Download citation
Download citation
link to html
The pyrimidine rings in ethyl (E)-3-[2-amino-4,6-bis­(dimethyl­amino)pyrimidin-5-yl]-2-cyano­acrylate, C14H20N6O2, (I), and 2-[(2-amino-4,6-di-1-piperidylpyrimidin-5-yl)methyl­ene]malononitrile, C18H23N7, (II), which crystallizes with Z' = 2 in the P \overline 1 space group, are both nonplanar with boat conformations. The mol­ecules of (I) are linked by a combination of N-H...N and N-H...O hydrogen bonds into chains of edge-fused R22(8) and R44(20) rings, while the two independent mol­ecules in (II) are linked by four N-H...N hydrogen bonds into chains of edge-fused R22(8) and R22(20) rings. This study illustrates both the readiness with which highly-substituted pyrimidine rings can be distorted from planarity and the significant differences between the supramolecular aggregation in two rather similar compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108003132/sk3200sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108003132/sk3200Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108003132/sk3200IIsup3.hkl
Contains datablock II

CCDC references: 682823; 682824

Comment top

As part of a programme for the synthesis of new heterocyclic compounds with potential biological activity, we have investigated the functionalization at position C-5 in pyrimidines via modification of 4,6-dichloro-5-formylpyrimidines, using base-catalyzed condensation of the formyl group with an activated methylene reagent, followed by substitution at positions 4 and 6 using strongly nucleophilic amines. We report here the molecular and supramolecular structures of two examples, both prepared staring from 2-amino-4,6-dichloropyrimidine-5-carbaldehyde. Ethyl (E)-3-[2-amino-4,6-bis(dimethylamino)pyrimidin-5-yl]-2-cyanoacrylate, (I), was prepared from the starting pyrimidine by successive reaction with ethyl cyanoacetate to give the intermediate (III) (see scheme), followed by excess dimethylamine to give the product (I), while 2-[(2-amino-4,6-di-1-piperidylpyrimidin-5-yl)methylene]malononitrile, (II), was prepared by reaction of the same pyrimidine with malononitrile to form the intermediate (IV) followed by excess piperidine giving the product (II).

In each of compounds (I) (Fig. 1) and (II), which crystallizes with Z' = 2 in the P-1 space group (Fig. 2), the pyrimidine component is markedly nonplanar. The ring-puckering parameters (Cremer & Pople, 1975) (Table 1) are defined for the atom sequence N1—C2—N3—C4—C5—C6 in compound (I) and for Nx1—Cx2—Nx3—Cx4—Cx5—Cx6 (where x = 1 or 2 for the type 1 and type 2 molecules) in compound (II); these parameters show that the conformations of these rings are best described as boat conformations, for which the idealized values of the ring-puckering parameters are θ = 90° and ϕ = (60k)°, where k represent zero or an integer. We have previously observed such nonplanarity in a number of extensively substituted pyrimidine derivatives exhibiting boat (Quesada et al., 2004) or twist-boat (Melguizo et al., 2003; Quesada et al., 2002, 2003) conformations, and by comparison with less extensively substituted analogues, the distortions from planarity were ascribed to steric factors (Melguizo et al., 2003). The occurrence of nonplanar pyrimidine rings here in the presence of four substituents on each pyrimidine ring is certainly consistent with the earlier interpretation. The conformations of the three independent pyrimidine rings in compounds (I) and (II) are thus very similar and the molecules are all chiral: the ring-puckering parameters show that the two independent molecules selected as the asymmetric unit in compound (II) are of the same hand. The piperidine rings in compound (II) all adopt chair conformations. The bond distances are all within the normal ranges and there is no geometric evidence for any significant polarization of the molecular–electronic structures.

The molecules of compound (I) are linked into chains of edge-fused rings by two independent hydrogen bonds (Table 2). Amino atom N2 in the molecule at (x, y, z) acts as hydrogen-bond donor, via H2A and H2B, respectively, to ring atom N1 in the molecule at (2 - x, 1 - y, 1 - z) and carbonyl atom O55 in the molecule at (x, y, 1 + z). Propagation of these two hydrogen bonds by inversion and translation then generates a chain of edge-fused rings running parallel to the [001] direction, with R22(8) (Bernstein et al., 1995) rings centred at (1, 1/2, n + 1/2) (where n represents zero or an integer), and R44(20) rings centred at (1, 1/2, n) (where n represents zero or an integer) (Fig. 3). There are no direction-specific interactions between adjacent chains.

The supramolecular aggregation of compound (II) is dominated by four independent N—H···N hydrogen bonds (Table 3) which link the molecules into a chain of rings somewhat different from that in compound (I), while weaker C—H···N hydrogen bonds link these chains into sheets. The two independent molecules within the selected asymmetric unit are linked by the N—H···N hydrogen bonds involving H12A and H22A to form a dimeric unit which has approximate twofold rotational symmetry around (~0.25, y, ~0.5). These dimeric units are linked by two further N—H···N hydrogen bonds, involving H12B and H22B, into a chain of edge-fused rings running parallel to the [100] direction and containing alternating R22(8) and R22(20) rings (Fig. 4). Fairly weak C—H···N hydrogen bonds, all involving C atoms within the piperidine rings as the donors and nitrile N atoms as the acceptors, link the [100] chains into sheets parallel to (010): the C—H bonds involved are likely to be of low acidity so that the structural significance of these interactions may be marginal.

Related literature top

For related literature, see: Bernstein et al. (1995); Cremer & Pople (1975); Melguizo et al. (2003); Quesada et al. (2002, 2003, 2004); Spek (2003).

Experimental top

For the synthesis of compound (I), a catalytic quantity of triethylamine (3 drops) together with calcium chloride (15 mg) were added to a solution of 2-amino-4,6-dichloropyrimidine-5-carbaldehyde (1.0 mmol) and ethyl 2-cyanoacetate (1.0 mmol) in ethanol (10 ml), and this mixture was stirred at ambient temperature for 2 h. The resulting precipitate was collected by filtration, washed with ethanol, dried and finally recrystallized from ethanol to give ethyl (E)-3-(2-amino-4,6-dichloropyrimidin-5-yl)-2-cyanoacrylate, (III), in 85% yield. For the synthesis of compound (II), a catalytic quantity of triethylamine (3 drops) together with calcium chloride (15 mg) were added to a solution of 2-amino-4,6-dichloropyrimidine-5-carbaldehyde (1.0 mmol) and malononitrile (1.0 mmol) in ethanol (10 ml) and this mixture was stirred at ambient temperature for 2 h. The resulting solid was collected by filtration, washed with ethanol, dried and finally recrystallized from ethanol to give 2-[(2-amino-4,6-dichloropyrimidin-5-yl)methylene]malononitrile, (IV), in 70% yield. For the conversion of (II) and (IV) to (I) and (II), respectively, the intermediate (III) or (IV) (0.4 mmol) was then added to a large excess of the appropriate amine (0.5 ml) in ethanol (10 ml) and heated under reflux for 1 h. On cooling to ambient temperature, the products (I) and (II) were precipitated as yellow crystalline solids, which were collected by filtration, washed with ethanol and dried at atmospheric pressure to give crystals suitable for single-crystal X-ray diffraction. For (I): yield 50% and m.p. 503–505 K; for (II), yield 70% and m.p. 467–468 K. HR–MS: found 337.2016; C18H23N7 requires 337.2015.

Refinement top

Crystals of compounds (I) and (II) are triclinic; for each compound the space group P-1 was selected and confirmed by the subsequent structure analysis. All H atoms were located in difference maps and then treated as riding atoms with distances C—H = 0.95 (alkene), 0.98 (CH3) or 0.99 Å (CH2) and N—H = 0.86 Å, and with Uiso(H) = kUeq(carrier), where k = 1.5 for the methyl groups and 1.2 for all other H atoms. For compound (I), the proportion of the reflections labelled `observed' was quite low, ca 49%, even at 120 K. Analysis of the refined structure of (II) using PLATON (Spek, 2003) showed that there were voids within the structure, centred at approximately (0, 0, 1/2) and accounting for some 13.6% of the total unit-cell volume. Several significant peaks corresponding to electron densities up to 2.02 e Å-3 were located within the void space. However, these peaks could not be reconciled with any plausible molecular species, possibly because of disorder and/or mobility. Accordingly, the SQUEEZE option in PLATON was utilized; while this reduced R from 0.104 to 0.0646, the quality of the data set did not permit a meaningful evaluation of the electron population in the void.

Computing details top

For both compounds, data collection: COLLECT (Hooft, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. A molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The two independent molecules of compound (II), showing the atom-labelling scheme for (a) a type 1 molecule and (b) a type 2 molecule. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded chain of edge fused R22(8) and R44(20) rings along [001]. For the sake of clarity, H atoms bonded to C atoms have all been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of compound (II), showing the formation of a hydrogen-bonded chain of edge fused R22(8) and R22(20) rings along [100]. For the sake of clarity, H atoms bonded to C atoms have all been omitted.
(I) ethyl (E)-3-[2-amino-4,6-bis(dimethylamino)pyrimidin-5-yl]-2-cyanoacrylate top
Crystal data top
C14H20N6O2Z = 2
Mr = 304.36F(000) = 324
Triclinic, P1Dx = 1.331 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5570 (15) ÅCell parameters from 3468 reflections
b = 9.893 (2) Åθ = 4.1–27.5°
c = 9.9739 (18) ŵ = 0.09 mm1
α = 87.534 (13)°T = 120 K
β = 77.251 (15)°Block, colourless
γ = 67.431 (14)°0.37 × 0.34 × 0.15 mm
V = 759.6 (3) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3468 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1715 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 4.1°
ϕ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.971, Tmax = 0.986l = 1212
18938 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.236H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.130P)2 + 0.0863P]
where P = (Fo2 + 2Fc2)/3
3468 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C14H20N6O2γ = 67.431 (14)°
Mr = 304.36V = 759.6 (3) Å3
Triclinic, P1Z = 2
a = 8.5570 (15) ÅMo Kα radiation
b = 9.893 (2) ŵ = 0.09 mm1
c = 9.9739 (18) ÅT = 120 K
α = 87.534 (13)°0.37 × 0.34 × 0.15 mm
β = 77.251 (15)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3468 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1715 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.986Rint = 0.085
18938 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.236H-atom parameters constrained
S = 1.03Δρmax = 0.44 e Å3
3468 reflectionsΔρmin = 0.37 e Å3
204 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O550.5647 (3)0.7337 (2)0.1477 (2)0.0290 (6)
O560.3443 (3)0.9501 (2)0.0864 (2)0.0288 (6)
N10.8254 (3)0.5391 (3)0.3715 (2)0.0235 (6)
N20.7796 (3)0.6729 (3)0.5677 (3)0.0275 (7)
N30.5387 (3)0.6968 (3)0.4920 (2)0.0245 (6)
N40.3022 (3)0.7117 (3)0.4087 (2)0.0230 (6)
N60.8682 (3)0.4237 (3)0.1636 (2)0.0241 (6)
N540.2080 (4)1.0044 (3)0.2559 (3)0.0377 (8)
C20.7122 (4)0.6373 (3)0.4726 (3)0.0241 (7)
C40.4739 (4)0.6763 (3)0.3874 (3)0.0238 (7)
C50.5859 (4)0.6154 (3)0.2558 (3)0.0233 (7)
C60.7613 (4)0.5227 (3)0.2651 (3)0.0216 (7)
C410.2248 (4)0.6563 (4)0.3186 (3)0.0283 (8)
C420.1864 (4)0.8013 (4)0.5305 (3)0.0321 (8)
C510.5569 (4)0.6707 (3)0.1280 (3)0.0219 (7)
C520.4365 (4)0.7968 (3)0.0886 (3)0.0221 (7)
C530.3089 (4)0.9116 (4)0.1809 (3)0.0256 (7)
C550.4578 (4)0.8208 (3)0.0587 (3)0.0227 (7)
C570.3524 (4)0.9805 (4)0.2306 (3)0.0297 (8)
C580.1876 (4)1.1043 (4)0.2409 (3)0.0350 (9)
C611.0537 (4)0.3587 (4)0.1554 (3)0.0280 (8)
C620.8051 (4)0.3512 (4)0.0764 (3)0.0291 (8)
H2A0.88470.61900.57160.033*
H2B0.70730.72040.64060.033*
H41A0.31160.56520.27040.042*
H41B0.18490.72930.25120.042*
H41C0.12610.63720.37380.042*
H42A0.20650.89200.53460.048*
H42B0.20930.74690.61310.048*
H42C0.06560.82530.52550.048*
H510.63650.60860.05230.026*
H57A0.36560.89260.28320.036*
H57B0.45301.00740.26890.036*
H58A0.17461.18990.18690.052*
H58B0.08921.07540.20520.052*
H58C0.19071.12890.33750.052*
H61A1.08110.27140.21020.042*
H61B1.09030.42980.19120.042*
H61C1.11510.33090.05930.042*
H62A0.67940.38060.10860.044*
H62B0.86240.24480.08060.044*
H62C0.83100.37950.01880.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O550.0259 (12)0.0319 (13)0.0211 (12)0.0040 (10)0.0024 (10)0.0013 (10)
O560.0296 (12)0.0282 (13)0.0224 (12)0.0054 (10)0.0047 (9)0.0031 (10)
N10.0249 (14)0.0253 (15)0.0189 (14)0.0081 (12)0.0050 (11)0.0005 (12)
N20.0272 (15)0.0320 (16)0.0214 (14)0.0082 (13)0.0064 (11)0.0033 (12)
N30.0255 (15)0.0286 (15)0.0187 (14)0.0093 (12)0.0056 (11)0.0020 (12)
N40.0212 (14)0.0275 (15)0.0186 (13)0.0081 (12)0.0031 (11)0.0003 (11)
N60.0233 (14)0.0251 (15)0.0209 (14)0.0049 (12)0.0062 (11)0.0029 (12)
N540.0445 (18)0.0276 (16)0.0329 (17)0.0080 (14)0.0032 (14)0.0030 (14)
C20.0283 (19)0.0220 (17)0.0194 (16)0.0083 (14)0.0036 (13)0.0051 (13)
C40.0238 (17)0.0225 (17)0.0227 (17)0.0066 (14)0.0051 (13)0.0014 (14)
C50.0235 (16)0.0277 (18)0.0190 (16)0.0107 (14)0.0029 (13)0.0015 (13)
C60.0261 (17)0.0203 (17)0.0188 (16)0.0104 (14)0.0041 (13)0.0054 (13)
C410.0251 (17)0.0304 (19)0.0277 (18)0.0102 (15)0.0036 (14)0.0016 (15)
C420.0285 (19)0.0331 (19)0.0255 (18)0.0056 (15)0.0012 (14)0.0019 (15)
C510.0198 (16)0.0244 (17)0.0212 (16)0.0088 (14)0.0029 (12)0.0014 (14)
C520.0227 (17)0.0237 (17)0.0185 (16)0.0071 (14)0.0050 (12)0.0010 (13)
C530.0294 (19)0.0247 (18)0.0223 (17)0.0097 (15)0.0069 (14)0.0060 (15)
C550.0179 (16)0.0247 (18)0.0259 (18)0.0083 (14)0.0057 (14)0.0024 (15)
C570.0331 (19)0.035 (2)0.0212 (17)0.0116 (16)0.0111 (14)0.0077 (15)
C580.041 (2)0.032 (2)0.0305 (19)0.0089 (17)0.0162 (16)0.0092 (16)
C610.0225 (17)0.0329 (19)0.0256 (18)0.0068 (15)0.0062 (14)0.0016 (15)
C620.0315 (19)0.0297 (19)0.0265 (18)0.0118 (16)0.0058 (14)0.0042 (15)
Geometric parameters (Å, º) top
O55—C551.212 (3)C41—H41B0.98
O56—C551.338 (4)C41—H41C0.98
O56—C571.449 (3)C42—H42A0.98
N1—C61.340 (4)C42—H42B0.98
N1—C21.353 (4)C42—H42C0.98
N2—C21.335 (4)C51—C521.387 (4)
N2—H2A0.8601C51—H510.95
N2—H2B0.86C52—C531.423 (4)
N3—C41.340 (4)C52—C551.460 (4)
N3—C21.342 (4)C57—C581.492 (4)
N4—C41.342 (4)C57—H57A0.99
N4—C411.459 (4)C57—H57B0.99
N4—C421.460 (4)C58—H58A0.98
N6—C61.345 (4)C58—H58B0.98
N6—C611.451 (4)C58—H58C0.98
N6—C621.456 (4)C61—H61A0.98
N54—C531.146 (4)C61—H61B0.98
C4—C51.440 (4)C61—H61C0.98
C5—C511.400 (4)C62—H62A0.98
C5—C61.449 (4)C62—H62B0.98
C41—H41A0.98C62—H62C0.98
C55—O56—C57116.3 (2)H42B—C42—H42C109.5
C6—N1—C2115.8 (3)C52—C51—C5133.6 (3)
C2—N2—H2A118.2C52—C51—H51113.2
C2—N2—H2B116.5C5—C51—H51113.2
H2A—N2—H2B119.7C51—C52—C53124.7 (3)
C4—N3—C2115.8 (3)C51—C52—C55116.9 (3)
C4—N4—C41122.5 (3)C53—C52—C55117.9 (3)
C4—N4—C42119.9 (3)N54—C53—C52178.9 (3)
C41—N4—C42117.4 (3)O55—C55—O56122.8 (3)
C6—N6—C61120.9 (3)O55—C55—C52124.5 (3)
C6—N6—C62122.5 (3)O56—C55—C52112.7 (3)
C61—N6—C62115.1 (3)O56—C57—C58107.7 (2)
N2—C2—N3116.4 (3)O56—C57—H57A110.2
N2—C2—N1116.5 (3)C58—C57—H57A110.2
N3—C2—N1127.1 (3)O56—C57—H57B110.2
N3—C4—N4118.5 (3)C58—C57—H57B110.2
N3—C4—C5121.0 (3)H57A—C57—H57B108.5
N4—C4—C5120.6 (3)C57—C58—H58A109.5
C51—C5—C4125.4 (3)C57—C58—H58B109.5
C51—C5—C6118.4 (3)H58A—C58—H58B109.5
C4—C5—C6113.1 (3)C57—C58—H58C109.5
N1—C6—N6117.8 (3)H58A—C58—H58C109.5
N1—C6—C5120.8 (3)H58B—C58—H58C109.5
N6—C6—C5121.2 (3)N6—C61—H61A109.5
N4—C41—H41A109.5N6—C61—H61B109.5
N4—C41—H41B109.5H61A—C61—H61B109.5
H41A—C41—H41B109.5N6—C61—H61C109.5
N4—C41—H41C109.5H61A—C61—H61C109.5
H41A—C41—H41C109.5H61B—C61—H61C109.5
H41B—C41—H41C109.5N6—C62—H62A109.5
N4—C42—H42A109.5N6—C62—H62B109.5
N4—C42—H42B109.5H62A—C62—H62B109.5
H42A—C42—H42B109.5N6—C62—H62C109.5
N4—C42—H42C109.5H62A—C62—H62C109.5
H42A—C42—H42C109.5H62B—C62—H62C109.5
C4—N3—C2—N2171.5 (3)C61—N6—C6—C5163.9 (3)
C4—N3—C2—N112.5 (4)C62—N6—C6—C530.4 (4)
C6—N1—C2—N2169.3 (3)C51—C5—C6—N1137.2 (3)
C6—N1—C2—N314.7 (5)C4—C5—C6—N124.0 (4)
C2—N3—C4—N4169.2 (3)C51—C5—C6—N638.8 (4)
C2—N3—C4—C59.7 (4)C4—C5—C6—N6160.1 (3)
C41—N4—C4—N3161.8 (3)C4—C5—C51—C527.9 (6)
C42—N4—C4—N314.2 (4)C6—C5—C51—C52150.8 (3)
C41—N4—C4—C517.2 (4)C5—C51—C52—C533.5 (6)
C42—N4—C4—C5166.9 (3)C5—C51—C52—C55175.3 (3)
N3—C4—C5—C51133.3 (3)C57—O56—C55—O551.5 (4)
N4—C4—C5—C5147.8 (5)C57—O56—C55—C52177.9 (2)
N3—C4—C5—C626.3 (4)C51—C52—C55—O555.5 (5)
N4—C4—C5—C6152.6 (3)C53—C52—C55—O55177.9 (3)
C2—N1—C6—N6178.5 (3)C51—C52—C55—O56175.2 (3)
C2—N1—C6—C55.4 (4)C53—C52—C55—O562.8 (4)
C61—N6—C6—N112.2 (4)C55—O56—C57—C58163.4 (3)
C62—N6—C6—N1153.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.553.398 (4)170
N2—H2B···O55ii0.862.172.966 (3)153
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z+1.
(II) 2-[(2-amino-4,6-di-1-piperidylpyrimidin-5-yl)methylene]malononitrile top
Crystal data top
C18H23N7Z = 4
Mr = 337.43F(000) = 720
Triclinic, P1Dx = 1.152 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6960 (8) ÅCell parameters from 8590 reflections
b = 14.752 (3) Åθ = 3.9–27.5°
c = 15.418 (3) ŵ = 0.07 mm1
α = 116.332 (13)°T = 120 K
β = 96.794 (10)°Block, colourless
γ = 93.587 (9)°0.62 × 0.38 × 0.32 mm
V = 1946.1 (6) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
8590 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode4805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.9°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1819
Tmin = 0.962, Tmax = 0.977l = 1920
38120 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.206H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0985P)2 + 0.7388P]
where P = (Fo2 + 2Fc2)/3
8590 reflections(Δ/σ)max < 0.001
451 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C18H23N7γ = 93.587 (9)°
Mr = 337.43V = 1946.1 (6) Å3
Triclinic, P1Z = 4
a = 9.6960 (8) ÅMo Kα radiation
b = 14.752 (3) ŵ = 0.07 mm1
c = 15.418 (3) ÅT = 120 K
α = 116.332 (13)°0.62 × 0.38 × 0.32 mm
β = 96.794 (10)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
8590 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4805 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.977Rint = 0.049
38120 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.206H-atom parameters constrained
S = 1.10Δρmax = 0.31 e Å3
8590 reflectionsΔρmin = 0.29 e Å3
451 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.1453 (2)0.27967 (16)0.62366 (14)0.0216 (5)
N120.0453 (2)0.23885 (17)0.46741 (15)0.0287 (5)
H12A0.11400.20600.44550.034*
H12B0.02000.24030.42530.034*
N130.0488 (2)0.36072 (16)0.58977 (15)0.0242 (5)
N140.1297 (2)0.48813 (16)0.71721 (15)0.0221 (5)
N160.2347 (2)0.30988 (16)0.78053 (15)0.0227 (5)
N1540.3884 (2)0.39981 (19)0.76521 (18)0.0347 (6)
N1560.2001 (2)0.35445 (19)1.01184 (18)0.0331 (6)
C120.0443 (3)0.29356 (19)0.56345 (18)0.0220 (6)
C140.0543 (3)0.40955 (19)0.68562 (18)0.0205 (6)
C150.0191 (3)0.37801 (19)0.75365 (18)0.0210 (6)
C160.1364 (3)0.32394 (18)0.71857 (19)0.0205 (6)
C1420.2310 (3)0.5034 (2)0.64776 (19)0.0261 (6)
H42A0.32340.50880.66970.031*
H42B0.24160.44380.58230.031*
C1430.1838 (3)0.5991 (2)0.6402 (2)0.0318 (7)
H43A0.25760.61090.59750.038*
H43B0.09800.59010.60990.038*
C1440.1544 (3)0.6910 (2)0.7406 (2)0.0303 (7)
H44A0.24340.70680.76640.036*
H44B0.11370.75090.73480.036*
C1450.0536 (3)0.6708 (2)0.8114 (2)0.0286 (6)
H45A0.04350.72910.87770.034*
H45B0.03960.66570.79070.034*
C1460.1027 (3)0.57302 (19)0.81622 (18)0.0243 (6)
H46A0.02980.55910.85780.029*
H46B0.18920.58090.84570.029*
C1510.0341 (3)0.37128 (18)0.83164 (18)0.0222 (6)
H1510.03240.35620.87220.027*
C1520.1645 (3)0.38224 (19)0.86154 (18)0.0218 (6)
C1530.2859 (3)0.3934 (2)0.8081 (2)0.0256 (6)
C1550.1853 (3)0.3664 (2)0.9440 (2)0.0241 (6)
C1620.3265 (3)0.2314 (2)0.7419 (2)0.0262 (6)
H62A0.41310.26100.73060.031*
H62B0.27890.17570.67830.031*
C1630.3637 (3)0.1892 (2)0.8143 (2)0.0308 (7)
H63A0.27820.15210.81880.037*
H63B0.43170.14000.78990.037*
C1640.4260 (3)0.2730 (2)0.9156 (2)0.0347 (7)
H64A0.51700.30530.91290.042*
H64B0.44300.24340.96170.042*
C1650.3266 (3)0.3536 (2)0.9525 (2)0.0318 (7)
H65A0.23910.32320.96180.038*
H65B0.37090.41041.01640.038*
C1660.2936 (3)0.3933 (2)0.87794 (19)0.0245 (6)
H66A0.22580.44320.90010.029*
H66B0.38040.42900.87340.029*
N210.3141 (2)0.16895 (16)0.39431 (15)0.0225 (5)
N220.4239 (2)0.27580 (18)0.54959 (15)0.0311 (6)
H22A0.35080.25930.56870.037*
H22B0.48930.32230.59070.037*
N230.5226 (2)0.28412 (16)0.42548 (15)0.0232 (5)
N240.6120 (2)0.29151 (16)0.29581 (15)0.0226 (5)
N260.2154 (2)0.04855 (15)0.23860 (15)0.0222 (5)
N2540.8560 (3)0.16240 (19)0.26326 (19)0.0358 (6)
N2560.6582 (2)0.10128 (18)0.00068 (17)0.0320 (6)
C220.4228 (3)0.24072 (19)0.45319 (19)0.0230 (6)
C240.5270 (3)0.24128 (19)0.32853 (18)0.0220 (6)
C250.4441 (3)0.14492 (19)0.26252 (18)0.0211 (6)
C260.3216 (3)0.12164 (19)0.29805 (18)0.0216 (6)
C2420.7198 (3)0.3752 (2)0.36422 (19)0.0261 (6)
H42C0.81190.36150.34280.031*
H42D0.72590.37930.43040.031*
C2430.6859 (3)0.4760 (2)0.3687 (2)0.0292 (7)
H43C0.59880.49340.39660.035*
H43D0.76270.53070.41190.035*
C2440.6675 (3)0.4692 (2)0.26692 (19)0.0275 (6)
H44C0.75890.46260.24350.033*
H44D0.63550.53280.26990.033*
C2450.5616 (3)0.3784 (2)0.19463 (19)0.0259 (6)
H45C0.46690.39140.21120.031*
H45D0.56150.37140.12770.031*
C2460.5930 (3)0.2788 (2)0.19524 (18)0.0235 (6)
H46C0.51470.22430.15450.028*
H46D0.67910.25830.16680.028*
C2510.4928 (3)0.06654 (19)0.18434 (18)0.0214 (6)
H2510.42220.01210.14170.026*
C2520.6244 (3)0.05412 (19)0.15815 (18)0.0222 (6)
C2530.7509 (3)0.1163 (2)0.2168 (2)0.0259 (6)
C2550.6434 (3)0.0320 (2)0.0711 (2)0.0236 (6)
C2620.1141 (3)0.0053 (2)0.2785 (2)0.0279 (6)
H62C0.02850.03940.28360.033*
H62D0.15510.01670.34510.033*
C2630.0769 (3)0.1088 (2)0.2110 (2)0.0315 (7)
H63C0.16090.14330.21220.038*
H63D0.00430.13710.23560.038*
C2640.0231 (3)0.1309 (2)0.1060 (2)0.0346 (7)
H64C0.06700.10350.10320.042*
H64D0.00650.20560.06370.042*
C2650.1303 (3)0.0819 (2)0.0682 (2)0.0306 (7)
H65C0.21670.11500.06350.037*
H65D0.09110.09150.00190.037*
C2660.1647 (3)0.0317 (2)0.13820 (18)0.0258 (6)
H66C0.23730.06250.11570.031*
H66D0.07990.06560.13780.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0211 (12)0.0243 (12)0.0157 (11)0.0017 (9)0.0020 (9)0.0061 (9)
N120.0270 (13)0.0345 (13)0.0184 (12)0.0095 (10)0.0018 (10)0.0064 (10)
N130.0239 (12)0.0265 (12)0.0204 (12)0.0062 (10)0.0044 (9)0.0085 (10)
N140.0236 (12)0.0216 (11)0.0187 (11)0.0039 (9)0.0022 (9)0.0074 (9)
N160.0222 (12)0.0241 (12)0.0201 (12)0.0043 (9)0.0030 (9)0.0086 (10)
N1540.0226 (13)0.0415 (15)0.0419 (15)0.0035 (11)0.0007 (12)0.0232 (13)
N1560.0243 (13)0.0448 (15)0.0312 (14)0.0049 (11)0.0056 (11)0.0178 (12)
C120.0204 (14)0.0201 (13)0.0226 (14)0.0004 (11)0.0027 (11)0.0078 (11)
C140.0175 (13)0.0192 (13)0.0205 (14)0.0020 (10)0.0017 (11)0.0062 (11)
C150.0221 (14)0.0212 (13)0.0165 (13)0.0015 (11)0.0007 (11)0.0064 (11)
C160.0183 (13)0.0179 (13)0.0247 (14)0.0014 (10)0.0010 (11)0.0103 (11)
C1420.0230 (14)0.0320 (15)0.0196 (14)0.0086 (12)0.0001 (11)0.0087 (12)
C1430.0319 (16)0.0380 (17)0.0336 (16)0.0134 (13)0.0071 (13)0.0219 (14)
C1440.0273 (15)0.0284 (15)0.0377 (17)0.0033 (12)0.0039 (13)0.0176 (14)
C1450.0302 (16)0.0213 (14)0.0305 (16)0.0001 (12)0.0028 (12)0.0095 (12)
C1460.0250 (14)0.0235 (14)0.0204 (14)0.0040 (11)0.0018 (11)0.0069 (12)
C1510.0260 (14)0.0191 (13)0.0173 (13)0.0001 (11)0.0013 (11)0.0062 (11)
C1520.0187 (14)0.0242 (14)0.0215 (14)0.0023 (11)0.0029 (11)0.0097 (11)
C1530.0260 (15)0.0237 (14)0.0254 (15)0.0000 (12)0.0049 (12)0.0097 (12)
C1550.0174 (14)0.0292 (15)0.0245 (15)0.0026 (11)0.0039 (11)0.0111 (12)
C1620.0245 (15)0.0276 (15)0.0291 (15)0.0086 (12)0.0081 (12)0.0137 (13)
C1630.0276 (16)0.0331 (16)0.0370 (17)0.0053 (13)0.0040 (13)0.0208 (14)
C1640.0344 (17)0.0414 (17)0.0357 (17)0.0016 (14)0.0016 (14)0.0265 (15)
C1650.0310 (16)0.0409 (17)0.0216 (15)0.0035 (13)0.0024 (12)0.0151 (13)
C1660.0205 (14)0.0251 (14)0.0254 (15)0.0007 (11)0.0006 (11)0.0103 (12)
N210.0215 (12)0.0246 (12)0.0193 (12)0.0012 (9)0.0040 (9)0.0081 (10)
N220.0268 (13)0.0397 (14)0.0192 (12)0.0077 (11)0.0022 (10)0.0086 (11)
N230.0231 (12)0.0232 (11)0.0194 (12)0.0009 (9)0.0029 (9)0.0068 (10)
N240.0241 (12)0.0245 (12)0.0172 (11)0.0042 (9)0.0009 (9)0.0097 (10)
N260.0203 (11)0.0215 (11)0.0223 (12)0.0034 (9)0.0028 (9)0.0087 (10)
N2540.0291 (14)0.0367 (14)0.0402 (15)0.0059 (12)0.0005 (12)0.0176 (12)
N2560.0337 (14)0.0319 (14)0.0289 (14)0.0054 (11)0.0080 (11)0.0116 (12)
C220.0244 (14)0.0223 (14)0.0220 (14)0.0049 (11)0.0057 (11)0.0093 (12)
C240.0204 (14)0.0249 (14)0.0211 (14)0.0020 (11)0.0021 (11)0.0113 (12)
C250.0211 (14)0.0231 (13)0.0173 (13)0.0009 (11)0.0010 (11)0.0085 (11)
C260.0245 (14)0.0206 (13)0.0208 (14)0.0034 (11)0.0034 (11)0.0105 (11)
C2420.0216 (14)0.0305 (15)0.0213 (14)0.0064 (12)0.0038 (11)0.0105 (12)
C2430.0275 (15)0.0254 (15)0.0261 (15)0.0066 (12)0.0013 (12)0.0060 (12)
C2440.0269 (15)0.0225 (14)0.0326 (16)0.0001 (12)0.0045 (12)0.0125 (12)
C2450.0273 (15)0.0276 (15)0.0221 (14)0.0024 (12)0.0023 (12)0.0111 (12)
C2460.0254 (14)0.0247 (14)0.0181 (14)0.0015 (11)0.0013 (11)0.0088 (11)
C2510.0226 (14)0.0230 (14)0.0180 (13)0.0031 (11)0.0022 (11)0.0107 (11)
C2520.0252 (15)0.0241 (14)0.0184 (14)0.0020 (11)0.0035 (11)0.0106 (12)
C2530.0230 (15)0.0277 (15)0.0264 (15)0.0075 (12)0.0034 (12)0.0115 (12)
C2550.0222 (14)0.0267 (15)0.0233 (15)0.0033 (12)0.0034 (12)0.0126 (13)
C2620.0267 (15)0.0255 (14)0.0296 (16)0.0000 (12)0.0078 (12)0.0105 (12)
C2630.0355 (17)0.0237 (14)0.0333 (16)0.0015 (12)0.0089 (13)0.0111 (13)
C2640.0285 (16)0.0249 (15)0.0396 (18)0.0042 (12)0.0021 (13)0.0068 (13)
C2650.0300 (16)0.0310 (15)0.0203 (14)0.0017 (12)0.0002 (12)0.0043 (12)
C2660.0243 (14)0.0268 (15)0.0220 (14)0.0011 (12)0.0006 (12)0.0084 (12)
Geometric parameters (Å, º) top
N11—C161.328 (3)N21—C261.345 (3)
N11—C121.357 (3)N21—C221.356 (3)
N12—C121.337 (3)N22—C221.338 (3)
N12—H12A0.8600N22—H22A0.8600
N12—H12B0.8601N22—H22B0.8600
N13—C141.336 (3)N23—C221.339 (3)
N13—C121.342 (3)N23—C241.348 (3)
N14—C141.343 (3)N24—C241.355 (3)
N14—C1461.461 (3)N24—C2461.464 (3)
N14—C1421.468 (3)N24—C2421.467 (3)
N16—C161.360 (3)N26—C261.351 (3)
N16—C1621.460 (3)N26—C2661.471 (3)
N16—C1661.472 (3)N26—C2621.471 (3)
N154—C1531.160 (3)N254—C2531.150 (3)
N156—C1551.158 (3)N256—C2551.147 (3)
C14—C151.456 (4)C24—C251.443 (4)
C15—C1511.403 (4)C25—C2511.407 (4)
C15—C161.448 (4)C25—C261.449 (4)
C142—C1431.514 (4)C242—C2431.516 (4)
C142—H42A0.9900C242—H42C0.9900
C142—H42B0.9900C242—H42D0.9900
C143—C1441.517 (4)C243—C2441.515 (4)
C143—H43A0.9900C243—H43C0.9900
C143—H43B0.9900C243—H43D0.9900
C144—C1451.520 (4)C244—C2451.525 (4)
C144—H44A0.9900C244—H44C0.9900
C144—H44B0.9900C244—H44D0.9900
C145—C1461.526 (4)C245—C2461.523 (4)
C145—H45A0.9900C245—H45C0.9900
C145—H45B0.9900C245—H45D0.9900
C146—H46A0.9900C246—H46C0.9900
C146—H46B0.9900C246—H46D0.9900
C151—C1521.391 (4)C251—C2521.382 (4)
C151—H1510.9500C251—H2510.9500
C152—C1531.417 (4)C252—C2531.423 (4)
C152—C1551.425 (4)C252—C2551.423 (4)
C162—C1631.522 (4)C262—C2631.526 (4)
C162—H62A0.9900C262—H62C0.9900
C162—H62B0.9900C262—H62D0.9900
C163—C1641.518 (4)C263—C2641.519 (4)
C163—H63A0.9900C263—H63C0.9900
C163—H63B0.9900C263—H63D0.9900
C164—C1651.529 (4)C264—C2651.539 (4)
C164—H64A0.9900C264—H64C0.9900
C164—H64B0.9900C264—H64D0.9900
C165—C1661.517 (4)C265—C2661.524 (4)
C165—H65A0.9900C265—H65C0.9900
C165—H65B0.9900C265—H65D0.9900
C166—H66A0.9900C266—H66C0.9900
C166—H66B0.9900C266—H66D0.9900
C16—N11—C12116.4 (2)C26—N21—C22116.5 (2)
C12—N12—H12A122.0C22—N22—H22A118.2
C12—N12—H12B120.1C22—N22—H22B119.8
H12A—N12—H12B117.7H22A—N22—H22B120.9
C14—N13—C12116.0 (2)C22—N23—C24116.0 (2)
C14—N14—C146124.2 (2)C24—N24—C246124.3 (2)
C14—N14—C142120.7 (2)C24—N24—C242120.9 (2)
C146—N14—C142114.3 (2)C246—N24—C242114.2 (2)
C16—N16—C162120.3 (2)C26—N26—C266122.3 (2)
C16—N16—C166121.3 (2)C26—N26—C262121.3 (2)
C162—N16—C166113.6 (2)C266—N26—C262113.4 (2)
N12—C12—N13117.1 (2)N22—C22—N23117.2 (2)
N12—C12—N11115.5 (2)N22—C22—N21115.5 (2)
N13—C12—N11127.2 (2)N23—C22—N21127.2 (2)
N13—C14—N14118.1 (2)N23—C24—N24117.7 (2)
N13—C14—C15120.8 (2)N23—C24—C25120.7 (2)
N14—C14—C15121.1 (2)N24—C24—C25121.6 (2)
C151—C15—C16118.5 (2)C251—C25—C24124.0 (2)
C151—C15—C14125.5 (2)C251—C25—C26119.5 (2)
C16—C15—C14113.6 (2)C24—C25—C26114.4 (2)
N11—C16—N16117.8 (2)N21—C26—N26117.2 (2)
N11—C16—C15121.0 (2)N21—C26—C25120.2 (2)
N16—C16—C15121.0 (2)N26—C26—C25122.4 (2)
N14—C142—C143111.1 (2)N24—C242—C243110.9 (2)
N14—C142—H42A109.4N24—C242—H42C109.5
C143—C142—H42A109.4C243—C242—H42C109.5
N14—C142—H42B109.4N24—C242—H42D109.5
C143—C142—H42B109.4C243—C242—H42D109.5
H42A—C142—H42B108.0H42C—C242—H42D108.1
C142—C143—C144110.9 (2)C244—C243—C242110.2 (2)
C142—C143—H43A109.5C244—C243—H43C109.6
C144—C143—H43A109.5C242—C243—H43C109.6
C142—C143—H43B109.5C244—C243—H43D109.6
C144—C143—H43B109.5C242—C243—H43D109.6
H43A—C143—H43B108.0H43C—C243—H43D108.1
C143—C144—C145110.8 (2)C243—C244—C245111.5 (2)
C143—C144—H44A109.5C243—C244—H44C109.3
C145—C144—H44A109.5C245—C244—H44C109.3
C143—C144—H44B109.5C243—C244—H44D109.3
C145—C144—H44B109.5C245—C244—H44D109.3
H44A—C144—H44B108.1H44C—C244—H44D108.0
C144—C145—C146112.5 (2)C246—C245—C244112.7 (2)
C144—C145—H45A109.1C246—C245—H45C109.0
C146—C145—H45A109.1C244—C245—H45C109.0
C144—C145—H45B109.1C246—C245—H45D109.0
C146—C145—H45B109.1C244—C245—H45D109.0
H45A—C145—H45B107.8H45C—C245—H45D107.8
N14—C146—C145109.3 (2)N24—C246—C245110.0 (2)
N14—C146—H46A109.8N24—C246—H46C109.7
C145—C146—H46A109.8C245—C246—H46C109.7
N14—C146—H46B109.8N24—C246—H46D109.7
C145—C146—H46B109.8C245—C246—H46D109.7
H46A—C146—H46B108.3H46C—C246—H46D108.2
C152—C151—C15132.9 (2)C252—C251—C25131.9 (2)
C152—C151—H151113.5C252—C251—H251114.1
C15—C151—H151113.5C25—C251—H251114.1
C151—C152—C153124.9 (2)C251—C252—C253125.1 (2)
C151—C152—C155118.5 (2)C251—C252—C255120.2 (2)
C153—C152—C155116.0 (2)C253—C252—C255114.4 (2)
N154—C153—C152177.2 (3)N254—C253—C252176.7 (3)
N156—C155—C152178.9 (3)N256—C255—C252179.7 (3)
N16—C162—C163109.8 (2)N26—C262—C263109.2 (2)
N16—C162—H62A109.7N26—C262—H62C109.8
C163—C162—H62A109.7C263—C262—H62C109.8
N16—C162—H62B109.7N26—C262—H62D109.8
C163—C162—H62B109.7C263—C262—H62D109.8
H62A—C162—H62B108.2H62C—C262—H62D108.3
C164—C163—C162111.8 (2)C264—C263—C262112.0 (2)
C164—C163—H63A109.2C264—C263—H63C109.2
C162—C163—H63A109.2C262—C263—H63C109.2
C164—C163—H63B109.2C264—C263—H63D109.2
C162—C163—H63B109.2C262—C263—H63D109.2
H63A—C163—H63B107.9H63C—C263—H63D107.9
C163—C164—C165110.3 (2)C263—C264—C265110.3 (2)
C163—C164—H64A109.6C263—C264—H64C109.6
C165—C164—H64A109.6C265—C264—H64C109.6
C163—C164—H64B109.6C263—C264—H64D109.6
C165—C164—H64B109.6C265—C264—H64D109.6
H64A—C164—H64B108.1H64C—C264—H64D108.1
C166—C165—C164109.1 (2)C266—C265—C264109.5 (2)
C166—C165—H65A109.9C266—C265—H65C109.8
C164—C165—H65A109.9C264—C265—H65C109.8
C166—C165—H65B109.9C266—C265—H65D109.8
C164—C165—H65B109.9C264—C265—H65D109.8
H65A—C165—H65B108.3H65C—C265—H65D108.2
N16—C166—C165111.3 (2)N26—C266—C265111.0 (2)
N16—C166—H66A109.4N26—C266—H66C109.4
C165—C166—H66A109.4C265—C266—H66C109.4
N16—C166—H66B109.4N26—C266—H66D109.4
C165—C166—H66B109.4C265—C266—H66D109.4
H66A—C166—H66B108.0H66C—C266—H66D108.0
C14—N13—C12—N12175.7 (2)C24—N23—C22—N22174.1 (2)
C14—N13—C12—N119.5 (4)C24—N23—C22—N2110.5 (4)
C16—N11—C12—N12172.4 (2)C26—N21—C22—N22170.4 (2)
C16—N11—C12—N1312.7 (4)C26—N21—C22—N2314.2 (4)
C12—N13—C14—N14170.1 (2)C22—N23—C24—N24170.3 (2)
C12—N13—C14—C1510.1 (3)C22—N23—C24—C259.9 (3)
C146—N14—C14—N13153.5 (2)C246—N24—C24—N23156.3 (2)
C142—N14—C14—N1315.4 (4)C242—N24—C24—N2314.6 (3)
C146—N14—C14—C1526.7 (4)C246—N24—C24—C2524.0 (4)
C142—N14—C14—C15164.4 (2)C242—N24—C24—C25165.2 (2)
N13—C14—C15—C151138.2 (3)N23—C24—C25—C251138.9 (3)
N14—C14—C15—C15141.6 (4)N24—C24—C25—C25140.8 (4)
N13—C14—C15—C1624.0 (3)N23—C24—C25—C2624.1 (3)
N14—C14—C15—C16156.2 (2)N24—C24—C25—C26156.2 (2)
C12—N11—C16—N16178.8 (2)C22—N21—C26—N26178.8 (2)
C12—N11—C16—C154.0 (3)C22—N21—C26—C252.7 (3)
C162—N16—C16—N1113.3 (3)C266—N26—C26—N21144.9 (2)
C166—N16—C16—N11140.7 (2)C262—N26—C26—N2114.2 (3)
C162—N16—C16—C15161.6 (2)C266—N26—C26—C2539.1 (4)
C166—N16—C16—C1544.5 (3)C262—N26—C26—C25161.8 (2)
C151—C15—C16—N11142.9 (2)C251—C25—C26—N21143.7 (2)
C14—C15—C16—N1120.6 (3)C24—C25—C26—N2120.1 (3)
C151—C15—C16—N1631.7 (3)C251—C25—C26—N2632.2 (4)
C14—C15—C16—N16164.7 (2)C24—C25—C26—N26164.0 (2)
C14—N14—C142—C143112.4 (3)C24—N24—C242—C243113.0 (3)
C146—N14—C142—C14357.6 (3)C246—N24—C242—C24358.7 (3)
N14—C142—C143—C14454.2 (3)N24—C242—C243—C24455.8 (3)
C142—C143—C144—C14552.8 (3)C242—C243—C244—C24552.9 (3)
C143—C144—C145—C14653.3 (3)C243—C244—C245—C24651.6 (3)
C14—N14—C146—C145113.2 (3)C24—N24—C246—C245115.8 (3)
C142—N14—C146—C14556.3 (3)C242—N24—C246—C24555.5 (3)
C144—C145—C146—N1453.8 (3)C244—C245—C246—N2451.3 (3)
C16—C15—C151—C152155.2 (3)C24—C25—C251—C2528.9 (4)
C14—C15—C151—C1526.2 (5)C26—C25—C251—C252153.3 (3)
C15—C151—C152—C1537.4 (5)C25—C251—C252—C2539.7 (5)
C15—C151—C152—C155177.7 (3)C25—C251—C252—C255176.9 (3)
C16—N16—C162—C163148.1 (2)C26—N26—C262—C263141.8 (2)
C166—N16—C162—C16356.0 (3)C266—N26—C262—C26357.4 (3)
N16—C162—C163—C16454.6 (3)N26—C262—C263—C26455.4 (3)
C162—C163—C164—C16555.5 (3)C262—C263—C264—C26555.3 (3)
C163—C164—C165—C16655.5 (3)C263—C264—C265—C26654.6 (3)
C16—N16—C166—C165146.1 (2)C26—N26—C266—C265140.3 (2)
C162—N16—C166—C16558.3 (3)C262—N26—C266—C26559.1 (3)
C164—C165—C166—N1656.4 (3)C264—C265—C266—N2656.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···N210.862.193.021 (3)162
N12—H12B···N254i0.862.363.126 (3)148
N22—H22A···N110.862.243.049 (3)156
N22—H22B···N154ii0.862.513.235 (3)143
C162—H62A···N154ii0.992.543.472 (4)156
C164—H64B···N256iii0.992.583.412 (4)142
C246—H46C···N256iv0.992.583.515 (4)158
C266—H66C···N256iv0.992.423.345 (4)156
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC14H20N6O2C18H23N7
Mr304.36337.43
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)120120
a, b, c (Å)8.5570 (15), 9.893 (2), 9.9739 (18)9.6960 (8), 14.752 (3), 15.418 (3)
α, β, γ (°)87.534 (13), 77.251 (15), 67.431 (14)116.332 (13), 96.794 (10), 93.587 (9)
V3)759.6 (3)1946.1 (6)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.090.07
Crystal size (mm)0.37 × 0.34 × 0.150.62 × 0.38 × 0.32
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Bruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.971, 0.9860.962, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
18938, 3468, 1715 38120, 8590, 4805
Rint0.0850.049
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.236, 1.03 0.065, 0.206, 1.10
No. of reflections34688590
No. of parameters204451
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.370.31, 0.29

Computer programs: COLLECT (Hooft, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.862.553.398 (4)170
N2—H2B···O55ii0.862.172.966 (3)153
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···N210.862.193.021 (3)162
N12—H12B···N254i0.862.363.126 (3)148
N22—H22A···N110.862.243.049 (3)156
N22—H22B···N154ii0.862.513.235 (3)143
C162—H62A···N154ii0.992.543.472 (4)156
C164—H64B···N256iii0.992.583.412 (4)142
C246—H46C···N256iv0.992.583.515 (4)158
C266—H66C···N256iv0.992.423.345 (4)156
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z.
Ring-puckering parameters (Å, °) for the pyrimidine rings in compounds (I) and (II) top
Parameter(I)(II), molecule 1(II) molecule 2
Q0.248 (3)0.218 (3)0.221 (3)
θ74.4 (7)73.0 (8)75.0 (8)
ϕ234.6 (8)230.9 (8)229.7 (8)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds