C11—H11A···Cl7vii | 0.99 | 2.77 | 3.679 (3) | 153 |
C31—H31B···Cl5vi | 0.99 | 2.84 | 3.740 (3) | 151 |
C31—H31B···Cl6vi | 0.99 | 2.94 | 3.582 (3) | 123 |
C31—H31A···Cl2i | 0.99 | 2.83 | 3.459 (3) | 122 |
C12—H12A···Cl8ii | 0.99 | 2.78 | 3.643 (3) | 146 |
C12—H12B···Cl4viii | 0.99 | 2.81 | 3.379 (3) | 117 |
C12—H12B···O3ii | 0.99 | 2.62 | 3.204 (3) | 118 |
C32—H32B···Cl5ix | 0.99 | 3.03 | 3.693 (3) | 126 |
C32—H32B···Cl8ii | 0.99 | 2.79 | 3.689 (3) | 151 |
C32—H32A···Cl4viii | 0.99 | 3.05 | 3.667 (3) | 121 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1; (iii) x−1/2, −y+1/2, z+1/2; (iv) x−1, y, z; (v) x+1/2, −y+3/2, z+1/2; (vi) x+1/2, −y+1/2, z+1/2; (vii) −x+1/2, y+1/2, −z+3/2; (viii) −x+1/2, y+1/2, −z+1/2; (ix) x, y+1, z. |
The coordination environment of the Ca2+ ions in (2e) (Å) topCa1—O1 | 2.458 (2) | Ca2—O11 | 2.420 (2) |
Ca1—O2 | 2.524 (2) | Ca2—O21 | 2.512 (2) |
Ca1—O2i | 2.574 (2) | Ca2—O21ii | 2.550 (2) |
Ca1—O3i | 2.387 (2) | Ca2—O31ii | 2.402 (2) |
Ca1—O1W | 2.351 (2) | Ca2—O5W | 2.450 (2) |
Ca1—O2W | 2.439 (2) | Ca2—O6W | 2.380 (2) |
Ca1—O3W | 2.405 (2) | Ca2—O7W | 2.380 (2) |
Ca1—O4W | 2.388 (2) | Ca2—O8W | 2.431 (2) |
Ca1···Ca1i | 4.334 (2) | Ca2···Ca2ii | 4.300 (2) |
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y -z. |
The coordination environment of the Cd2+ ions in (2f) (Å) topCd1—O1 | 2.296 (2) | Cd3—O1W | 2.341 (2) |
Cd1—O2 | 2.383 (2) | Cd3—Cl3 | 2.6370 (11) |
Cd1—O11 | 2.375 (2) | Cd3—Cl4 | 2.5613 (10) |
Cd1—O21 | 2.502 (2) | Cd3—Cl5 | 2.6780 (8) |
Cd1—O12 | 2.335 (2) | Cd3—Cl6 | 2.5516 (11) |
Cd1—O22 | 2.360 (2) | Cd3—Cl7 | 2.6158 (11) |
Cd1—O21i | 2.432 (2) | Cd4—Cl6 | 2.5746 (10) |
Cd1—O31i | 2.370 (2) | Cd4—Cl7 | 2.6551 (12) |
Cd1···Cd1i | 4.1954 (11) | Cd4—Cl8 | 2.5414 (9) |
Cd2—Cl1 | 2.5713 (10) | Cd4—Cl1iii | 2.5726 (11) |
Cd2—Cl2 | 2.5350 (9) | Cd4—Cl5iv | 2.6572 (11) |
Cd2—Cl3 | 2.6740 (11) | Cd4—Cl7iv | 2.7925 (9) |
Cd2—Cl4 | 2.5839 (11) | Cd2···Cd3 | 3.7147 (10) |
Cd2—Cl3ii | 2.7591 (9) | Cd3···Cd4 | 3.7252 (10) |
Cd2—Cl5ii | 2.6523 (12) | Cd4···Cd2iii | 3.7544 (10) |
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1;
(iii) x-1, y, z; (iv) -x, -y, -z+1. |
The solid-state study of dihydroxyacetone, DHA (1,3-dihydroxy-2-propanone), the simplest ketose, was undertaken as part of the structural characterization of the intermediates on a chemical pathway, based on the synthesis described by Ferroni et al. (1999) and then modified (Ślepokura & Lis, 2004a; Ślepokura, 2008), leading from dihydroxyacetone to its phosphate ester, dihydroxyacetone phosphate, DHAP, which is a biochemical intermediate of great biological and chemical (synthetic) importance (Gijsen et al., 1996; Koeller & Wong, 2000; Machajewski & Wong, 2000; Fessner & Helaine, 2001). Previously, we have reported the crystal and molecular structures of the series of compounds occurring in the first six steps of the investigated pathway (Ślepokura & Lis, 2004a,b, 2006; Ślepokura, 2008).
DHA (ketotriose), along with D-glyceraldehyde (aldotriose), are the basis of carbohydrate chemistry. Nevertheless, until 2004, the dimeric structure of D-glyceraldehyde, described in 1973 by Senma et al. (1973), was the only crystal structure of a triose given in the literature. In contrast with five- and six-carbon sugars, trioses and tetroses were poorly characterized in terms of their solid-state structure [see, for example, the Cambridge Structural Database (CSD), Version? (Allen, 2002)]. It is known that the commercial solid dihydroxyacetone, which is 100% in dimeric form, dissociates in water solution into a mixture of two monomeric forms: a free carbonyl (ketone, K) and a hydrate (gem-diol, H) in a ratio of 4:1 (Davis, 1973; Ślepokura & Lis, 2004a). Kobayashi et al. (1976) stated that in the melted state DHA also exists as a mixture of monomeric and dimeric molecules, the monomer being predominant. Nevertheless, the solid-state structure of dihydroxyacetone had not been reported until very recently, when we described its crystal and molecular structures in dimeric form, DHA-dimer, C6H12O6 [three polymorphous forms, (1a–c)], as well as in monomeric form [DHA, C3H6O3, (2c)], along with two calcium chloride complexes of DHA, [Ca2Cl2(DHA)4(H2O)2]Cl2, (2a), and [Ca2(DHA)2(H2O)8]Cl4, (2 b) (Ślepokura & Lis, 2004a).
Analysis of the dihydroxyacetone calcium chloride complexes, (2a) and (2 b), revealed very specific interactions between DHA molecules and Ca2+ cations. Although, from the structural point of view, calcium complexation by α-hydroxycarboxylates is well known, calcium complexation by α-hydroxyketones has only rarely been reported. The first crystallographic structural characterization of such a complex reported in the literature was the calcium complex of hydroxyacetophenone (phenacyl alcohol; Doxsee et al., 1993). The α-hydroxyketone moiety occurs in a number of important pharmaceutical compounds (including corticosteroids and tetracycline antibiotics) and there have been reports suggesting the potential interaction of such pharmaceuticals with Ca2+ cations in vivo (Monder et al., 1988; Lambs et al., 1988).
The analysis of the structures of the compounds (2a–c) reported by us previously (Ślepokura & Lis, 2004a) and those presented here, (2 e) and (2f), reveals a great similarity in the DHA molecules, regardless of whether they are coordinated to a metal centre or not. The overall molecular structure of monomeric dihydroxyacetone in the solid state is very rigid and hence almost identical in all its known compounds. The most important structural feature of all the DHA molecules is their planarity. The molecules exist in an extended (in-plane) conformation. with all of the non-H atoms lying in one plane, and with the hydroxyl H atoms being nearly coplanar in most cases. Both hydroxyl groups in compounds (2a–f) are in a synperiplanar (sp) orientation in relation to the carbonyl O atom. The molecular structures of the crystallographically independent DHA molecules, two in the calcium bromide complex (2 e) and three in the cadmium chloride complex (2f), are shown in Fig. 1. The relevant torsion angles for all of them are listed in Tables 1 and 4. It is to be noted here that the synperiplanar orientation of the DHA hydroxyl and carbonyl groups was proposed by Yaylayan & Ismail (1995) on the basis of solution FT–IR spectroscopy. The planarity of the α-hydroxyketone moiety in the solid state has been observed in some steroids, e.g. cortisone and its derivatives, sugar derivatives [of what?], methyl 2-acetamido-2-deoxy-β-D-hexafuranosid-5-ulose (CSD refcode? Compound reference?), and hydroxyacetophenone complexed to the Ca2+ cation (Doxsee et al., 1993). However, the steroid crystal structures show that when the two α-hydroxyl groups relative to the ketone functionality are present, one of them adopts the antiperiplanar (ap) orientation.
The crystal structure of (2 e) is isomorphous with that of (2 b) and consists of [Ca2(DHA)2(H2O)8]4+ cations with Br- anions located between them. The crystal structure of (2f) is built up from [Cd2(DHA)6]4+ cations, inorganic polymeric [Cd3Cl8(H2O)]n2n- anions described below and non-coordinated water of hydration. Two crystallographically independent Ca2+ cations in (2 e) form two independent but chemically identical complex cations in a manner shown in Fig. 2. Two symmetry-related Ca2+ or Cd2+ ions are linked by two carbonyl O bridges from two symmetry-related DHA molecules to form centrosymmetric dimers, with Ca···Ca distances of 4.334 (2) and 4.300 (2) Å in the two crystallographically independent dimers in (2 e) and a Cd···Cd distance of 4.195 (1) Å in (2f). As found in (2a) and (2 b) (Ślepokura & Lis, 2004a), the DHA molecules of the complex cations described here act as bridging as well as chelating ligands for two symmetry-related complex-forming metal centres (Figs. 2 and 3). Thus, the eight-coordinate polyhedra of each Ca2+ cation in (2 e) and one of the Cd2+ cations (Cd1) in (2f) are composed of O atoms from the differing number of DHA molecules coordinating to them [four O atoms from two DHA in (2 e) and eight O atoms from four DHA in (2f)]. The coordination environments of the Ca2+ cations in (2 e) are completed by four water molecules. The coordination polyhedra of the Ca2+ and Cd2+ metal centres may be described as distorted square antiprisms, with the longest of all the M···O distances being the bridging distance M···O2 (for geometry of the metal coordination spheres, see Tables 2 and 5). The same mode of coordination of the α-hydroxyketone moiety to Ca2+ or Cd2+ cations is observed in all the DHA complexes presented here and reported previously (Ślepokura & Lis, 2004a), as well as in hydroxyacetophenone complexed with CaCl2 (Doxsee et al., 1993). This coordination pattern is typical for the α-chelation mode, which is a characteristic mode for the interactions of α-hydroxyacids with Ca2+ ions (Einspahr & Bugg, 1981). In all the DHA complexes, there is a strong tendency for the Ca2+ ion to lie in the plane of the α-hydroxycarbonyl group, and therefore in the plane of the DHA molecules. The Ca2+ cations are restricted to a narrow region, with Ca···O—C angles of about 110–130°, typical for the α-chelation mode: 120.4 (2)–122.7 (2)° in (2 e) and 117.8 (2)–122.4 (2)° in (2f).
The characteristic structural units of all the known DHA complexes are the complex cations, although these may be of three different types. Identical cations with a 1:1 Ca2+:DHA ratio (type I) are formed in the isomorphous crystal structures (2 b) and (2 e). Cations with a 1:2 Ca2+:DHA ratio (type II) are present in the CaCl2 complex, (2a). [It is to be noted here that the model obtained for the crystal structure of the CaBr2 complex, (2 d), reveals a similar complex cation.] The third type of dimeric cation is formed in the case of Cd centres, with a 1:3 C d2+:DHA ratio (type III). In all types of complex cation, the ligands (DHA and/or water molecules) are located on two almost perpendicular planes, intersecting each other along the line linking the two M2+ ions. The first of these is always built up from the two M2+ ions and two bridging DHA molecules to form the core of the dimeric complex cation. In general, the core plane is almost planar (deviations from the least-squares planes are less than 0.2 Å) in all the dimeric complex cations described. The second plane is composed of the same two M2+ ions and the other, chelating, DHA molecules and/or water molecules [Cl- exceptionally in (2a)]. This plane is quite well defined in the complex cation of type II. The same plane in complex cations of types I (eight water molecules) and III (four DHA molecules) is much less well defined, with O6W water molecules in (2 b) and (2 e) being displaced from the plane by 0.4–0.5 Å, and with some of the atoms in (2f) deviating by 0.2–0.3 Å. The intersection angles between the two planes are 87.9 (1) and 88.1 (1)° in the two crystallographically independent complex cations formed by Ca1 and Ca2 in (2 e), and 83.3 (1)° in (2f).
The huge similarity in the building of Ca2+ and Cd2+ complex cations in (2a), (2 b), (2 e) and (2f) may have some biological justification. It is known that Cd2+ ions, despite their different chemical nature, may mimic Ca2+ ions in terms of their interactions with the sugar moiety, e.g. in nucleotide anions (Goodgame et al., 1975). Cadmium toxicity is also well known to cause kidney and liver dysfunction and brittle bones. Cadmium competes with calcium both in calcium channels and in intracellular calcium-binding proteins (Richardt et al., 1986; Hinkle et al., 1987).
As observed in the previously presented DHA complexes, as well as in free DHA crystals (Ślepokura & Lis, 2004a), all hydroxyl groups of the DHA molecules of the calcium bromide, (2 e), and cadmium chloride, (2f), complexes are involved in medium-strong and weak hydrogen bonds of diverse type, mainly as donors, but also as acceptors (Figs. 4–6; Tables 3 and 6). Adjacent complex dimers are linked to each other by two kinds of interactions, direct (between the dimers) and indirect (through the halide or/and water bridges). Although the overall crystal packing mode of (2f) seems to be different from that observed in the calcium halide complexes, due to the presence of polymeric inorganic anions, in fact they reveal great similarity, mainly in the geometry of the interdimeric interactions described in detail below.
Two of the calcium halide complexes, (2 b) and (2 e), are isomorphous and an analogous, almost identical, pattern of O—H···O, O—H···X and C—H···X hydrogen bonds is observed in their crystal structures. In general, both hydroxyl groups of the DHA molecules in the CaX2 complexes, (2a), (2 b) and (2 e), form one O–H···X contact, except for one of the –OH groups in (2a), which is involved in interdimeric O—H···O interactions instead. The same halide anion is simultaneously linked to the other DHA or water molecule from an adjacent complex dimer. The DHA···X interactions are almost linear in most cases, which means that the halide anions lie almost in planes, in which the DHA molecules are located. Thus, the O—H···X network links adjacent cationic dimers via Cl- or Br- bridges. The water molecules are involved in similar O—H···X interactions linking adjacent complex cations. In (2 e), all the Br- anions act as bridges between every three adjacent complex cations, forming different types of interdimeric O—H···Br···H—O interactions: water···Br···water (for Br1, Br2 and Br4), DHA···Br···water (Br1, Br3 and Br4) or DHA···Br···DHA (Br3). Thus, a three-dimensional network of furcated five- (for Br2, Br3 and Br4) or six-centred (for Br1) O—H···Br hydrogen bonds is formed. Additionally, each dimer is stabilized by intradimeric water···water O—H···O interactions (Fig. 4 and Table 3).
The chief characteristic of the packing mode in the cadmium chloride complex, (2f), is a three-dimensional network of O—H···O hydrogen bonds (Fig. 5 and Table 6). The counterions for the dimeric cations in (2f) are the inorganic polymeric anionic [Cd3Cl8(H2O)]n2n- ribbons along the a axis, the structure of which consists of edge-sharing CdCl6 (for Cd2 and Cd4) and CdCl5(H2O) (for Cd3) octahedra. Each ribbon is built up from two antiparallel chains by sharing the edges of the respective octahedra from the two chains in a manner shown in Fig. 3. The Cd—Cl distances are in the ranges 2.535 (1)–2.759 (1) and 2.541 (1)–2.792 (1) Å for the CdCl6 units (Cd2 and Cd4), and 2.552 (1)–2.678 (1) Å for the hydrated unit (Cd3) (Table 5). Since all the Cl- ions are coordinated to the Cd2+ cations forming the anionic ribbon, the role of the O—H···Cl interactions also present in the crystal structure is to link the organometallic and inorganic parts with each other. Thus, each complex cation is linked to the inorganic [Cd3Cl8(H2O)]n2n- ribbon by means of three O—H···Cl interactions formed by two DHA molecules and one water molecule. Nevertheless, one can see several common features in all the calcium halide and cadmium chloride DHA complexes. Water molecules O2W and O3W in (2f) adopt the role played by Cl- and Br- ions in the crystal structures of the CaX2 complexes. Adjacent dimeric cations are linked to each other by O—H···O2W···H—O (DHA···water···DHA) water bridges and interdimeric C—H···O (DHA···DHA) contacts to form columns along the a axis (Fig. 6). Adjacent organometallic columns are joined to each other by DHA···O3W···DHA and DHA···O2W···O3W···DHA interactions. Thus, water molecule O3W acts as an interdimeric as well as an inter-column bridge. Furthermore, it is involved in O1W—H2W···O3Wi interactions joining the organometallic and inorganic parts of the compound, and hence is crucial for stabilizing the crystal structure of (2f). The DHA molecules within one complex cation of (2f) (located on the same plane) interact with each other by means of bifurcated three-centred intradimeric O—H···O hydrogen bonds (O1—H1···O22i and O1—H1···O32i, shown in Fig. 5 as O1iii–H1iii···O22@ and O1iii–H1iii···O32@).