Download citation
Download citation
link to html
The scandium(III) cations in the structures of penta­aqua­(biuret-[kappa]2O,O')scandium(III) trichloride monohydrate, [Sc(C2H5N3O2)(H2O)5]Cl3·H2O, (I), and tetra­kis(biuret-[kappa]2O,O')scandium(III) trinitrate, [Sc(C2H5N3O2)4](NO3)3, (II), are found to adopt very different coordinations with the same biuret ligand. The roles of hydrogen bonding and the counter-ion in the establishment of the structures are described. In (I), the Sc3+ cation adopts a fairly regular penta­gonal bipyramidal coordination geometry arising from one O,O'-bidentate biuret mol­ecule and five water mol­ecules. A dense network of N-H...Cl, O-H...O and O-H...Cl hydrogen bonds help to establish the packing, resulting in dimeric associations of two cations and two water mol­ecules. In (II), the Sc3+ cation (site symmetry 2) adopts a slightly squashed square-anti­prismatic geometry arising from four O,O'-bidentate biuret mol­ecules. A network of N-H...O hydrogen bonds help to establish the packing, which features [010] chains of cations. One of the nitrate ions is disordered about an inversion centre. Both structures form three-dimensional hydrogen-bond networks.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010800824X/sk3214sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010800824X/sk3214Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010800824X/sk3214IIsup3.hkl
Contains datablock II

CCDC references: 690177; 690178

Comment top

Compared with other first-row transition elements, the coordination chemistry of Sc3+ has not been extensively investigated, perhaps in part owing to the historical high cost of scandium compounds. Even so, it is clearly defined as a relatively weak class-a acceptor and shows a preference for O-atom donor ligands (Greenwood & Earnshaw, 1997), although coordination to N atoms and halide ions has been observed (e.g. Ripert et al., 1999). Scandium(III) is notably flexible in its coordination preference; for example, it can adopt six- [e.g. Sc(H2O)6.Sc(CH3SO3)6; Lindquist-Reis et al., 2006], seven- [e.g. Sc(H2O)7.3Cl; Lim et al., 2000], eight- [Sc(H2O)8.3(CF3SO3); Abbasi et al., 2005] and nine-coordination [Sc(H2O)9.3(CF3SO3); Castellani et al., 1995] in its mononuclear aqua complexes.

Biuret (biur), H2N—CO—NH—CO—NH2 (or C2H5N3O2), has long been recognized as a ligand in coordination chemistry (Wiedemann, 1848). In low-pH or neutral conditions, biuret shows O,O'-bidentate coordination to metal cations [e.g. with Zn (Nardelli et al., 1963), Cu (Freeman & Smith, 1966) or Ni (Lawson & Harrison, 2005)]. When biuret is deprotonated in basic conditions, N,N'-bidentate coordination can arise [e.g. with Cu (Pajunen & Pajunen, 1982)]. In this paper, we describe the syntheses and structures of two new scandium–biuret complexes, Sc(biur)(H2O)5.3Cl.H2O, (I), and Sc(biur)4.3NO3, (II). In the former, the Sc3+ ion is seven-coordinate, and in the latter, eight coordinate.

Compound (I) is a hydrated molecular salt containing a new [Sc(biur)(H2O)5]3+ complex ion, three charge-balancing chloride ions and one uncoordinated water molecule. The Sc3+ ion in (I) is coordinated to seven O atoms (Fig. 1 and Table 1) in a slightly distorted pentagonal–bipyramidal arrangement. The O,O-bidenate biuret molecule occupies two of the equatorial positions, and a six-membered chelate ring results. The mean equatorial O—Sc—O bond angle is 73.0° and the axial O6—Sc1—O7 bond angle is 177.98 (4)°. The axial Sc—O bond lengths are slightly shorter than their equatorial equivalents. In [Sc(H2O)7]3+.3X- (X = Cl and Br; Lim et al., 2000) a very similar scandium geometry arises although the complete complex cation is generated by twofold symmetry in these cases.

It has been noted previously (Carugo et al., 1992) that the biuret molecule can be regarded as two planar amide fragments linked by an NH bridge. Here, the dihedral angle between the N1/C1/O1/N2 and N2/C2/O2/N3 units is 13.21 (9)°. The Sc3+ cation deviates from the N1/C1/O1/N2 and N2/C2/O2/N3 mean planes by -0.501 (3) and 0.157 (3) Å, respectively.

On progressing along the chain formed by atoms N1, C1, N2, C2 and N3 (Fig. 1), the C—N bond lengths in (I) show a short–long–long–short (slls) pattern, although all of them are intermediate between typical C—N single (1.47 Å) and CN double (1.30 Å) bonds, consistent with a significant degree of electronic delocalization over the entire biuret molecule (Carugo et al., 1992). This slls bond-length alternation pattern is the most common one seen in biurets, although others are also possible (Harrison, 2007).

The component species in (I) are linked by a dense network of N—H···Cl, O—H···Cl and O—H···O hydrogen bonds (Table 2). Perhaps the most interesting of these are the O—H···O links, which result in [Sc(biur)(H2O)5.H2O]2 inversion dimers (Fig. 2) in which the graph-set motif (Bernstein et al., 1995) is R24(12). Of the other hydrogen bonds, atoms Cl1, Cl2 and Cl3 accept four, six and five, respectively.

The asymmetric unit of (II) contains one Sc3+ ion (site symmetry 2), two biuret molecules and two nitrate ions, one of which is disordered about an inversion centre. Crystal symmetry generates an [Sc(biur)4]3+ complex ion (Fig. 3), in which the ScIII ion adopts a squashed square–antiprismatic geometry (Table 3 and Fig. 4). The r.m.s. deviation from the mean plane of the four O atoms forming one square face [O1, O2, O3i and O4i; (i) 1 - x, y, 1/2 - z] is 0.004 Å and Sc1 is displaced from this plane by 1.190 (1) Å. Owing to crystal symmetry, the same values apply to the other four O atoms (O1i, O2i, O3 and O4). The dihedral angle between the two sets of O atoms is 1.20 (9)°.

Both biuret molecules in (II) exhibit the slls C—N bond-length pattern. The dihedral angle between the N1/C1/O1/N2 and N2/C2/O2/N3 fragments is 20.35 (9)°, indicating an unusually high degree of twisting, and that between N4/C3/O3/N5 and N5/C4/O4/N6 is 11.76 (18)°. The deviations of the Sc3+ ion from the mean planes of the biuret fragments are -0.139 (4) Å for N1/C1/O1/N2, -1.323 (4) Å for N2/C2/O2/N3, 0.848 (5) Å for N4/C3/O3/N5 and -0.171 (5) Å for N5/C4/O4/N6.

The structure of (II) is completed by two nitrate ions, one of which is disordered about an inversion centre. A network of N—H···O hydrogen bonds (Table 4) link the component species into a three-dimensional array. The most notable are the N3—H3A···O4iii [symmetry code (iii) -x + 1, y + 1, -z + 1/2] and N6—H6A···O2vi [symmetry code: (vi) -x + 1, y - 1, -z + 1/2] links, which lead to [010] chains of cations containing R22(8) loops (Fig. 5).

The complex ion containing Sm3+ equivalent to that seen in (II) has been described by Haddad (1987) in Sm(biur)3.(NO3)3, and indeed the overall structures of (II) and Sm(biur)3.(NO3)3 are isostructural but not isomorphous.

A short nitro-O6···C1 contact of 2.904 (3) Å occurs in the crystal structure of (II), which could be another example of a short through-space O···C electrostatic interaction (O'Leary & Wallis, 2007).

Related literature top

For related literature, see: Abbasi et al. (2005); Bernstein et al. (1995); Carugo et al. (1992); Castellani et al. (1995); Greenwood & Earnshaw (1997); Haddad (1987); Harrison (2007); Lawson & Harrison (2005); Lim et al. (2000); Nardelli et al. (1963); O'Leary & Wallis (2007); Pajunen & Pajunen (1982); Ripert et al. (1999).

Experimental top

To prepare (I), 0.1 M aqueous solutions of ScCl3 (10 ml) and biuret (10 ml) were mixed and a small quantity of dilute hydrochloric acid was added, resulting in a colourles soluton. Colourless blocks of (I) grew over several days as the water slowly evaporated. Compound (II) was prepared in the same way, with 0.1 M Sc(NO3)3 replacing the scandium chloride solution. Large colourless slabs of (II) grew as the water evaporated.

Refinement top

N-bound H atoms were positioned geometrically (N—H = 0.88 Å) and refined as riding [Uiso(H) = 1.2Ueq(N)]. Water H atoms were located in difference maps and refined as riding in their as-found relative positions [Uiso(H) = 1.2Ueq(O)].

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing 50% probablity displacement ellipsoids (arbitrary spheres for the H atoms). Hydrogen bonds are indicated by double-dashed lines.
[Figure 2] Fig. 2. A view of the centrosymmetric [Sc(biur)(H2O)5.H2O]2 dimer in (I), with the hydrogen bonds indicated by double-dashed lines. [Symmetry code: (vi) -x + 1, -y + 1, -z + 2.]
[Figure 3] Fig. 3. A view of the [Sc(biur)4]3+ complex ion in (II), showing 50% probability displacement ellipsoids (arbitrary spheres for the H atoms). [Symmetry code: (i) -x + 1, y, -z + 1/2.]
[Figure 4] Fig. 4. A detail of (II), showing the squashed square–antiprismatic geomtery of the scandium(III) ion. [Symmetry code: (i) -x + 1, y, -z + 1/2.]
[Figure 5] Fig. 5. Part of a hydrogen bonded [010] chain of [Sc(biur)]3+ cations in (II), with the N—H···O hydrogen bonds indicated by double-dashed lines. [Symmetry codes: (iii) -x + 1, y + 1, -z = 1/2, (vi) -x + 1, y - 1, -z + 1/2.] Table 1 (i)-->(vii).
(vii).

-->
(I) pentaaqua(biuret-κ2O,O')scandium(III) trichloride monohydrate, top
Crystal data top
[Sc(C2H5N3O2)(H2O)5]Cl3·H2OF(000) = 744
Mr = 362.50Dx = 1.662 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3458 reflections
a = 15.2430 (7) Åθ = 2.9–27.5°
b = 7.5653 (5) ŵ = 1.09 mm1
c = 14.1276 (9) ÅT = 120 K
β = 117.247 (4)°Block, colourless
V = 1448.39 (15) Å30.40 × 0.20 × 0.15 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3308 independent reflections
Radiation source: fine-focus sealed tube2988 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1919
Tmin = 0.670, Tmax = 0.854k = 99
17376 measured reflectionsl = 1817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap (O-H) and geom (N-H)
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0242P)2 + 1.028P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3308 reflectionsΔρmax = 0.41 e Å3
155 parametersΔρmin = 0.50 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0036 (5)
Crystal data top
[Sc(C2H5N3O2)(H2O)5]Cl3·H2OV = 1448.39 (15) Å3
Mr = 362.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.2430 (7) ŵ = 1.09 mm1
b = 7.5653 (5) ÅT = 120 K
c = 14.1276 (9) Å0.40 × 0.20 × 0.15 mm
β = 117.247 (4)°
Data collection top
Nonius KappaCCD
diffractometer
3308 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2988 reflections with I > 2σ(I)
Tmin = 0.670, Tmax = 0.854Rint = 0.025
17376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.060H-atom parameters constrained
S = 1.06Δρmax = 0.41 e Å3
3308 reflectionsΔρmin = 0.50 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sc10.279407 (18)0.52397 (3)0.76641 (2)0.00972 (8)
C10.19226 (10)0.55210 (19)0.51566 (11)0.0132 (3)
C20.08651 (10)0.69220 (19)0.57832 (11)0.0130 (3)
N10.20169 (10)0.50241 (19)0.43149 (10)0.0212 (3)
H10.25750.45590.43930.025*
H20.15210.51570.36740.025*
N20.10344 (9)0.62660 (16)0.49725 (9)0.0132 (2)
H30.05590.63250.43150.016*
N30.00641 (9)0.79154 (17)0.54877 (10)0.0179 (3)
H40.00960.83310.59700.021*
H50.03070.81580.48100.021*
O10.26138 (7)0.53469 (15)0.60730 (8)0.0157 (2)
O20.14031 (7)0.65574 (14)0.67355 (8)0.0157 (2)
O30.19635 (8)0.53287 (15)0.85603 (8)0.0183 (2)
H60.21390.50180.91810.022*
H70.13150.56070.82660.022*
O40.38819 (7)0.49064 (13)0.92988 (8)0.0136 (2)
H80.39720.39010.96470.016*
H90.40090.57140.97650.016*
O50.40281 (7)0.39425 (15)0.76046 (8)0.0177 (2)
H100.40280.36620.69890.021*
H110.45330.34940.81110.021*
O60.34154 (8)0.78173 (14)0.79497 (8)0.0171 (2)
H120.31780.85610.74420.020*
H130.40410.79950.83330.020*
O70.21979 (8)0.26624 (15)0.73430 (9)0.0207 (2)
H140.22740.18880.69380.025*
H150.15900.23570.73020.025*
Cl10.24740 (3)0.00162 (5)0.59188 (3)0.01852 (10)
Cl20.02112 (2)0.14336 (5)0.70783 (3)0.01652 (9)
Cl30.43907 (2)0.35199 (5)0.55806 (3)0.01596 (9)
O80.57430 (8)0.26397 (14)0.91828 (8)0.0166 (2)
H160.56620.15100.93390.020*
H170.62460.26450.90250.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sc10.00743 (13)0.01241 (14)0.00796 (13)0.00051 (9)0.00235 (10)0.00001 (9)
C10.0127 (7)0.0137 (7)0.0117 (6)0.0012 (5)0.0042 (5)0.0002 (5)
C20.0111 (6)0.0129 (7)0.0134 (6)0.0013 (5)0.0040 (5)0.0008 (5)
N10.0151 (6)0.0353 (8)0.0092 (6)0.0038 (5)0.0020 (5)0.0042 (5)
N20.0101 (6)0.0164 (6)0.0087 (5)0.0016 (5)0.0005 (5)0.0002 (5)
N30.0127 (6)0.0222 (7)0.0147 (6)0.0057 (5)0.0029 (5)0.0014 (5)
O10.0115 (5)0.0244 (6)0.0089 (5)0.0043 (4)0.0028 (4)0.0002 (4)
O20.0121 (5)0.0224 (5)0.0119 (5)0.0059 (4)0.0049 (4)0.0046 (4)
O30.0118 (5)0.0338 (6)0.0094 (5)0.0062 (4)0.0047 (4)0.0043 (4)
O40.0127 (5)0.0151 (5)0.0089 (5)0.0013 (4)0.0016 (4)0.0004 (4)
O50.0119 (5)0.0298 (6)0.0103 (5)0.0083 (4)0.0041 (4)0.0021 (4)
O60.0143 (5)0.0151 (5)0.0153 (5)0.0015 (4)0.0012 (4)0.0019 (4)
O70.0185 (6)0.0178 (5)0.0321 (6)0.0063 (4)0.0171 (5)0.0097 (5)
Cl10.0262 (2)0.01783 (18)0.01257 (17)0.00048 (14)0.00978 (15)0.00053 (13)
Cl20.00969 (17)0.02252 (19)0.01462 (17)0.00057 (13)0.00321 (13)0.00427 (13)
Cl30.01396 (17)0.01700 (18)0.01731 (17)0.00036 (13)0.00749 (14)0.00218 (13)
O80.0146 (5)0.0177 (5)0.0171 (5)0.0029 (4)0.0070 (4)0.0008 (4)
Geometric parameters (Å, º) top
Sc1—O72.1109 (11)N2—H30.8800
Sc1—O62.1242 (11)N3—H40.8800
Sc1—O12.1377 (10)N3—H50.8800
Sc1—O42.1541 (10)O3—H60.8256
Sc1—O52.1572 (10)O3—H70.9042
Sc1—O22.1595 (10)O4—H80.8815
Sc1—O32.1629 (10)O4—H90.8528
C1—O11.2468 (17)O5—H100.8948
C1—N11.3162 (19)O5—H110.8460
C1—N21.3770 (19)O6—H120.8514
C2—O21.2444 (17)O6—H130.8645
C2—N31.3278 (19)O7—H140.8634
C2—N21.3766 (18)O7—H150.9307
N1—H10.8800O8—H160.9051
N1—H20.8800O8—H170.8910
O7—Sc1—O6177.98 (4)C1—N1—H1120.0
O7—Sc1—O188.49 (4)C1—N1—H2120.0
O6—Sc1—O189.79 (4)H1—N1—H2120.0
O7—Sc1—O499.59 (4)C2—N2—C1122.21 (12)
O6—Sc1—O481.17 (4)C2—N2—H3118.9
O1—Sc1—O4142.85 (4)C1—N2—H3118.9
O7—Sc1—O582.45 (4)C2—N3—H4120.0
O6—Sc1—O595.98 (4)C2—N3—H5120.0
O1—Sc1—O570.78 (4)H4—N3—H5120.0
O4—Sc1—O574.43 (4)C1—O1—Sc1137.45 (10)
O7—Sc1—O295.14 (4)C2—O2—Sc1137.47 (9)
O6—Sc1—O285.41 (4)Sc1—O3—H6128.4
O1—Sc1—O274.09 (4)Sc1—O3—H7123.2
O4—Sc1—O2139.92 (4)H6—O3—H7108.0
O5—Sc1—O2144.83 (4)Sc1—O4—H8123.1
O7—Sc1—O381.07 (4)Sc1—O4—H9122.3
O6—Sc1—O3100.94 (4)H8—O4—H9105.4
O1—Sc1—O3141.86 (4)Sc1—O5—H10122.3
O4—Sc1—O375.26 (4)Sc1—O5—H11128.4
O5—Sc1—O3142.33 (4)H10—O5—H11108.8
O2—Sc1—O370.50 (4)Sc1—O6—H12117.8
O1—C1—N1121.21 (13)Sc1—O6—H13122.0
O1—C1—N2121.98 (13)H12—O6—H13110.3
N1—C1—N2116.80 (13)Sc1—O7—H14126.5
O2—C2—N3121.42 (13)Sc1—O7—H15124.1
O2—C2—N2122.54 (13)H14—O7—H15102.8
N3—C2—N2115.98 (12)H16—O8—H17107.1
O2—C2—N2—C115.9 (2)O2—Sc1—O1—C121.41 (14)
N3—C2—N2—C1166.85 (13)O3—Sc1—O1—C10.93 (18)
O1—C1—N2—C22.4 (2)N3—C2—O2—Sc1174.13 (10)
N1—C1—N2—C2176.50 (13)N2—C2—O2—Sc18.8 (2)
N1—C1—O1—Sc1159.81 (12)O7—Sc1—O2—C281.51 (15)
N2—C1—O1—Sc121.4 (2)O6—Sc1—O2—C296.53 (15)
O7—Sc1—O1—C174.37 (15)O1—Sc1—O2—C25.44 (14)
O6—Sc1—O1—C1106.69 (15)O4—Sc1—O2—C2166.98 (13)
O4—Sc1—O1—C1178.33 (13)O5—Sc1—O2—C22.66 (18)
O5—Sc1—O1—C1156.90 (15)O3—Sc1—O2—C2160.15 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl30.882.623.4148 (14)152
N1—H2···Cl2i0.882.533.2883 (14)145
N2—H3···Cl2ii0.882.453.1609 (12)138
N3—H4···Cl2iii0.882.743.4239 (14)136
N3—H5···Cl2ii0.882.753.4882 (14)142
O3—H6···Cl1iv0.832.273.0662 (11)163
O3—H7···Cl2v0.902.243.1245 (11)167
O4—H8···Cl3iv0.882.183.0519 (11)173
O4—H9···O8vi0.851.842.6929 (15)176
O5—H10···Cl30.892.303.1671 (11)164
O5—H11···O80.851.892.7274 (14)174
O6—H12···Cl1iii0.852.213.0477 (11)169
O6—H13···Cl3vii0.862.213.0691 (11)175
O7—H14···Cl10.862.143.0014 (11)179
O7—H15···Cl20.932.103.0229 (11)173
O8—H16···Cl3viii0.912.273.1512 (11)165
O8—H17···O1viii0.892.513.2003 (15)135
O8—H17···Cl1vii0.892.623.3161 (11)135
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x, y+1/2, z+3/2; (vi) x+1, y+1, z+2; (vii) x+1, y+1/2, z+3/2; (viii) x+1, y1/2, z+3/2.
(II) tetrakis(biuret-κ2O,O')scandium(III) trinitrate top
Crystal data top
[Sc(C2H5N3O2)4](NO3)3F(000) = 1320
Mr = 643.36Dx = 1.899 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2691 reflections
a = 19.2409 (13) Åθ = 2.9–27.5°
b = 7.0167 (4) ŵ = 0.45 mm1
c = 17.4653 (13) ÅT = 120 K
β = 107.344 (4)°Cut slab, colourless
V = 2250.7 (3) Å30.18 × 0.12 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
2581 independent reflections
Radiation source: fine-focus sealed tube1704 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ω and ϕ scansθmax = 27.6°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 2422
Tmin = 0.924, Tmax = 0.957k = 99
12063 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0547P)2 + 1.5264P]
where P = (Fo2 + 2Fc2)/3
2581 reflections(Δ/σ)max < 0.001
204 parametersΔρmax = 0.61 e Å3
3 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Sc(C2H5N3O2)4](NO3)3V = 2250.7 (3) Å3
Mr = 643.36Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.2409 (13) ŵ = 0.45 mm1
b = 7.0167 (4) ÅT = 120 K
c = 17.4653 (13) Å0.18 × 0.12 × 0.10 mm
β = 107.344 (4)°
Data collection top
Nonius KappaCCD
diffractometer
2581 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1704 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.957Rint = 0.070
12063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0513 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.05Δρmax = 0.61 e Å3
2581 reflectionsΔρmin = 0.39 e Å3
204 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sc10.50000.21789 (10)0.25000.0146 (2)
C10.43962 (14)0.2257 (4)0.05573 (17)0.0173 (6)
C20.47271 (14)0.5311 (4)0.12188 (17)0.0185 (6)
N10.41501 (12)0.1514 (3)0.01718 (14)0.0235 (6)
H1A0.41430.02700.02360.028*
H1B0.39930.22660.05910.028*
N20.43599 (12)0.4213 (3)0.05769 (14)0.0192 (5)
H20.40830.47980.01490.023*
N30.46016 (14)0.7161 (3)0.11584 (15)0.0280 (6)
H3A0.48410.79290.15460.034*
H3B0.42790.76280.07310.034*
O10.46269 (9)0.1276 (2)0.11798 (11)0.0190 (5)
O20.51830 (9)0.4598 (2)0.18200 (11)0.0182 (5)
C30.32898 (14)0.2222 (4)0.16901 (17)0.0194 (6)
C40.37035 (14)0.0829 (4)0.23231 (17)0.0181 (6)
N40.27434 (13)0.3026 (3)0.11449 (16)0.0347 (7)
H4A0.27760.42210.10060.042*
H4B0.23460.23690.09190.042*
N50.31777 (11)0.0361 (3)0.18679 (14)0.0207 (6)
H50.27350.01010.16740.025*
N60.34883 (12)0.2563 (3)0.24458 (14)0.0225 (6)
H6A0.38050.33900.27300.027*
H6B0.30280.28890.22430.027*
O30.38606 (9)0.3086 (2)0.20247 (11)0.0188 (5)
O40.43567 (9)0.0317 (2)0.26038 (11)0.0192 (5)
N70.64799 (12)0.3132 (3)0.11046 (14)0.0206 (6)
O50.69109 (11)0.1984 (3)0.15281 (13)0.0314 (6)
O60.59093 (9)0.2591 (3)0.05913 (11)0.0206 (5)
O70.66153 (10)0.4909 (3)0.11766 (13)0.0298 (5)
N80.2577 (5)0.7663 (12)0.0042 (9)0.018 (2)0.50
O80.3025 (2)0.8926 (6)0.0297 (3)0.0311 (11)0.50
O90.2753 (3)0.5946 (6)0.0073 (3)0.0358 (12)0.50
O100.1959 (2)0.8131 (7)0.0484 (3)0.0298 (11)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sc10.0117 (4)0.0115 (4)0.0184 (4)0.0000.0012 (3)0.000
C10.0148 (13)0.0161 (13)0.0202 (16)0.0012 (11)0.0037 (11)0.0024 (12)
C20.0191 (14)0.0183 (14)0.0188 (16)0.0039 (11)0.0066 (12)0.0005 (12)
N10.0311 (14)0.0141 (11)0.0222 (15)0.0009 (10)0.0034 (11)0.0024 (10)
N20.0228 (12)0.0133 (11)0.0168 (13)0.0007 (10)0.0009 (10)0.0003 (10)
N30.0428 (16)0.0124 (12)0.0194 (14)0.0006 (11)0.0052 (12)0.0009 (10)
O10.0201 (10)0.0122 (9)0.0218 (12)0.0008 (8)0.0019 (8)0.0017 (8)
O20.0183 (10)0.0141 (9)0.0197 (11)0.0016 (8)0.0019 (8)0.0002 (8)
C30.0152 (14)0.0205 (14)0.0218 (16)0.0006 (12)0.0046 (12)0.0021 (13)
C40.0186 (14)0.0165 (14)0.0163 (15)0.0025 (12)0.0007 (12)0.0007 (12)
N40.0198 (13)0.0256 (13)0.0452 (18)0.0024 (11)0.0111 (12)0.0075 (12)
N50.0127 (11)0.0199 (12)0.0239 (14)0.0046 (10)0.0032 (10)0.0023 (10)
N60.0200 (12)0.0172 (12)0.0274 (15)0.0064 (10)0.0025 (11)0.0063 (11)
O30.0150 (9)0.0161 (9)0.0226 (11)0.0018 (8)0.0015 (8)0.0002 (8)
O40.0161 (9)0.0138 (9)0.0232 (11)0.0010 (8)0.0011 (8)0.0023 (8)
N70.0189 (12)0.0219 (14)0.0216 (14)0.0010 (10)0.0072 (11)0.0008 (11)
O50.0237 (11)0.0312 (12)0.0325 (13)0.0072 (9)0.0021 (10)0.0098 (10)
O60.0142 (9)0.0223 (10)0.0222 (11)0.0036 (8)0.0004 (8)0.0040 (9)
O70.0280 (11)0.0170 (11)0.0413 (14)0.0079 (9)0.0054 (10)0.0032 (10)
N80.020 (4)0.023 (4)0.017 (3)0.001 (3)0.013 (4)0.005 (3)
O80.025 (2)0.035 (3)0.031 (3)0.004 (2)0.0048 (19)0.009 (2)
O90.055 (3)0.018 (2)0.040 (3)0.015 (3)0.022 (3)0.009 (2)
O100.020 (2)0.028 (3)0.037 (3)0.003 (2)0.002 (2)0.001 (2)
Geometric parameters (Å, º) top
Sc1—O2i2.1600 (18)N3—H3B0.8800
Sc1—O22.1600 (18)C3—O31.238 (3)
Sc1—O42.1830 (18)C3—N41.316 (3)
Sc1—O4i2.1830 (18)C3—N51.374 (3)
Sc1—O3i2.1945 (17)C4—O41.258 (3)
Sc1—O32.1945 (17)C4—N61.323 (3)
Sc1—O12.2905 (18)C4—N51.368 (3)
Sc1—O1i2.2905 (18)N4—H4A0.8800
C1—O11.251 (3)N4—H4B0.8800
C1—N11.326 (3)N5—H50.8800
C1—N21.375 (3)N6—H6A0.8800
C2—O21.254 (3)N6—H6B0.8800
C2—N31.319 (3)N7—O51.232 (3)
C2—N21.370 (3)N7—O61.251 (3)
N1—H1A0.8800N7—O71.272 (3)
N1—H1B0.8800N8—O91.252 (8)
N2—H20.8800N8—O101.253 (8)
N3—H3A0.8800N8—O81.255 (8)
O2i—Sc1—O276.39 (10)C1—N1—H1A120.0
O2i—Sc1—O4113.28 (7)C1—N1—H1B120.0
O2—Sc1—O4149.94 (7)H1A—N1—H1B120.0
O2i—Sc1—O4i149.94 (7)C2—N2—C1124.3 (2)
O2—Sc1—O4i113.28 (7)C2—N2—H2117.8
O4—Sc1—O4i73.32 (10)C1—N2—H2117.8
O2i—Sc1—O3i82.66 (7)C2—N3—H3A120.0
O2—Sc1—O3i70.84 (7)C2—N3—H3B120.0
O4—Sc1—O3i136.76 (7)H3A—N3—H3B120.0
O4i—Sc1—O3i74.74 (6)C1—O1—Sc1130.26 (16)
O2i—Sc1—O370.84 (7)C2—O2—Sc1125.85 (16)
O2—Sc1—O382.66 (7)O3—C3—N4122.5 (3)
O4—Sc1—O374.74 (6)O3—C3—N5122.4 (2)
O4i—Sc1—O3136.76 (7)N4—C3—N5115.2 (2)
O3i—Sc1—O3146.28 (10)O4—C4—N6121.6 (2)
O2i—Sc1—O1135.83 (7)O4—C4—N5122.1 (2)
O2—Sc1—O173.58 (7)N6—C4—N5116.2 (2)
O4—Sc1—O181.17 (7)C3—N4—H4A120.0
O4i—Sc1—O173.14 (7)C3—N4—H4B120.0
O3i—Sc1—O1116.04 (7)H4A—N4—H4B120.0
O3—Sc1—O173.82 (7)C4—N5—C3124.9 (2)
O2i—Sc1—O1i73.58 (7)C4—N5—H5117.5
O2—Sc1—O1i135.83 (7)C3—N5—H5117.5
O4—Sc1—O1i73.14 (7)C4—N6—H6A120.0
O4i—Sc1—O1i81.17 (7)C4—N6—H6B120.0
O3i—Sc1—O1i73.82 (7)H6A—N6—H6B120.0
O3—Sc1—O1i116.04 (7)C3—O3—Sc1133.03 (17)
O1—Sc1—O1i147.90 (9)C4—O4—Sc1136.25 (17)
O1—C1—N1123.4 (2)O5—N7—O6121.4 (2)
O1—C1—N2122.3 (2)O5—N7—O7120.0 (2)
N1—C1—N2114.2 (2)O6—N7—O7118.6 (2)
O2—C2—N3121.7 (2)O9—N8—O10120.9 (7)
O2—C2—N2121.5 (2)O10—N8—O8119.9 (7)
N3—C2—N2116.8 (2)O9—N8—O8119.3 (8)
O2—C2—N2—C16.6 (4)O4—C4—N5—C32.3 (5)
N3—C2—N2—C1176.3 (3)N6—C4—N5—C3178.4 (3)
O1—C1—N2—C217.3 (4)O3—C3—N5—C410.8 (5)
N1—C1—N2—C2164.3 (3)N4—C3—N5—C4169.9 (3)
N1—C1—O1—Sc1175.09 (18)N4—C3—O3—Sc1148.2 (2)
N2—C1—O1—Sc13.2 (4)N5—C3—O3—Sc132.6 (4)
O2i—Sc1—O1—C122.3 (3)O2i—Sc1—O3—C3150.5 (3)
O2—Sc1—O1—C126.7 (2)O2—Sc1—O3—C3131.4 (3)
O4—Sc1—O1—C1136.8 (2)O4—Sc1—O3—C328.6 (3)
O4i—Sc1—O1—C1148.1 (2)O4i—Sc1—O3—C315.0 (3)
O3i—Sc1—O1—C185.1 (2)O3i—Sc1—O3—C3169.3 (3)
O3—Sc1—O1—C160.2 (2)O1—Sc1—O3—C356.4 (3)
O1i—Sc1—O1—C1173.7 (2)O1i—Sc1—O3—C390.7 (3)
N3—C2—O2—Sc1131.2 (2)N6—C4—O4—Sc1173.42 (19)
N2—C2—O2—Sc151.9 (3)N5—C4—O4—Sc15.9 (4)
O2i—Sc1—O2—C297.0 (2)O2i—Sc1—O4—C475.9 (3)
O4—Sc1—O2—C216.1 (3)O2—Sc1—O4—C427.5 (3)
O4i—Sc1—O2—C2113.0 (2)O4i—Sc1—O4—C4135.3 (3)
O3i—Sc1—O2—C2176.1 (2)O3i—Sc1—O4—C4179.3 (2)
O3—Sc1—O2—C225.1 (2)O3—Sc1—O4—C415.1 (3)
O1—Sc1—O2—C250.2 (2)O1—Sc1—O4—C460.4 (3)
O1i—Sc1—O2—C2145.2 (2)O1i—Sc1—O4—C4139.1 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6ii0.882.092.966 (3)171
N1—H1B···O7iii0.882.373.163 (3)150
N2—H2···O6iii0.882.242.971 (3)140
N2—H2···O7iii0.882.313.139 (3)156
N3—H3A···O4iv0.882.183.040 (3)167
N3—H3B···O6iii0.882.232.923 (3)135
N3—H3B···O10v0.882.352.887 (5)119
N3—H3B···O80.882.483.206 (5)141
N4—H4A···O90.882.022.779 (5)144
N4—H4A···O10v0.882.203.054 (5)165
N4—H4B···O7vi0.882.353.094 (3)142
N5—H5···O7vi0.882.072.904 (3)158
N6—H6A···O2vii0.882.343.193 (3)162
N6—H6B···O5vi0.882.142.997 (3)164
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1/2; (v) x+1/2, y+3/2, z; (vi) x1/2, y1/2, z; (vii) x+1, y1, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Sc(C2H5N3O2)(H2O)5]Cl3·H2O[Sc(C2H5N3O2)4](NO3)3
Mr362.50643.36
Crystal system, space groupMonoclinic, P21/cMonoclinic, C2/c
Temperature (K)120120
a, b, c (Å)15.2430 (7), 7.5653 (5), 14.1276 (9)19.2409 (13), 7.0167 (4), 17.4653 (13)
β (°) 117.247 (4) 107.344 (4)
V3)1448.39 (15)2250.7 (3)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.090.45
Crystal size (mm)0.40 × 0.20 × 0.150.18 × 0.12 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.670, 0.8540.924, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
17376, 3308, 2988 12063, 2581, 1704
Rint0.0250.070
(sin θ/λ)max1)0.6500.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 1.06 0.051, 0.122, 1.05
No. of reflections33082581
No. of parameters155204
No. of restraints03
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.500.61, 0.39

Computer programs: COLLECT (Nonius, 1998), HKL SCALEPACK (Otwinowski & Minor, 1997), HKL DENZO and SCALEPACK (Otwinowski & Minor, 1997), and SORTAV (Blessing, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Selected bond lengths (Å) for (I) top
Sc1—O72.1109 (11)Sc1—O52.1572 (10)
Sc1—O62.1242 (11)Sc1—O22.1595 (10)
Sc1—O12.1377 (10)Sc1—O32.1629 (10)
Sc1—O42.1541 (10)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl30.882.623.4148 (14)152
N1—H2···Cl2i0.882.533.2883 (14)145
N2—H3···Cl2ii0.882.453.1609 (12)138
N3—H4···Cl2iii0.882.743.4239 (14)136
N3—H5···Cl2ii0.882.753.4882 (14)142
O3—H6···Cl1iv0.832.273.0662 (11)163
O3—H7···Cl2v0.902.243.1245 (11)167
O4—H8···Cl3iv0.882.183.0519 (11)173
O4—H9···O8vi0.851.842.6929 (15)176
O5—H10···Cl30.892.303.1671 (11)164
O5—H11···O80.851.892.7274 (14)174
O6—H12···Cl1iii0.852.213.0477 (11)169
O6—H13···Cl3vii0.862.213.0691 (11)175
O7—H14···Cl10.862.143.0014 (11)179
O7—H15···Cl20.932.103.0229 (11)173
O8—H16···Cl3viii0.912.273.1512 (11)165
O8—H17···O1viii0.892.513.2003 (15)135
O8—H17···Cl1vii0.892.623.3161 (11)135
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1/2, z+1/2; (v) x, y+1/2, z+3/2; (vi) x+1, y+1, z+2; (vii) x+1, y+1/2, z+3/2; (viii) x+1, y1/2, z+3/2.
Selected bond lengths (Å) for (II) top
Sc1—O22.1600 (18)Sc1—O32.1945 (17)
Sc1—O42.1830 (18)Sc1—O12.2905 (18)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.882.092.966 (3)171
N1—H1B···O7ii0.882.373.163 (3)150
N2—H2···O6ii0.882.242.971 (3)140
N2—H2···O7ii0.882.313.139 (3)156
N3—H3A···O4iii0.882.183.040 (3)167
N3—H3B···O6ii0.882.232.923 (3)135
N3—H3B···O10iv0.882.352.887 (5)119
N3—H3B···O80.882.483.206 (5)141
N4—H4A···O90.882.022.779 (5)144
N4—H4A···O10iv0.882.203.054 (5)165
N4—H4B···O7v0.882.353.094 (3)142
N5—H5···O7v0.882.072.904 (3)158
N6—H6A···O2vi0.882.343.193 (3)162
N6—H6B···O5v0.882.142.997 (3)164
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1/2; (iv) x+1/2, y+3/2, z; (v) x1/2, y1/2, z; (vi) x+1, y1, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds