Download citation
Download citation
link to html
The title compound (trivial name terbutyl­azine), C9H16ClN5, (I), crystallizes with Z' = 4 in the space group Pca21, and equal numbers of mol­ecules adopt two different conformations for the ethyl­amine groups. The four independent mol­ecules form two approximately enantio­morphic pairs. Eight independent N-H...N hydrogen bonds link the mol­ecules into two independent chains of R22(8) rings, in which the arrangement of the alkyl­amine substituents in the independent mol­ecules precludes any further crystallographic symmetry. The significance of this study lies in its finding of two distinct mol­ecular conformations within the structure and two distinct ways in which the mol­ecules are organized into hydrogen-bonded chains, and in its comparison of the hydrogen-bonded structure of (I) with those of analogous 1,3,5-triazines and pyrimidines.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108021355/sk3255sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108021355/sk3255Isup2.hkl
Contains datablock I

CCDC reference: 700041

Comment top

The formation of hydrogen-bonded rings of R22(8) type (Bernstein et al., 1995) built from pairs of N—H···N hydrogen bonds is a very common motif in the structures of aminopyrimidines which readily leads to the formation of chains of these rings (Rodríguez et al., 2008). We have recently attempted a rationalization of the patterns of supramolecular aggregation in 4,6-disubstituted-2-aminopyrmidines in terms of the formation versus fragmentation of such chains (Rodríguez et al., 2008). The formation of continuous chains of R22(8) rings can, in fact, be disrupted either by steric factors associated with bulky substituents or by the presence of alternative hydrogen-bond acceptors, giving in some cases short-chain fragments containing only four molecules, and in other cases only isolated dimer units. A number of the examples considered in the earlier study contain one chlorine substituent and two amine substituents, usually different, on the pyrimidine ring. With this in mind, we have now extended our study to encompass a similarly substituted 1,3,5-triazine derivative, the title compound, (I) (Fig. 1), the structure of which we report here along with a comparative analysis of the related structures (II)–(IV) retrieved from the Cambridge Structural Database (CSD, Version?; Allen, 2002).

Compound (I) crystallizes with Z' = 4 in space group Pca21, and the selected asymmetric unit consists of two hydrogen-bonded aggregates (Table 1). Molecules 1 and 2, containing atoms N11 and N21, respectively, are linked by two N—H···N hydrogen bonds in which the ethylamine atoms N16 and N26 act as the donors, forming an R22(8) ring. We denote this aggregate dimer A (Fig. 1a). By contrast, in dimer B, formed by molecules 3 and 4 (containing atoms N31 and N41, respectively), the hydrogen-bond donors in the R22(8) ring are atoms N34 and N46, which are parts of a tert-butylamine and an ethylamine group, respectively (Fig. 1b). Hence in dimer A, the two independent tert-butylamine groups are trans to one another in the dimer, whereas in dimer B, the tert-butylamine group based on atom N44 is trans to the ethylamine group based on atom N36. Possibly the simplest way to envisage the relationship between dimers A and B is via a 180° rotation of molecule 3 about the line Cl3—C32···N35.

The different arrangements of the alkylamine substituents in the two dimers are sufficient to preclude the possibility of any additional crystallographic symmetry. In addition, the conformations of the ethylamine groups differ (Table 2), although those of the tert-butylamine groups are all fairly similar. The C—N—C—C torsion angles defining the orientation of the ethyl groups indicate that the conformations of molecules 1 and 4 are similar, although approximately enantiomorphic, as are those of molecules 2 and 3, which are also approximately enantiomorphic. In each of the independent molecules, the alkylamine substituents are oriented so that the bonds Nx4—Cx41 and Nx6—Cx61 (where x = 1–4) are all approximately parallel to the corresponding Cx2-Clx bonds (Table 2). It is interesting to note that the atoms Cx41 in the tert-butyl groups (x = 1–4) and the atoms Cx61 in the ethyl groups (x = 1-4) do not deviate greatly from the planes of the adjacent triazine rings, as shown by the key torsion angles (Table 2).

In addition to the hydrogen bonds within the two independent dimers, there are four further N—H···N hydrogen bonds which link these dimers into chains (Table 1). In the type A dimer, atoms N14 and N24 at (x, y, z) act as hydrogen-bond donors to, respectively, atoms N23 at (-1/2 + x, 1 - y, z) and N13 at (1/2 + x, 1 - y, z), so forming a C22(10)C22(10)[R22(8)][R22(8)] chain of rings consisting of type A dimers related by the c-glide plane at y = 1/2 (Fig. 2). The final two N—H···N hydrogen bonds, having atoms N31 and N43 as the acceptors, give rise to an entirely analogous chain of type B dimers related by the c-glide plane at y = 0 (Fig. 2). There are two chains of each type passing through each unit cell, but there are no direction-specific interactions between the chains. In particular, there are no C—H···π(triazine) hydrogen bonds and no ππ stacking interactions in the structure.

The structures of three related compounds, (II)–(IV) (see scheme), each bearing one chlorine substituent and two primary amine substituents on a single 1,3,5-triazine ring, are recorded in the CSD. The original reports on these structures all essentially presented proof of constitution, with no analysis or discussion of the supramolecular aggregation, and it is therefore of interest briefly to compare their structures with that of compound (I). In each case, the hydrocarbyl fragments in the alkylamine substituents are oriented with the N—C bonds approximately parallel to the C—Cl bond, as in compound (I). Hence the ring atom N5 is never available as a potential hydrogen-bond acceptor. In compound (II) (CSD refcode EQOMEC; Diaz-Ortiz et al., 2003), there are two intramolecular N—H···N hydrogen bonds forming S(6) rings, but there are no direction-specific interactions between the molecules.

There are two intermolecular N—H···N hydrogen bonds in compound (III) (CSD refcode UFAGUE; Wen et al., 2007), and the authors commented only that the hydrogen bonds form a zigzag chain along [001]. In fact, one of the hydrogen bonds links pairs of molecules related by inversion, forming the familiar R22(8) ring motif, while the other links pairs of molecules related by rotation about a twofold axis in space group C2/c, so forming a second, independent, R22(8) motif. The combination of these two motifs thus generates a chain of R22(8) rings along [001] (Fig. 3). Two chains of this type, related to one another by the c-centring operation, pass through each unit cell, but with no direction-specific interactions between adjacent chains.

The structure of compound (IV) (CSD refcode SILTEN; Dong & Huang, 2007) was described by the authors in terms of chains along [010], although three independent intermolecular N—H···N hydrogen bonds were recorded. Re-examination of this structure shows, in fact, that the molecules are linked into sheets. One of the hydrogen bonds links inversion-related pairs of molecules to form the usual R22(8) dimers, and these units are further linked by the other two hydrogen bonds to form sheets parallel to (101) containing three types of ring, of R22(6), R22(8) and R66(40) types (Fig. 4). The formation of the large R66(40) rings in compound (IV) is probably controlled and effectively templated by the pair of inversion-related –CMe2CH2CMe3 substituents within it (Fig. 4).

As in the pyrimidine series discussed recently (Rodríguez et al., 2008), so too in the analogous 1,3,5-triazines, where alternative hydrogen-bond acceptors are absent and the steric requirements of the substituents are not extreme, chains of R22(8) rings are formed, as in compounds (I) and (III). However, where alternative hydrogen-bond acceptors are available, the chain of rings can readily be disrupted, as in (IV), where the R22(8) dimer unit which forms the basic building block for the sheet formation provides the sole trace of any chain of rings, and in compound (II), where the intramolecular hydrogen bonding effectively prevents any intermolecular hydrogen-bond formation

Experimental top

A sample of compound (I) was purchased from Riedel de Haën. Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation of a solution in ethanol–water (1:1 v/v) (m.p. 449 K).

Refinement top

The systematic absences permitted Pca21 and Pcam (= Pbcm, No. 57) as possible space groups. Pca21 was selected, and confirmed by the subsequent structure analysis. Although the ADDSYM routine in PLATON (Spek, 2003) suggested possible inversion symmetry in space group Pbca, the molecular conformations and the pattern of the intermolecular hydrogen bonds both preclude any additional crystallographic symmetry.

All H atoms were located in difference maps and treated as riding atoms in geometrically idealized positions, with C—H = 0.98 (CH3) or 0.99 Å (CH2) or N—H = 0.86 Å, and with Uiso(H) = kUeq(carrier), where k = 1.5 for the methyl groups and 1.2 for all other H atoms. The two maxima in the final difference map are located 1.46 Å from atom Cl3 (1.29 e Å-3) and 1.43 Å from atom Cl2 (1.19 e Å-3). The correct orientation of the structure with respect to the polar axis direction was established using the Flack parameter (Flack, 1983).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The independent molecular components in compound (I), showing the atom-labelling scheme and the two hydrogen-bonded dimers formed within the selected asymmetric unit. (a) Dimer A formed from molecules 1 and 2. (b) Dimer B formed from molecules 3 and 4. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. A setereoview of part of the crystal structure of (I), showing the formation of the two independent hydrogen-bonded chains of rings. For the sake of clarity, H atoms bonded to C atoms have all been omitted. Hydrogen bonds are indicated by dashed lines.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (III) (CSD refcode UFAGUE; Wen et al., 2007), showing the formation of a hydrogen-bonded chain along [001] containing two independent R22(8) rings. The original atom coordinates have been used (Wen et al., 2007). For the sake of clarity, H atoms bonded to C atoms have all been omitted. Hydrogen bonds are indicated by dashed lines.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (IV) (CSD refcode SILTEN; Dong & Huang, 2007), showing the formation of a hydrogen-bonded sheet parallel to (101) containing rings of R22(6), R22(8) and R66(40) types. The original atom coordinates have been used (Dong & Huang, 2007). For the sake of clarity, H atoms bonded to C atoms have all been omitted. Hydrogen bonds are indicated by dashed lines.
2-(tert-Butylamino)-4-chloro-6-ethylamino-1,3,5-triazine top
Crystal data top
C9H16ClN5F(000) = 1952
Mr = 229.72Dx = 1.275 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 10971 reflections
a = 23.557 (3) Åθ = 3.3–27.5°
b = 9.9789 (15) ŵ = 0.30 mm1
c = 20.3594 (17) ÅT = 120 K
V = 4785.9 (10) Å3Block, colourless
Z = 160.45 × 0.30 × 0.25 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
10971 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode7899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.3°
ϕ and ω scansh = 3030
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.878, Tmax = 0.929l = 2626
113172 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.0812P)2 + 2.8742P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
10971 reflectionsΔρmax = 1.29 e Å3
557 parametersΔρmin = 0.51 e Å3
1 restraintAbsolute structure: Flack (1983), with 5308 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.11 (6)
Crystal data top
C9H16ClN5V = 4785.9 (10) Å3
Mr = 229.72Z = 16
Orthorhombic, Pca21Mo Kα radiation
a = 23.557 (3) ŵ = 0.30 mm1
b = 9.9789 (15) ÅT = 120 K
c = 20.3594 (17) Å0.45 × 0.30 × 0.25 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
10971 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
7899 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.929Rint = 0.070
113172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.160Δρmax = 1.29 e Å3
S = 1.07Δρmin = 0.51 e Å3
10971 reflectionsAbsolute structure: Flack (1983), with 5308 Friedel pairs
557 parametersAbsolute structure parameter: 0.11 (6)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.05031 (4)0.64981 (10)0.48699 (5)0.0358 (2)
N110.00061 (12)0.4740 (3)0.41404 (15)0.0277 (7)
N130.10032 (11)0.4765 (3)0.41180 (15)0.0267 (7)
N140.14760 (12)0.3382 (3)0.34038 (15)0.0287 (7)
N150.04928 (11)0.3284 (3)0.33930 (16)0.0258 (6)
N160.04824 (12)0.3257 (3)0.34751 (17)0.0335 (7)
C120.05037 (14)0.5170 (4)0.43098 (17)0.0248 (8)
C140.09753 (14)0.3791 (3)0.36396 (17)0.0241 (7)
C160.00162 (15)0.3762 (4)0.36689 (18)0.0272 (8)
C1410.15674 (14)0.2352 (4)0.28875 (19)0.0302 (8)
C1420.13220 (18)0.2824 (4)0.22303 (19)0.0387 (9)
C1430.22111 (15)0.2240 (5)0.2819 (2)0.0436 (10)
C1440.1328 (2)0.1021 (4)0.3094 (2)0.0450 (11)
C1610.05353 (15)0.2291 (4)0.2937 (2)0.0363 (9)
C1620.05419 (18)0.2943 (4)0.2268 (2)0.0416 (10)
Cl20.20096 (4)0.45802 (11)0.29409 (5)0.0372 (2)
N210.15012 (12)0.4715 (3)0.40607 (15)0.0305 (7)
N230.24921 (12)0.5175 (3)0.40518 (15)0.0284 (7)
N240.29536 (13)0.5521 (3)0.50273 (15)0.0312 (7)
N250.19863 (11)0.5131 (3)0.50725 (15)0.0265 (7)
N260.10238 (13)0.4763 (4)0.50418 (16)0.0340 (8)
C220.20006 (14)0.4857 (4)0.37836 (19)0.0294 (8)
C240.24608 (15)0.5267 (4)0.47271 (18)0.0275 (8)
C260.15159 (14)0.4892 (4)0.47267 (17)0.0273 (8)
C2410.30430 (15)0.5603 (4)0.5745 (2)0.0336 (9)
C2420.26709 (18)0.6665 (5)0.6060 (2)0.0492 (12)
C2430.36680 (18)0.6059 (5)0.5826 (2)0.0499 (12)
C2440.29599 (19)0.4226 (5)0.6051 (2)0.0483 (11)
C2610.09770 (17)0.4792 (5)0.5758 (2)0.0403 (10)
C2620.04083 (19)0.4226 (7)0.5973 (3)0.0647 (16)
Cl30.20421 (4)0.10657 (10)0.26166 (5)0.0350 (2)
N310.14988 (12)0.0384 (3)0.15567 (15)0.0305 (7)
N330.24950 (13)0.0780 (3)0.14776 (14)0.0282 (7)
N340.29366 (12)0.0596 (3)0.04806 (15)0.0274 (7)
N350.19614 (11)0.0238 (3)0.05049 (16)0.0279 (7)
N360.10038 (12)0.0094 (4)0.06129 (16)0.0324 (7)
C320.20065 (14)0.0687 (4)0.17806 (18)0.0267 (8)
C340.24488 (14)0.0518 (3)0.08206 (17)0.0249 (7)
C360.15025 (15)0.0178 (4)0.08937 (18)0.0282 (8)
C3410.30111 (15)0.0505 (4)0.02360 (19)0.0317 (8)
C3420.2916 (2)0.0938 (5)0.0459 (2)0.0508 (12)
C3430.36254 (16)0.0908 (5)0.0374 (2)0.0406 (10)
C3440.26147 (19)0.1485 (5)0.0587 (2)0.0462 (11)
C3610.09328 (15)0.0342 (4)0.0084 (2)0.0362 (9)
C3620.03829 (18)0.0989 (5)0.0233 (2)0.0508 (12)
Cl40.44337 (4)0.15046 (10)0.06999 (5)0.0343 (2)
N410.39824 (12)0.0404 (3)0.13945 (15)0.0263 (7)
N430.49748 (13)0.0024 (3)0.15130 (15)0.0272 (6)
N440.54781 (12)0.1205 (3)0.22732 (16)0.0306 (7)
N450.45148 (11)0.1674 (3)0.21856 (16)0.0263 (7)
N460.35604 (13)0.2062 (3)0.20114 (16)0.0321 (7)
C420.44672 (14)0.0195 (3)0.12719 (17)0.0247 (8)
C440.49731 (14)0.0997 (4)0.19920 (17)0.0247 (7)
C460.40351 (15)0.1377 (4)0.18716 (17)0.0270 (8)
C4410.56040 (15)0.2138 (4)0.2830 (2)0.0331 (8)
C4420.54482 (16)0.3560 (4)0.2659 (2)0.0369 (9)
C4430.62398 (16)0.2048 (5)0.2932 (2)0.0455 (10)
C4440.52934 (19)0.1671 (4)0.3447 (2)0.0407 (10)
C4610.35350 (16)0.3116 (4)0.2506 (2)0.0381 (10)
C4620.34785 (19)0.2585 (5)0.3195 (2)0.0435 (10)
H140.17730.38230.35520.034*
H160.07870.36300.36460.040*
H14A0.09090.29060.22670.058*
H14B0.14850.36980.21160.058*
H14C0.14160.21720.18870.058*
H14D0.23660.31010.26730.065*
H14E0.23770.19980.32440.065*
H14F0.23030.15470.24950.065*
H14G0.14740.07850.35290.068*
H14H0.09130.10770.31090.068*
H14I0.14410.03330.27760.068*
H16A0.02140.16530.29580.044*
H16B0.08900.17730.29950.044*
H16C0.01870.34360.22010.062*
H16D0.05800.22520.19290.062*
H16E0.08630.35640.22400.062*
H240.32500.53880.47730.037*
H260.07290.47610.47770.041*
H24A0.27210.75180.58280.074*
H24B0.27780.67740.65210.074*
H24G0.22720.63890.60320.074*
H24D0.39210.53720.56460.075*
H24E0.37520.61890.62940.075*
H24F0.37260.69040.55910.075*
H23G0.25590.39720.60230.072*
H24H0.30760.42510.65130.072*
H24I0.31910.35670.58150.072*
H25A0.10140.57260.59160.048*
H25B0.12880.42570.59540.048*
H26A0.01010.47740.57900.097*
H26B0.03850.42350.64530.097*
H26F0.03710.33030.58140.097*
H340.32370.06260.07380.033*
H360.07210.00850.08950.039*
H34A0.31850.15290.02340.076*
H34B0.29750.10000.09350.076*
H34C0.25270.12100.03530.076*
H34D0.36860.18360.02330.061*
H34E0.37020.08320.08460.061*
H34F0.38820.03150.01320.061*
H34G0.22200.12030.05230.069*
H34H0.27030.14930.10580.069*
H34I0.26680.23860.04060.069*
H36A0.12450.09250.02400.043*
H36B0.09570.05180.03250.043*
H36C0.03680.18700.00200.076*
H36D0.03440.10980.07090.076*
H36E0.00730.04290.00670.076*
H440.57390.06820.21000.037*
H460.32480.16580.18830.038*
H44A0.56290.38100.22430.055*
H44B0.55790.41620.30080.055*
H44C0.50350.36330.26140.055*
H44D0.64350.23650.25360.068*
H44E0.63460.11150.30180.068*
H44F0.63500.26060.33070.068*
H44G0.53730.22910.38090.061*
H44H0.54230.07700.35660.061*
H44I0.48840.16520.33620.061*
H46A0.32080.37060.24100.046*
H46B0.38840.36660.24770.046*
H46D0.31490.19870.32210.065*
H46E0.34270.33350.35010.065*
H46F0.38230.20880.33140.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0357 (5)0.0395 (5)0.0323 (5)0.0027 (4)0.0022 (4)0.0103 (4)
N110.0217 (14)0.0361 (18)0.0252 (16)0.0028 (13)0.0004 (12)0.0015 (13)
N130.0214 (15)0.0349 (17)0.0237 (16)0.0026 (12)0.0010 (12)0.0045 (13)
N140.0179 (14)0.0382 (17)0.0299 (16)0.0011 (12)0.0040 (12)0.0114 (14)
N150.0188 (14)0.0310 (15)0.0275 (17)0.0010 (12)0.0002 (12)0.0013 (13)
N160.0180 (14)0.0446 (19)0.0378 (19)0.0008 (13)0.0006 (13)0.0038 (15)
C120.0249 (18)0.0318 (19)0.0178 (18)0.0010 (15)0.0012 (14)0.0022 (15)
C140.0229 (17)0.0260 (17)0.0233 (18)0.0019 (14)0.0019 (14)0.0023 (14)
C160.0223 (17)0.0341 (19)0.0251 (18)0.0003 (15)0.0003 (14)0.0022 (15)
C1410.0271 (17)0.037 (2)0.0262 (18)0.0031 (15)0.0020 (15)0.0078 (16)
C1420.046 (2)0.043 (2)0.027 (2)0.0018 (18)0.0029 (18)0.0073 (18)
C1430.0281 (18)0.057 (3)0.046 (2)0.0121 (19)0.0013 (18)0.014 (2)
C1440.051 (3)0.038 (2)0.046 (3)0.001 (2)0.012 (2)0.0014 (19)
C1610.0227 (17)0.031 (2)0.055 (2)0.0064 (15)0.0029 (18)0.0076 (19)
C1620.041 (2)0.045 (2)0.039 (2)0.0051 (18)0.0034 (19)0.010 (2)
Cl20.0328 (5)0.0528 (6)0.0260 (4)0.0026 (4)0.0008 (4)0.0050 (4)
N210.0223 (15)0.049 (2)0.0206 (15)0.0004 (13)0.0007 (12)0.0007 (14)
N230.0215 (14)0.0404 (17)0.0232 (15)0.0029 (13)0.0013 (12)0.0026 (13)
N240.0239 (15)0.0449 (19)0.0247 (16)0.0033 (14)0.0012 (12)0.0020 (14)
N250.0186 (15)0.0383 (18)0.0227 (16)0.0025 (13)0.0006 (11)0.0001 (13)
N260.0177 (14)0.055 (2)0.0298 (17)0.0012 (14)0.0037 (12)0.0008 (15)
C220.0246 (18)0.038 (2)0.0257 (19)0.0000 (16)0.0002 (14)0.0010 (16)
C240.0256 (18)0.0304 (19)0.0265 (19)0.0013 (15)0.0006 (15)0.0040 (15)
C260.0245 (18)0.0349 (19)0.0225 (18)0.0041 (15)0.0006 (14)0.0021 (15)
C2410.0289 (19)0.049 (2)0.023 (2)0.0021 (16)0.0025 (16)0.0043 (18)
C2420.040 (2)0.067 (3)0.041 (3)0.001 (2)0.003 (2)0.017 (2)
C2430.037 (2)0.076 (3)0.037 (3)0.005 (2)0.0120 (19)0.013 (2)
C2440.050 (3)0.064 (3)0.031 (2)0.002 (2)0.010 (2)0.006 (2)
C2610.036 (2)0.052 (3)0.032 (2)0.0033 (19)0.0068 (18)0.0084 (19)
C2620.038 (2)0.111 (5)0.046 (3)0.007 (3)0.001 (2)0.033 (3)
Cl30.0282 (4)0.0505 (6)0.0263 (4)0.0029 (4)0.0030 (4)0.0083 (4)
N310.0213 (15)0.0416 (19)0.0286 (17)0.0003 (13)0.0018 (12)0.0041 (14)
N330.0217 (14)0.0377 (17)0.0251 (16)0.0005 (13)0.0008 (12)0.0037 (13)
N340.0183 (14)0.0417 (18)0.0222 (15)0.0017 (12)0.0006 (12)0.0002 (13)
N350.0198 (15)0.0383 (18)0.0256 (17)0.0024 (13)0.0007 (12)0.0013 (13)
N360.0200 (14)0.054 (2)0.0234 (16)0.0046 (14)0.0009 (13)0.0045 (15)
C320.0238 (18)0.0343 (19)0.0219 (18)0.0006 (15)0.0005 (14)0.0020 (15)
C340.0205 (16)0.0311 (18)0.0232 (19)0.0017 (14)0.0009 (13)0.0021 (15)
C360.0241 (18)0.034 (2)0.027 (2)0.0009 (15)0.0011 (14)0.0034 (15)
C3410.0276 (19)0.045 (2)0.022 (2)0.0012 (16)0.0038 (15)0.0007 (17)
C3420.051 (3)0.058 (3)0.044 (3)0.009 (2)0.011 (2)0.017 (2)
C3430.027 (2)0.063 (3)0.032 (2)0.0015 (19)0.0074 (16)0.004 (2)
C3440.039 (2)0.071 (3)0.028 (2)0.006 (2)0.0024 (18)0.017 (2)
C3610.0277 (19)0.055 (3)0.026 (2)0.0023 (18)0.0019 (16)0.0050 (18)
C3620.035 (2)0.072 (3)0.045 (3)0.005 (2)0.002 (2)0.027 (2)
Cl40.0340 (5)0.0370 (5)0.0318 (5)0.0006 (4)0.0003 (4)0.0091 (4)
N410.0201 (14)0.0350 (17)0.0239 (16)0.0015 (12)0.0026 (12)0.0037 (13)
N430.0232 (15)0.0342 (16)0.0242 (15)0.0008 (13)0.0005 (12)0.0006 (13)
N440.0222 (15)0.0390 (18)0.0305 (18)0.0003 (13)0.0014 (13)0.0102 (15)
N450.0212 (14)0.0308 (16)0.0267 (16)0.0027 (12)0.0012 (12)0.0001 (13)
N460.0237 (15)0.0335 (17)0.0390 (18)0.0009 (13)0.0004 (13)0.0103 (14)
C420.0269 (19)0.0290 (18)0.0181 (18)0.0010 (14)0.0029 (14)0.0002 (14)
C440.0231 (17)0.0272 (18)0.0238 (17)0.0007 (14)0.0027 (14)0.0017 (15)
C460.0257 (18)0.0330 (19)0.0224 (18)0.0001 (15)0.0011 (14)0.0027 (15)
C4410.0291 (18)0.038 (2)0.032 (2)0.0026 (16)0.0049 (16)0.0058 (16)
C4420.035 (2)0.038 (2)0.038 (2)0.0038 (16)0.0019 (18)0.0037 (18)
C4430.030 (2)0.054 (3)0.053 (3)0.0035 (19)0.007 (2)0.015 (2)
C4440.045 (2)0.046 (2)0.032 (2)0.0005 (19)0.0012 (18)0.0016 (18)
C4610.0269 (19)0.039 (2)0.048 (3)0.0028 (17)0.0025 (17)0.0104 (18)
C4620.038 (2)0.046 (2)0.046 (2)0.0083 (19)0.0110 (19)0.017 (2)
Geometric parameters (Å, º) top
Cl1—C121.748 (4)Cl3—C321.746 (4)
N11—C121.321 (4)N31—C321.315 (4)
N11—C161.370 (5)N31—C361.366 (5)
N13—C121.304 (4)N33—C321.309 (4)
N13—C141.378 (5)N33—C341.367 (5)
N14—C141.337 (4)N34—C341.344 (4)
N14—C1411.486 (5)N34—C3411.472 (5)
N14—H140.88N34—H340.8801
N15—C141.342 (4)N35—C361.341 (5)
N15—C161.343 (4)N35—C341.345 (4)
N16—C161.338 (5)N36—C361.334 (4)
N16—C1611.465 (5)N36—C3611.450 (5)
N16—H160.88N36—H360.88
C141—C1441.503 (6)C341—C3421.526 (6)
C141—C1431.527 (5)C341—C3431.528 (5)
C141—C1421.532 (5)C341—C3441.530 (6)
C142—H14A0.98C342—H34A0.98
C142—H14B0.98C342—H34B0.98
C142—H14C0.98C342—H34C0.98
C143—H14D0.98C343—H34D0.98
C143—H14E0.98C343—H34E0.98
C143—H14F0.98C343—H34F0.98
C144—H14G0.98C344—H34G0.98
C144—H14H0.98C344—H34H0.98
C144—H14I0.98C344—H34I0.98
C161—C1621.509 (6)C361—C3621.479 (5)
C161—H16A0.99C361—H36A0.99
C161—H16B0.99C361—H36B0.99
C162—H16C0.98C362—H36C0.98
C162—H16D0.98C362—H36D0.98
C162—H16E0.98C362—H36E0.98
Cl2—C221.738 (4)Cl4—C421.752 (4)
N21—C221.312 (4)N41—C421.313 (4)
N21—C261.368 (5)N41—C461.379 (5)
N23—C221.319 (4)N43—C421.311 (4)
N23—C241.380 (5)N43—C441.376 (5)
N24—C241.336 (5)N44—C441.336 (4)
N24—C2411.479 (5)N44—C4411.497 (5)
N24—H240.88N44—H440.8799
N25—C241.328 (5)N45—C461.332 (5)
N25—C261.334 (4)N45—C441.333 (4)
N26—C261.331 (4)N46—C461.341 (5)
N26—C2611.463 (5)N46—C4611.457 (5)
N26—H260.88N46—H460.88
C241—C2421.517 (6)C441—C4421.507 (6)
C241—C2441.522 (7)C441—C4431.515 (5)
C241—C2431.550 (5)C441—C4441.526 (6)
C242—H24A0.98C442—H44A0.98
C242—H24B0.98C442—H44B0.98
C242—H24G0.98C442—H44C0.98
C243—H24D0.98C443—H44D0.98
C243—H24E0.98C443—H44E0.98
C243—H24F0.98C443—H44F0.98
C244—H23G0.98C444—H44G0.98
C244—H24H0.98C444—H44H0.98
C244—H24I0.98C444—H44I0.98
C261—C2621.519 (6)C461—C4621.506 (6)
C261—H25A0.99C461—H46A0.99
C261—H25B0.99C461—H46B0.99
C262—H26A0.98C462—H46D0.98
C262—H26B0.98C462—H46E0.98
C262—H26F0.98C462—H46F0.98
C12—N11—C16112.3 (3)C32—N31—C36111.8 (3)
C12—N13—C14112.8 (3)C32—N33—C34112.2 (3)
C14—N14—C141126.4 (3)C34—N34—C341127.5 (3)
C14—N14—H14115.3C34—N34—H34112.5
C141—N14—H14118.2C341—N34—H34119.7
C14—N15—C16114.7 (3)C36—N35—C34114.5 (3)
C16—N16—C161122.9 (3)C36—N36—C361123.7 (3)
C16—N16—H16116.1C36—N36—H36112.7
C161—N16—H16120.3C361—N36—H36123.5
N13—C12—N11129.9 (3)N33—C32—N31130.7 (3)
N13—C12—Cl1115.5 (3)N33—C32—Cl3113.7 (3)
N11—C12—Cl1114.6 (3)N31—C32—Cl3115.6 (3)
N14—C14—N15119.9 (3)N34—C34—N35119.7 (3)
N14—C14—N13115.3 (3)N34—C34—N33115.1 (3)
N15—C14—N13124.8 (3)N35—C34—N33125.1 (3)
N16—C16—N15118.5 (3)N36—C36—N35117.8 (3)
N16—C16—N11116.2 (3)N36—C36—N31116.6 (3)
N15—C16—N11125.3 (3)N35—C36—N31125.6 (3)
N14—C141—C144111.1 (3)N34—C341—C342109.6 (3)
N14—C141—C143105.1 (3)N34—C341—C343106.2 (3)
C144—C141—C143109.5 (4)C342—C341—C343109.5 (3)
N14—C141—C142110.5 (3)N34—C341—C344110.5 (3)
C144—C141—C142112.0 (3)C342—C341—C344112.0 (4)
C143—C141—C142108.5 (3)C343—C341—C344108.9 (3)
C141—C142—H14A109.5C341—C342—H34A109.5
C141—C142—H14B109.5C341—C342—H34B109.5
H14A—C142—H14B109.5H34A—C342—H34B109.5
C141—C142—H14C109.5C341—C342—H34C109.5
H14A—C142—H14C109.5H34A—C342—H34C109.5
H14B—C142—H14C109.5H34B—C342—H34C109.5
C141—C143—H14D109.5C341—C343—H34D109.5
C141—C143—H14E109.5C341—C343—H34E109.5
H14D—C143—H14E109.5H34D—C343—H34E109.5
C141—C143—H14F109.5C341—C343—H34F109.5
H14D—C143—H14F109.5H34D—C343—H34F109.5
H14E—C143—H14F109.5H34E—C343—H34F109.5
C141—C144—H14G109.5C341—C344—H34G109.5
C141—C144—H14H109.5C341—C344—H34H109.5
H14G—C144—H14H109.5H34G—C344—H34H109.5
C141—C144—H14I109.5C341—C344—H34I109.5
H14G—C144—H14I109.5H34G—C344—H34I109.5
H14H—C144—H14I109.5H34H—C344—H34I109.5
N16—C161—C162113.1 (3)N36—C361—C362112.1 (3)
N16—C161—H16A109.0N36—C361—H36A109.2
C162—C161—H16A109.0C362—C361—H36A109.2
N16—C161—H16B109.0N36—C361—H36B109.2
C162—C161—H16B109.0C362—C361—H36B109.2
H16A—C161—H16B107.8H36A—C361—H36B107.9
C161—C162—H16C109.5C361—C362—H36C109.5
C161—C162—H16D109.5C361—C362—H36D109.5
H16C—C162—H16D109.5H36C—C362—H36D109.5
C161—C162—H16E109.5C361—C362—H36E109.5
H16C—C162—H16E109.5H36C—C362—H36E109.5
H16D—C162—H16E109.5H36D—C362—H36E109.5
C22—N21—C26112.9 (3)C42—N41—C46112.1 (3)
C22—N23—C24112.4 (3)C42—N43—C44112.4 (3)
C24—N24—C241125.9 (3)C44—N44—C441126.7 (3)
C24—N24—H24113.1C44—N44—H44111.0
C241—N24—H24118.4C441—N44—H44122.3
C24—N25—C26116.0 (3)C46—N45—C44115.6 (3)
C26—N26—C261123.0 (3)C46—N46—C461123.3 (3)
C26—N26—H26113.2C46—N46—H46113.6
C261—N26—H26123.5C461—N46—H46120.2
N21—C22—N23129.4 (4)N43—C42—N41130.3 (3)
N21—C22—Cl2114.7 (3)N43—C42—Cl4114.5 (3)
N23—C22—Cl2115.9 (3)N41—C42—Cl4115.3 (3)
N25—C24—N24120.6 (3)N45—C44—N44121.1 (3)
N25—C24—N23124.5 (3)N45—C44—N43124.7 (3)
N24—C24—N23115.0 (3)N44—C44—N43114.2 (3)
N26—C26—N25119.1 (3)N45—C46—N46119.5 (3)
N26—C26—N21116.3 (3)N45—C46—N41124.8 (3)
N25—C26—N21124.6 (3)N46—C46—N41115.7 (3)
N24—C241—C242111.9 (3)N44—C441—C442111.3 (3)
N24—C241—C244109.7 (3)N44—C441—C443105.2 (3)
C242—C241—C244112.5 (4)C442—C441—C443109.2 (3)
N24—C241—C243104.9 (3)N44—C441—C444109.8 (3)
C242—C241—C243107.4 (4)C442—C441—C444111.2 (3)
C244—C241—C243110.1 (4)C443—C441—C444110.1 (4)
C241—C242—H24A109.5C441—C442—H44A109.5
C241—C242—H24B109.5C441—C442—H44B109.5
H24A—C242—H24B109.5H44A—C442—H44B109.5
C241—C242—H24G109.5C441—C442—H44C109.5
H24A—C242—H24G109.5H44A—C442—H44C109.5
H24B—C242—H24G109.5H44B—C442—H44C109.5
C241—C243—H24D109.5C441—C443—H44D109.5
C241—C243—H24E109.5C441—C443—H44E109.5
H24D—C243—H24E109.5H44D—C443—H44E109.5
C241—C243—H24F109.5C441—C443—H44F109.5
H24D—C243—H24F109.5H44D—C443—H44F109.5
H24E—C243—H24F109.5H44E—C443—H44F109.5
C241—C244—H23G109.5C441—C444—H44G109.5
C241—C244—H24H109.5C441—C444—H44H109.5
H23G—C244—H24H109.5H44G—C444—H44H109.5
C241—C244—H24I109.5C441—C444—H44I109.5
H23G—C244—H24I109.5H44G—C444—H44I109.5
H24H—C244—H24I109.5H44H—C444—H44I109.5
N26—C261—C262110.3 (4)N46—C461—C462113.2 (3)
N26—C261—H25A109.6N46—C461—H46A108.9
C262—C261—H25A109.6C462—C461—H46A108.9
N26—C261—H25B109.6N46—C461—H46B108.9
C262—C261—H25B109.6C462—C461—H46B108.9
H25A—C261—H25B108.1H46A—C461—H46B107.7
C261—C262—H26A109.5C461—C462—H46D109.5
C261—C262—H26B109.5C461—C462—H46E109.5
H26A—C262—H26B109.5H46D—C462—H46E109.5
C261—C262—H26F109.5C461—C462—H46F109.5
H26A—C262—H26F109.5H46D—C462—H46F109.5
H26B—C262—H26F109.5H46E—C462—H46F109.5
C14—N13—C12—N114.0 (6)C34—N33—C32—N310.5 (6)
C14—N13—C12—Cl1175.2 (2)C34—N33—C32—Cl3178.1 (3)
C16—N11—C12—N133.3 (6)C36—N31—C32—N332.0 (6)
C16—N11—C12—Cl1175.9 (2)C36—N31—C32—Cl3176.5 (3)
C141—N14—C14—N152.0 (6)C341—N34—C34—N355.0 (6)
C141—N14—C14—N13179.9 (3)C341—N34—C34—N33173.2 (3)
C16—N15—C14—N14179.7 (3)C36—N35—C34—N34179.6 (3)
C16—N15—C14—N132.6 (5)C36—N35—C34—N332.4 (5)
C12—N13—C14—N14177.1 (3)C32—N33—C34—N34179.9 (3)
C12—N13—C14—N150.7 (5)C32—N33—C34—N352.0 (5)
C161—N16—C16—N155.4 (6)C361—N36—C36—N350.8 (6)
C161—N16—C16—N11174.6 (3)C361—N36—C36—N31179.8 (4)
C14—N15—C16—N16176.6 (3)C34—N35—C36—N36179.8 (3)
C14—N15—C16—N113.4 (5)C34—N35—C36—N310.5 (6)
C12—N11—C16—N16179.1 (3)C32—N31—C36—N36177.9 (3)
C12—N11—C16—N150.9 (5)C32—N31—C36—N351.4 (6)
C14—N14—C141—C14460.1 (5)C34—N34—C341—C34272.0 (5)
C14—N14—C141—C143178.3 (4)C34—N34—C341—C343169.9 (4)
C14—N14—C141—C14264.8 (5)C34—N34—C341—C34451.9 (5)
C16—N16—C161—C16282.5 (4)C36—N36—C361—C362163.5 (4)
C26—N21—C22—N232.1 (6)C44—N43—C42—N413.7 (5)
C26—N21—C22—Cl2177.7 (3)C44—N43—C42—Cl4175.8 (3)
C24—N23—C22—N215.0 (6)C46—N41—C42—N432.5 (5)
C24—N23—C22—Cl2174.8 (3)C46—N41—C42—Cl4177.0 (3)
C26—N25—C24—N24179.3 (3)C46—N45—C44—N44179.7 (3)
C26—N25—C24—N230.1 (5)C46—N45—C44—N431.4 (5)
C241—N24—C24—N253.7 (6)C441—N44—C44—N451.9 (6)
C241—N24—C24—N23176.8 (4)C441—N44—C44—N43176.5 (3)
C22—N23—C24—N253.7 (5)C42—N43—C44—N451.5 (5)
C22—N23—C24—N24176.9 (3)C42—N43—C44—N44176.9 (3)
C261—N26—C26—N253.8 (6)C44—N45—C46—N46176.4 (3)
C261—N26—C26—N21173.8 (4)C44—N45—C46—N412.8 (5)
C24—N25—C26—N26179.1 (4)C461—N46—C46—N451.3 (6)
C24—N25—C26—N213.5 (6)C461—N46—C46—N41179.3 (3)
C22—N21—C26—N26179.9 (3)C42—N41—C46—N451.1 (5)
C22—N21—C26—N252.6 (5)C42—N41—C46—N46178.2 (3)
C24—N24—C241—C24258.3 (5)C44—N44—C441—C44258.9 (5)
C24—N24—C241—C24467.4 (5)C44—N44—C441—C443176.9 (4)
C24—N24—C241—C243174.4 (4)C44—N44—C441—C44464.6 (5)
C26—N26—C261—C262163.5 (4)C46—N46—C461—C46280.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···N23i0.882.243.118 (4)173
N16—H16···N210.882.173.049 (4)175
N24—H24···N13ii0.882.213.090 (4)175
N26—H26···N110.882.143.019 (4)179
N34—H34···N410.882.223.093 (4)172
N36—H36···N43iii0.882.163.039 (4)175
N44—H44···N31iv0.882.363.228 (4)170
N46—H46···N330.882.143.020 (4)174
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1/2, y+1, z; (iii) x1/2, y, z; (iv) x+1/2, y, z.

Experimental details

Crystal data
Chemical formulaC9H16ClN5
Mr229.72
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)120
a, b, c (Å)23.557 (3), 9.9789 (15), 20.3594 (17)
V3)4785.9 (10)
Z16
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.45 × 0.30 × 0.25
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.878, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
113172, 10971, 7899
Rint0.070
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.160, 1.07
No. of reflections10971
No. of parameters557
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 0.51
Absolute structureFlack (1983), with 5308 Friedel pairs
Absolute structure parameter0.11 (6)

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···N23i0.882.243.118 (4)173
N16—H16···N210.882.173.049 (4)175
N24—H24···N13ii0.882.213.090 (4)175
N26—H26···N110.882.143.019 (4)179
N34—H34···N410.882.223.093 (4)172
N36—H36···N43iii0.882.163.039 (4)175
N44—H44···N31iv0.882.363.228 (4)170
N46—H46···N330.882.143.020 (4)174
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1/2, y+1, z; (iii) x1/2, y, z; (iv) x+1/2, y, z.
Selected torsion angles (°) for compound (I) top
Parameterx = 1x = 2x = 3x = 4
Nx1-Cx6-Nx6-Cx61-174.6 (3)173.8 (4)-179.8 (4)179.3 (3)
Cx6-Nx6-Cx61-Cx6282.5 (4)-163.5 (4)163.5 (4)-80.7 (5)
Nx3-Cx4-Nx4-Cx41179.9 (3)-176.8 (4)-173.2 (3)-176.5 (3)
Cx4-Nx4-Cx41-Cx42-64.8 (5)-58.3 (5)-72.0 (5)-58.9 (5)
Cx4-Nx4-Cx41-Cx43178.3 (4)-174.4 (4)169.9 (4)-176.9 (4)
Cx4-Nx4-Cx41-Cx4460.1 (5)67.4 (5)51.9 (5)64.6 (5)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds