Download citation
Download citation
link to html
The ZnII compounds, [mu]-4,4'-ethyl­enedibenzo­ato-bis­[acetato­aqua­(dipyrido[3,2-a:2',3'-c]phenazine)zinc(II)] dihydrate, [Zn2(C2H3O2)2(C16H10O4)(C18H10N4)2(H2O)2]·2H2O, (I), and catena-poly[[[aqua­(pyrazino[2,3-f][1,10]phenanthroline)zinc(II)]-[mu]-4,4'-ethyl­enedibenzo­ato] N,N-dimethyl­formamide hemisolvate], {[Zn(C16H10O4)(C14H8N4)(H2O)]·0.5C3H7NO}n, (II), display very different structures because of the influence of the N-donor chelating ligands. In (I), the coordination geometry of each ZnII centre is distorted octa­hedral, involving two N atoms from one dipyrido[3,2-a:2',3'-c]phenazine (L1) ligand, and four O atoms from one bis-chelating acetate anion, one bridging 4,4'-ethyl­enedibenzo­ate (bpea) ligand and one water mol­ecule. Adjacent ZnII atoms are bridged by one bpea ligand to form a dinuclear complex, and the dinuclear species is centrosymmetric. Two types of [pi]-[pi] inter­actions between neighbouring dinuclear species have been found: one is between the L1 ligands, and the second is between the L1 and bpea ligands. In this way, an inter­esting two-dimensional supra­molecular layer is formed. The layers are further linked by O-H...O and O-H...N hydrogen bonds, generating a three-dimensional supra­molecular network. In (II), each ZnII atom is square-pyramidally coordinated by two N atoms from one pyrazino[2,3-f][1,10]phenanthroline ligand, three O atoms from two different bpea ligands and one water mol­ecule. The two bpea dianions are situated across inversion centres. The bpea dianions bridge neighbouring ZnII centres, giving a one-dimensional chain structure in the ab plane. As in (I), two types of [pi]-[pi] inter­actions between neighbouring chains complete a three-dimensional supra­molecular structure. The results indicate that the structures of the N-donor chelating ligands are the dominant factors determining the final supra­molecular structures of the two compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108038328/sk3269sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108038328/sk3269Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108038328/sk3269IIsup3.hkl
Contains datablock II

CCDC references: 718133; 718134

Comment top

The rational design and synthesis of novel discrete and polymeric metal–organic compounds have attracted increasing interest due to their fascinating structural topologies and their potential applications as functional materials in catalysis, separation and nonlinear optics (Batten & Robson, 1998; Carlucci et al., 2003; Eddaoudi et al., 2001; Ockwig et al., 2005). Considerable progress has been made in controlling the synthesis of networks with interesting topologies (Yang et al., 2008; Batten, 2001) by varying the factors that affect framework formation; however, it is not possible to predict with complete accuracy the exact structure of the resulting framework. It is therefore important to gain a full understanding of the roles of the factors that influence the formation of metal–organic coordination frameworks (Hagrman et al., 1999).

In general, there are several factors that can influence the network structures of their compounds, such as the coordination environments of metal nodes, and the structural characteristics of the ligands, solvents, templates and counterions (Hu et al., 2006). Among these, the selection of an N-containing ligand is extremely important because, by changing the structures of the N-containing ligands, it is possible to adjust the topologies of coordination frameworks, even for structures containing the same spacer ligand and metal cation (Wang et al., 2005). So far, although the effect of an N-containing ligand on the structures of complexes has been studied, few systematic investigations on the influence of N-containing ligands on their complex structures have been carried out (Tong et al., 2000; Zheng et al., 2001). In particular, the influence of N-containing chelating ligands on network construction through ππ interactions has rarely been documented (Yang, Ma et al., 2007). To the best of our knowlege, the influence of different 1,10-phenanthroline derivatives on the structures of metal–dicarboxylates has not been studied to date (Yang, Li et al., 2007). In this work, we chose biphenylethene-4,4'-dicarboxylic acid (H2bpea) as the bridging ligand, dipyrido[3,2-a:2',3'-c]-phenazine (L1) and pyrazino[2,3-f][1,10]phenanthroline (L2) as the different N-donor chelating ligands, yielding a centrosymmetric dinuclear complex [Zn2(L1)2(bpea)(H2O)2].2H2O, (I), and a chain [Zn(L2)(bpea)(H2O)].0.5DMF, (II) (DMF = dimethylformamide).

Selected bond lengths and angles for (I) are given in Table 1. In compound (I), the coordination geometry of each ZnII centre is distorted octahedral, with two N atoms from one L1, and four O atoms from one bis-chelating acetate anion, one bridging bpea and one water molecule (Fig. 1). The adjacent ZnII atoms are bridged by one bpea ligand to form a dinuclear complex with a long Zn···Zn distance of 17.405 (3) Å (Fig. 1). The dinuclear species is centrosymmetric, with a crystallographic inversion centre midway between the two ZnII atoms. Notably, the L1 ligands are arranged in a parallel fashion at both sides of a dinuclear species, leading to a structure suitable for aromatic intercalation. Two types of ππ interactions between neighbouring dinuclear species have been found: one is between the L1 ligands [centroid-to-centroid distance of 3.555 (2) Å, vertical face-to-face distance of 3.483 (1) Å, and dihedral angle of 2.212 (1)°], and the second is between the L1 and bpea anion [centroid-to-centroid distance of 4.027 (2) Å, vertical face-to-face distance of 3.505 (1) Å, and dihedral angle of 2.720 (2)°] (Fig. 2). In these modes, a two-dimensional supramolecular layer is formed (Fig. 2). The layers are further linked by O—H···O and O—H···N hydrogen bonds, generating a three-dimensional supramolecular network (Table 2).

It is noteworthy that the structure of (I) is different from that of the related dinuclear structure [Pb(L1)(adip)]2 (adip is adipate; Yang, Ma et al., 2007), in which the two adip ligands link the two PbII centres to give a dinuclear species. A two-dimensional supramolecular layer is formed through only one type of ππ interaction between L1 ligands of neighbouring dinuclear species. The structure of (I) is also entirely different from that of the related polymer [Mn2(L1)(dpdc)2]n (dpdc is the 2,2'-diphenyldicarboxylate dianion; Che et al., 2008). In that structure, four MnII atoms are bridged by the carboxylate groups of the dpdc ligands to form an unusual tetranuclear MnII cluster; the clusters are further connected together by the aromatic backbone of the dicarboxylate ligands, forming a one-dimensional chain structure along the b axis.

To investigate the influence of N-donor chelating ligands on the complex frameworks, a relatively small ligand L2 was used under the same reaction conditions as for (I), and a structurally different coordination polymer [Zn(L2)(bpea)(H2O)].0.5DMF, (II), was obtained from the reaction system. As shown in Fig. 3, each ZnII atom is square-pyramidally coordinated by two N atoms from one L2 ligand, three O atoms from two different bpea ligands and one water molecule. The average Zn—O and Zn—N distances in (II) are comparable with those observed for (I) (Table 3). The two bpea dianions are situated across inversion centres. As depicted in Fig. 4, the bpea dianions bridge two neighbouring ZnII centres, giving a one-dimensional chain structure in the ab plane. Clearly, the N-containing chelating ligand L2 plays an important role in the formation of the chain structure. Two N atoms from the secondary L2 ligand occupy two coordination positions of the ZnII atom, while the remaining coordination positions are available for bpea ligands, allowing the formation of the chain structure. As in (I), two types of ππ interactions between neighbouring chains have been found: one is between the L2 ligands [centroid-to-centroid distance of 3.705 (1) Å, vertical face-to-face distance of 3.430 (3) Å, and dihedral angle of 0.000 (1)°], and the second is between L2 and bpea anions [centroid-to-centroid distance of 3.632 (1) Å, vertical face-to-face distance of 3.424 (1) Å, and dihedral angle of 5.150 (7)°] (Fig. 5). In these modes, a three-dimensional supramolecular structure is formed (Fig. 5). The O—H···O hydrogen bonds further consolidated the structure of (II) (Table 4).

It is noteworthy that the structure of (II) is entirely different from that of the related structure [Cd2(L2)2(1,4-ndc)2] (1,4-ndc is 1,4-naphthalenedicarboxylate; Qiao et al., 2008), where the tetranuclear cadmium carboxylate clusters are connected together by the aromatic backbone of the dicarboxylate ligands, forming a three-dimensional α-polonium net.

In summary, by varying the N-containing chelating ligand under the same synthesis conditions, two structurally different ZnII complexes are obtained. In contrast to L2, the bulky phenyl groups in the backbone significantly increase the steric hindrance of the L1 ligand, leading to the formation of (I) and (II) with quite different structures. Therefore, the structures of the N-containing chelating ligands are the dominant factor determining the final supramolecular structures of the two compounds.

Related literature top

For related literature, see: Batten (2001); Batten & Robson (1998); Carlucci et al. (2003); Che et al. (2008); Eddaoudi et al. (2001); Hagrman et al. (1999); Hu et al. (2006); Ockwig et al. (2005); Qiao et al. (2008); Tong et al. (2000); Wang et al. (2005); Yang et al. (2008); Yang, Li, Cao, Yue, Li & Chen (2007); Yang, Ma, Liu, Ma & Batten (2007); Zheng et al. (2001).

Experimental top

Zn(CH3COO)2.2H2O (0.110 g, 0.5 mmol), H2bpea (0.133 g, 0.5 mmol) and L1 (0.118 g, 0.5 mmol) were dissolved in a mixed solution of DMF (9 ml) and distilled water (5 ml). The resulting mixture was stirred for about 1 h at room temperature, sealed in a 23 ml Teflon-lined stainless steel autoclave, and heated at 398 K for 8 d under autogenous pressure. The reaction system was gradually cooled to room temperature at a rate of 5 K h-1. Pale yellow crystals of (I) suitable for single-crystal X-ray diffraction analysis were collected from the final reaction system by filtration, washed several times with DMF, and dried in air at ambient temperature (yield 55% based on ZnII).

Compound (II) was prepared in the same way as (I), using L2 as an N-donor chelating ligand. Pale yellow crystals were obtained (yield 47% based on ZnII).

Refinement top

For (I) and (II), all H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier). The water H atoms were located in a difference Fourier, and were refined with distance restraints of O—H 0.85±0.01 and H···H 1.39±0.01 Å. Their temperature factors were freely refined.

The DMF molecule of (II) is disordered about a centre of inversion. The C—O length was restrained to 1.25±0.01 Å, the NC(carbonyl) length was restrained to 1.35±0.01 Å and the other two N—C lengths to 1.45±0.01 Å. The atoms were restrained to lie on a plane. The anisotropic temperature factors were restrained to be nearly isotropic.

Computing details top

For both compounds, data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the ZnII cation in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry operation (i): 1 - x, 1 - y, 2 - z].
[Figure 2] Fig. 2. A view of the two-dimensional supramolecular structure of (I).
[Figure 3] Fig. 3. A view of the local coordination of the ZnII cation in (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry operations (i): 3 - x, -y, 1 - z; (ii): 3 - x, 2 - y, -z].
[Figure 4] Fig. 4. A view of the one-dimensional chain of (II).
[Figure 5] Fig. 5. A iew of the three-dimensional supramolecular structure of (II).
(I) µ-4,4'-ethylenedicarboxylato-bis[acetatoaqua(dipyrido[3,2-a:2',3'- c]phenazine)zinc(II)] dihydrate top
Crystal data top
[Zn2(C2H3O2)2(C16H10O4)(C18H10N4)2(H2O)2]·2H2OF(000) = 1184
Mr = 1151.73Dx = 1.546 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4853 reflections
a = 13.1521 (12) Åθ = 1.1–26.0°
b = 11.9082 (11) ŵ = 1.05 mm1
c = 15.9668 (15) ÅT = 293 K
β = 98.391 (2)°Block, pale yellow
V = 2473.9 (4) Å30.33 × 0.30 × 0.27 mm
Z = 2
Data collection top
Bruker APEX
diffractometer
4853 independent reflections
Radiation source: fine-focus sealed tube3145 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1615
Tmin = 0.701, Tmax = 0.755k = 1414
13276 measured reflectionsl = 1119
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.3893P]
where P = (Fo2 + 2Fc2)/3
4853 reflections(Δ/σ)max = 0.001
368 parametersΔρmax = 0.97 e Å3
6 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Zn2(C2H3O2)2(C16H10O4)(C18H10N4)2(H2O)2]·2H2OV = 2473.9 (4) Å3
Mr = 1151.73Z = 2
Monoclinic, P21/nMo Kα radiation
a = 13.1521 (12) ŵ = 1.05 mm1
b = 11.9082 (11) ÅT = 293 K
c = 15.9668 (15) Å0.33 × 0.30 × 0.27 mm
β = 98.391 (2)°
Data collection top
Bruker APEX
diffractometer
4853 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3145 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.755Rint = 0.056
13276 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0466 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.97 e Å3
4853 reflectionsΔρmin = 0.32 e Å3
368 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1960 (3)0.2598 (3)0.7662 (2)0.0391 (10)
H11.22270.23630.82050.047*
C21.2583 (3)0.3210 (3)0.7205 (2)0.0387 (10)
H21.32480.34000.74450.046*
C31.2210 (3)0.3536 (3)0.6392 (2)0.0362 (9)
H31.26200.39470.60750.043*
C41.1203 (3)0.3242 (3)0.6047 (2)0.0288 (8)
C51.0621 (2)0.2653 (3)0.6559 (2)0.0260 (8)
C60.9543 (2)0.2354 (3)0.6260 (2)0.0248 (8)
C70.9085 (2)0.2682 (3)0.5453 (2)0.0265 (8)
C80.8049 (3)0.2408 (3)0.5223 (2)0.0332 (9)
H80.77080.26180.46950.040*
C90.7534 (3)0.1831 (3)0.5775 (2)0.0352 (9)
H90.68460.16400.56260.042*
C100.8065 (3)0.1539 (3)0.6560 (2)0.0306 (8)
H100.77180.11430.69330.037*
C110.9694 (3)0.3267 (3)0.4896 (2)0.0280 (8)
C121.0743 (3)0.3544 (3)0.5183 (2)0.0273 (8)
C131.0871 (3)0.4338 (3)0.3895 (2)0.0312 (8)
C140.9822 (3)0.4082 (3)0.3616 (2)0.0300 (8)
C150.9365 (3)0.4426 (3)0.2792 (2)0.0382 (9)
H150.86760.42750.26020.046*
C160.9949 (3)0.4979 (3)0.2287 (2)0.0436 (11)
H160.96510.52100.17500.052*
C171.0998 (3)0.5209 (3)0.2562 (2)0.0400 (10)
H171.13810.55820.22030.048*
C181.1449 (3)0.4894 (3)0.3337 (2)0.0403 (10)
H181.21430.50420.35080.048*
C190.9122 (3)0.2949 (3)0.9302 (2)0.0367 (9)
C200.8166 (3)0.3448 (3)0.9548 (2)0.0335 (9)
C210.8161 (3)0.3905 (3)1.0340 (2)0.0429 (10)
H210.87610.38971.07290.052*
C220.7276 (3)0.4378 (3)1.0566 (3)0.0449 (10)
H220.72930.46911.11010.054*
C230.6363 (3)0.4390 (3)1.0000 (2)0.0366 (9)
C240.6372 (3)0.3898 (3)0.9203 (2)0.0372 (9)
H240.57700.38820.88170.045*
C250.7248 (3)0.3443 (3)0.8986 (2)0.0347 (9)
H250.72330.31220.84530.042*
C260.5445 (3)0.4913 (3)1.0252 (2)0.0397 (10)
H260.54860.51431.08130.048*
C270.9690 (3)0.0637 (3)0.8031 (2)0.0339 (9)
C280.9534 (3)0.1872 (3)0.8150 (3)0.0522 (11)
H28A0.89650.19850.84560.078*
H28B1.01440.21900.84640.078*
H28C0.93910.22300.76070.078*
N11.0988 (2)0.2329 (2)0.73566 (17)0.0287 (7)
N20.9046 (2)0.1798 (2)0.68043 (18)0.0275 (7)
N30.9244 (2)0.3537 (2)0.41198 (17)0.0318 (7)
N41.1320 (2)0.4061 (2)0.46899 (18)0.0316 (7)
O10.90388 (18)0.2547 (2)0.85523 (15)0.0367 (6)
O20.9939 (2)0.2967 (2)0.98203 (17)0.0499 (7)
O1W1.1021 (2)0.1477 (3)0.91089 (15)0.0368 (6)
HW111.072 (3)0.196 (2)0.939 (2)0.052 (15)*
HW121.115 (3)0.091 (2)0.943 (2)0.055 (14)*
O30.91071 (19)0.0049 (2)0.83334 (16)0.0390 (6)
O2W1.1392 (3)0.0398 (3)1.00433 (18)0.0506 (8)
HW211.116 (4)0.022 (4)1.049 (2)0.10 (2)*
HW221.201 (2)0.059 (6)1.019 (4)0.19 (4)*
O41.03961 (19)0.0296 (2)0.76466 (16)0.0413 (7)
Zn10.99354 (3)0.14710 (4)0.80232 (3)0.03063 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.032 (2)0.054 (3)0.028 (2)0.0035 (19)0.0059 (17)0.004 (2)
C20.027 (2)0.055 (3)0.031 (2)0.0093 (18)0.0020 (17)0.0034 (19)
C30.030 (2)0.048 (2)0.030 (2)0.0052 (19)0.0058 (16)0.006 (2)
C40.0301 (19)0.032 (2)0.0241 (18)0.0005 (16)0.0026 (16)0.0017 (16)
C50.0268 (19)0.0278 (19)0.0229 (18)0.0041 (15)0.0022 (15)0.0010 (16)
C60.0256 (18)0.0278 (19)0.0198 (18)0.0027 (15)0.0004 (15)0.0008 (15)
C70.0270 (19)0.0289 (19)0.0229 (18)0.0080 (15)0.0017 (15)0.0010 (16)
C80.031 (2)0.046 (2)0.0201 (18)0.0032 (18)0.0037 (16)0.0019 (18)
C90.0219 (19)0.051 (2)0.032 (2)0.0004 (17)0.0005 (16)0.0000 (19)
C100.0275 (19)0.036 (2)0.0276 (19)0.0010 (17)0.0018 (15)0.0015 (18)
C110.035 (2)0.029 (2)0.0201 (17)0.0075 (16)0.0021 (16)0.0016 (15)
C120.0342 (19)0.0279 (19)0.0203 (17)0.0039 (17)0.0058 (15)0.0004 (17)
C130.045 (2)0.0244 (19)0.0251 (19)0.0040 (17)0.0090 (17)0.0005 (17)
C140.045 (2)0.0239 (19)0.0213 (18)0.0053 (17)0.0052 (17)0.0007 (16)
C150.047 (2)0.041 (2)0.025 (2)0.0030 (19)0.0005 (18)0.0008 (19)
C160.074 (3)0.037 (2)0.0198 (19)0.005 (2)0.006 (2)0.0012 (18)
C170.055 (3)0.039 (2)0.028 (2)0.002 (2)0.014 (2)0.0042 (19)
C180.049 (2)0.039 (2)0.034 (2)0.0016 (19)0.009 (2)0.0059 (19)
C190.046 (2)0.034 (2)0.029 (2)0.0006 (19)0.002 (2)0.0022 (18)
C200.040 (2)0.033 (2)0.0265 (19)0.0006 (18)0.0021 (17)0.0002 (18)
C210.049 (2)0.045 (2)0.032 (2)0.009 (2)0.002 (2)0.0030 (19)
C220.055 (3)0.048 (3)0.030 (2)0.007 (2)0.000 (2)0.005 (2)
C230.047 (2)0.028 (2)0.037 (2)0.0026 (18)0.0113 (19)0.0059 (18)
C240.040 (2)0.041 (2)0.030 (2)0.0034 (18)0.0028 (18)0.0035 (18)
C250.043 (2)0.036 (2)0.0250 (19)0.0031 (18)0.0053 (17)0.0003 (18)
C260.056 (3)0.033 (2)0.032 (2)0.003 (2)0.0098 (19)0.0039 (19)
C270.033 (2)0.042 (2)0.025 (2)0.0034 (18)0.0039 (18)0.0020 (18)
C280.063 (3)0.045 (3)0.049 (3)0.001 (2)0.008 (2)0.008 (2)
N10.0266 (16)0.0391 (18)0.0190 (15)0.0011 (13)0.0012 (13)0.0073 (14)
N20.0248 (15)0.0329 (17)0.0247 (16)0.0005 (13)0.0029 (13)0.0007 (14)
N30.0376 (17)0.0348 (17)0.0214 (15)0.0029 (15)0.0014 (13)0.0008 (15)
N40.0363 (17)0.0340 (17)0.0250 (16)0.0034 (14)0.0067 (14)0.0011 (14)
O10.0383 (15)0.0471 (17)0.0229 (13)0.0061 (12)0.0015 (12)0.0020 (13)
O20.0473 (17)0.0581 (18)0.0397 (16)0.0056 (15)0.0088 (14)0.0124 (15)
O1W0.0317 (15)0.0511 (18)0.0264 (14)0.0015 (14)0.0004 (12)0.0065 (16)
O30.0395 (15)0.0458 (16)0.0317 (14)0.0116 (13)0.0058 (12)0.0029 (13)
O2W0.056 (2)0.066 (2)0.0315 (16)0.0160 (16)0.0087 (15)0.0060 (16)
O40.0359 (15)0.0478 (17)0.0406 (16)0.0044 (13)0.0069 (13)0.0066 (14)
Zn10.0280 (2)0.0409 (3)0.0218 (2)0.0013 (2)0.00023 (17)0.0054 (2)
Geometric parameters (Å, º) top
C1—N11.339 (4)C17—H170.9300
C1—C21.382 (5)C18—H180.9300
C1—H10.9300C19—O21.257 (4)
C2—C31.374 (5)C19—O11.278 (4)
C2—H20.9300C19—C201.495 (5)
C3—C41.403 (5)C20—C211.377 (5)
C3—H30.9300C20—C251.395 (5)
C4—C51.389 (4)C21—C221.387 (5)
C4—C121.468 (4)C21—H210.9300
C5—N11.350 (4)C22—C231.394 (5)
C5—C61.472 (4)C22—H220.9300
C6—N21.337 (4)C23—C241.402 (5)
C6—C71.396 (4)C23—C261.466 (5)
C7—C81.397 (5)C24—C251.363 (5)
C7—C111.458 (5)C24—H240.9300
C8—C91.371 (5)C25—H250.9300
C8—H80.9300C26—C26i1.337 (7)
C9—C101.388 (5)C26—H260.9300
C9—H90.9300C27—O41.253 (4)
C10—N21.328 (4)C27—O31.264 (4)
C10—H100.9300C27—C281.501 (5)
C11—N31.332 (4)C28—H28A0.9600
C11—C121.429 (5)C28—H28B0.9600
C12—N41.323 (4)C28—H28C0.9600
C13—N41.361 (4)O1W—HW110.854 (18)
C13—C181.416 (5)O1W—HW120.856 (18)
C13—C141.421 (5)O2W—HW210.84 (4)
C14—N31.350 (4)O2W—HW220.84 (2)
C14—C151.424 (5)Zn1—N12.127 (3)
C15—C161.363 (5)Zn1—N22.155 (3)
C15—H150.9300Zn1—O12.009 (2)
C16—C171.412 (5)Zn1—O32.111 (3)
C16—H160.9300Zn1—O42.294 (3)
C17—C181.347 (5)Zn1—O1W2.079 (2)
N1—C1—C2122.9 (3)C20—C21—C22121.0 (4)
N1—C1—H1118.6C20—C21—H21119.5
C2—C1—H1118.6C22—C21—H21119.5
C3—C2—C1119.3 (3)C21—C22—C23120.8 (4)
C3—C2—H2120.3C21—C22—H22119.6
C1—C2—H2120.3C23—C22—H22119.6
C2—C3—C4119.1 (3)C22—C23—C24117.6 (4)
C2—C3—H3120.5C22—C23—C26119.5 (3)
C4—C3—H3120.5C24—C23—C26122.9 (4)
C5—C4—C3117.7 (3)C25—C24—C23121.1 (4)
C5—C4—C12119.4 (3)C25—C24—H24119.5
C3—C4—C12122.9 (3)C23—C24—H24119.5
N1—C5—C4123.2 (3)C24—C25—C20121.2 (3)
N1—C5—C6115.5 (3)C24—C25—H25119.4
C4—C5—C6121.2 (3)C20—C25—H25119.4
N2—C6—C7123.5 (3)C26i—C26—C23125.8 (5)
N2—C6—C5116.6 (3)C26i—C26—H26117.1
C7—C6—C5119.8 (3)C23—C26—H26117.1
C6—C7—C8116.8 (3)O4—C27—O3120.8 (4)
C6—C7—C11119.7 (3)O4—C27—C28120.3 (4)
C8—C7—C11123.5 (3)O3—C27—C28118.8 (3)
C9—C8—C7120.2 (3)O4—C27—Zn164.7 (2)
C9—C8—H8119.9O3—C27—Zn156.33 (19)
C7—C8—H8119.9C28—C27—Zn1172.9 (3)
C8—C9—C10118.4 (3)C27—C28—H28A109.5
C8—C9—H9120.8C27—C28—H28B109.5
C10—C9—H9120.8H28A—C28—H28B109.5
N2—C10—C9123.1 (3)C27—C28—H28C109.5
N2—C10—H10118.5H28A—C28—H28C109.5
C9—C10—H10118.5H28B—C28—H28C109.5
N3—C11—C12121.3 (3)C1—N1—C5117.7 (3)
N3—C11—C7118.3 (3)C1—N1—Zn1126.1 (2)
C12—C11—C7120.3 (3)C5—N1—Zn1116.1 (2)
N4—C12—C11121.8 (3)C10—N2—C6118.1 (3)
N4—C12—C4118.7 (3)C10—N2—Zn1126.8 (2)
C11—C12—C4119.5 (3)C6—N2—Zn1115.1 (2)
N4—C13—C18120.0 (3)C11—N3—C14117.3 (3)
N4—C13—C14120.6 (3)C12—N4—C13117.4 (3)
C18—C13—C14119.3 (3)C19—O1—Zn1131.1 (2)
N3—C14—C13121.5 (3)Zn1—O1W—HW1197 (3)
N3—C14—C15119.3 (3)Zn1—O1W—HW12124 (3)
C13—C14—C15119.2 (3)HW11—O1W—HW12106 (2)
C16—C15—C14119.2 (4)C27—O3—Zn193.8 (2)
C16—C15—H15120.4HW21—O2W—HW22106 (3)
C14—C15—H15120.4C27—O4—Zn185.7 (2)
C15—C16—C17121.3 (4)O1—Zn1—O1W91.20 (11)
C15—C16—H16119.4O1—Zn1—O393.34 (10)
C17—C16—H16119.4O1W—Zn1—O397.04 (10)
C18—C17—C16120.8 (4)O1—Zn1—N1111.64 (11)
C18—C17—H17119.6O1W—Zn1—N189.85 (10)
C16—C17—H17119.6O3—Zn1—N1153.98 (11)
C17—C18—C13120.2 (4)O1—Zn1—N289.42 (10)
C17—C18—H18119.9O1W—Zn1—N2165.64 (11)
C13—C18—H18119.9O3—Zn1—N297.25 (10)
O2—C19—O1124.8 (4)N1—Zn1—N276.61 (10)
O2—C19—C20119.4 (3)O1—Zn1—O4152.73 (10)
O1—C19—C20115.8 (3)O1W—Zn1—O492.66 (11)
C21—C20—C25118.2 (4)O3—Zn1—O459.40 (10)
C21—C20—C19121.0 (3)N1—Zn1—O495.36 (10)
C25—C20—C19120.7 (3)N2—Zn1—O493.35 (10)
N1—C1—C2—C31.9 (6)C5—C6—N2—C10178.5 (3)
C1—C2—C3—C40.2 (6)C7—C6—N2—Zn1177.4 (3)
C2—C3—C4—C51.6 (5)C5—C6—N2—Zn10.6 (4)
C2—C3—C4—C12179.4 (3)C12—C11—N3—C140.2 (5)
C3—C4—C5—N11.8 (5)C7—C11—N3—C14179.8 (3)
C12—C4—C5—N1179.1 (3)C13—C14—N3—C111.1 (5)
C3—C4—C5—C6177.3 (3)C15—C14—N3—C11177.7 (3)
C12—C4—C5—C61.7 (5)C11—C12—N4—C131.0 (5)
N1—C5—C6—N20.0 (4)C4—C12—N4—C13179.5 (3)
C4—C5—C6—N2179.2 (3)C18—C13—N4—C12179.9 (3)
N1—C5—C6—C7178.0 (3)C14—C13—N4—C120.3 (5)
C4—C5—C6—C71.1 (5)O2—C19—O1—Zn119.1 (6)
N2—C6—C7—C80.4 (5)C20—C19—O1—Zn1162.2 (2)
C5—C6—C7—C8177.6 (3)O4—C27—O3—Zn15.3 (3)
N2—C6—C7—C11178.8 (3)C28—C27—O3—Zn1173.8 (3)
C5—C6—C7—C113.3 (5)O3—C27—O4—Zn14.9 (3)
C6—C7—C8—C90.9 (5)C28—C27—O4—Zn1174.3 (3)
C11—C7—C8—C9178.3 (3)C19—O1—Zn1—O1W5.7 (3)
C7—C8—C9—C100.5 (5)C19—O1—Zn1—O391.5 (3)
C8—C9—C10—N20.4 (5)C19—O1—Zn1—N196.0 (3)
C6—C7—C11—N3177.9 (3)C19—O1—Zn1—N2171.3 (3)
C8—C7—C11—N31.3 (5)C19—O1—Zn1—O492.5 (4)
C6—C7—C11—C122.5 (5)C19—O1—Zn1—C2790.1 (3)
C8—C7—C11—C12178.4 (3)C27—O3—Zn1—O1177.7 (2)
N3—C11—C12—N41.3 (5)C27—O3—Zn1—O1W86.0 (2)
C7—C11—C12—N4179.1 (3)C27—O3—Zn1—N118.3 (3)
N3—C11—C12—C4179.2 (3)C27—O3—Zn1—N292.5 (2)
C7—C11—C12—C40.4 (5)C27—O3—Zn1—O42.89 (18)
C5—C4—C12—N4177.0 (3)C1—N1—Zn1—O195.0 (3)
C3—C4—C12—N44.0 (5)C5—N1—Zn1—O183.2 (3)
C5—C4—C12—C112.5 (5)C1—N1—Zn1—O1W3.7 (3)
C3—C4—C12—C11176.5 (3)C5—N1—Zn1—O1W174.5 (3)
N4—C13—C14—N31.4 (5)C1—N1—Zn1—O3102.2 (3)
C18—C13—C14—N3179.0 (3)C5—N1—Zn1—O379.6 (3)
N4—C13—C14—C15177.4 (3)C1—N1—Zn1—N2178.9 (3)
C18—C13—C14—C152.2 (5)C5—N1—Zn1—N20.7 (2)
N3—C14—C15—C16179.7 (3)C1—N1—Zn1—O488.9 (3)
C13—C14—C15—C160.9 (5)C5—N1—Zn1—O492.9 (2)
C14—C15—C16—C170.5 (6)C1—N1—Zn1—C2791.2 (3)
C15—C16—C17—C180.6 (6)C5—N1—Zn1—C2790.6 (3)
C16—C17—C18—C130.8 (6)C10—N2—Zn1—O165.9 (3)
N4—C13—C18—C17177.4 (3)C6—N2—Zn1—O1111.7 (2)
C14—C13—C18—C172.2 (5)C10—N2—Zn1—O1W158.5 (4)
O2—C19—C20—C211.3 (6)C6—N2—Zn1—O1W19.1 (6)
O1—C19—C20—C21179.9 (3)C10—N2—Zn1—O327.4 (3)
O2—C19—C20—C25179.9 (3)C6—N2—Zn1—O3155.0 (2)
O1—C19—C20—C251.1 (5)C10—N2—Zn1—N1178.4 (3)
C25—C20—C21—C221.8 (6)C6—N2—Zn1—N10.7 (2)
C19—C20—C21—C22179.3 (4)C10—N2—Zn1—O486.9 (3)
C20—C21—C22—C230.8 (6)C6—N2—Zn1—O495.4 (2)
C21—C22—C23—C240.7 (6)C10—N2—Zn1—C2757.5 (3)
C21—C22—C23—C26179.0 (4)C6—N2—Zn1—C27124.9 (2)
C22—C23—C24—C251.2 (6)C27—O4—Zn1—O14.1 (3)
C26—C23—C24—C25178.5 (3)C27—O4—Zn1—O1W93.7 (2)
C23—C24—C25—C200.1 (6)C27—O4—Zn1—O32.92 (18)
C21—C20—C25—C241.4 (6)C27—O4—Zn1—N1176.2 (2)
C19—C20—C25—C24179.8 (3)C27—O4—Zn1—N299.4 (2)
C22—C23—C26—C26i172.6 (5)O4—C27—Zn1—O1177.74 (17)
C24—C23—C26—C26i7.1 (7)O3—C27—Zn1—O12.8 (2)
C2—C1—N1—C51.7 (5)O4—C27—Zn1—O1W88.1 (2)
C2—C1—N1—Zn1176.5 (3)O3—C27—Zn1—O1W96.9 (2)
C4—C5—N1—C10.2 (5)O4—C27—Zn1—O3175.0 (3)
C6—C5—N1—C1179.0 (3)O4—C27—Zn1—N14.6 (2)
C4—C5—N1—Zn1178.6 (3)O3—C27—Zn1—N1170.35 (18)
C6—C5—N1—Zn10.6 (4)O4—C27—Zn1—N283.5 (2)
C9—C10—N2—C60.9 (5)O3—C27—Zn1—N291.5 (2)
C9—C10—N2—Zn1176.7 (3)O3—C27—Zn1—O4175.0 (3)
C7—C6—N2—C100.5 (5)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW12···O2W0.86 (2)1.84 (2)2.690 (4)175 (4)
O1W—HW11···O20.85 (2)1.79 (2)2.634 (4)170 (4)
O2W—HW21···O3ii0.84 (4)1.97 (2)2.796 (4)166 (5)
O2W—HW22···N4iii0.84 (2)2.22 (2)3.045 (4)168 (6)
Symmetry codes: (ii) x+2, y, z+2; (iii) x+5/2, y1/2, z+3/2.
(II) catena-poly[[[aqua(pyrazino[2,3-f][1,10]phenanthroline)zinc(II)]-µ- 4,4'-ethylenedicarboxylato] N,N-dimethylformamide hemisolvate] top
Crystal data top
[Zn(C16H10O4)(C14H8N4)(H2O)]·0.5C3H7NOZ = 2
Mr = 618.42F(000) = 636
Triclinic, P1Dx = 1.462 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.2278 (11) ÅCell parameters from 5517 reflections
b = 11.3944 (11) Åθ = 1.1–26.1°
c = 11.8165 (11) ŵ = 0.93 mm1
α = 84.345 (2)°T = 293 K
β = 69.421 (2)°Block, pale yellow
γ = 83.982 (1)°0.25 × 0.21 × 0.19 mm
V = 1404.4 (2) Å3
Data collection top
Bruker APEX
diffractometer
5517 independent reflections
Radiation source: fine-focus sealed tube4209 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1311
Tmin = 0.788, Tmax = 0.837k = 1414
7901 measured reflectionsl = 147
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.0289P]
where P = (Fo2 + 2Fc2)/3
5517 reflections(Δ/σ)max < 0.001
416 parametersΔρmax = 0.70 e Å3
39 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Zn(C16H10O4)(C14H8N4)(H2O)]·0.5C3H7NOγ = 83.982 (1)°
Mr = 618.42V = 1404.4 (2) Å3
Triclinic, P1Z = 2
a = 11.2278 (11) ÅMo Kα radiation
b = 11.3944 (11) ŵ = 0.93 mm1
c = 11.8165 (11) ÅT = 293 K
α = 84.345 (2)°0.25 × 0.21 × 0.19 mm
β = 69.421 (2)°
Data collection top
Bruker APEX
diffractometer
5517 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4209 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.837Rint = 0.021
7901 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04539 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.70 e Å3
5517 reflectionsΔρmin = 0.33 e Å3
416 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.92306 (3)0.48063 (3)0.28067 (3)0.03635 (13)
O11.0196 (2)0.35468 (19)0.36014 (19)0.0460 (5)
O21.1400 (3)0.2748 (3)0.1898 (2)0.0933 (11)
O31.0386 (2)0.61041 (19)0.25607 (18)0.0453 (5)
O41.0663 (2)0.5834 (2)0.0661 (2)0.0517 (6)
O50.9305 (2)0.3588 (2)0.1621 (2)0.0452 (5)
H5A1.0011 (16)0.327 (3)0.164 (2)0.046 (10)*
H5B0.931 (3)0.381 (3)0.0923 (14)0.067 (13)*
N10.7821 (2)0.5086 (2)0.4535 (2)0.0355 (6)
N20.3724 (3)0.7116 (2)0.6486 (2)0.0494 (7)
N30.3540 (2)0.7773 (2)0.4194 (3)0.0483 (7)
N40.7685 (2)0.5784 (2)0.2355 (2)0.0395 (6)
C11.1102 (3)0.2869 (3)0.3005 (3)0.0483 (8)
C21.1913 (3)0.2168 (3)0.3640 (3)0.0400 (7)
C31.1615 (3)0.2119 (3)0.4881 (3)0.0436 (8)
H31.08690.25160.53620.052*
C41.2421 (3)0.1485 (3)0.5409 (3)0.0457 (8)
H41.22010.14520.62470.055*
C51.3556 (3)0.0895 (3)0.4721 (3)0.0389 (7)
C61.3826 (3)0.0930 (3)0.3488 (3)0.0521 (9)
H61.45650.05230.30070.063*
C71.3031 (3)0.1552 (3)0.2955 (3)0.0520 (9)
H71.32420.15640.21200.062*
C81.4441 (3)0.0271 (3)0.5285 (3)0.0433 (8)
H81.41880.02580.61250.052*
C91.0905 (3)0.6338 (3)0.1432 (3)0.0377 (7)
C101.1883 (3)0.7234 (3)0.1024 (3)0.0374 (7)
C111.2051 (3)0.7942 (3)0.1821 (3)0.0484 (8)
H111.15550.78660.26370.058*
C121.2964 (3)0.8778 (3)0.1413 (3)0.0537 (9)
H121.30650.92530.19640.064*
C131.3720 (3)0.8910 (3)0.0202 (3)0.0478 (8)
C141.3547 (4)0.8185 (3)0.0578 (3)0.0634 (11)
H141.40470.82520.13940.076*
C151.2650 (3)0.7357 (3)0.0183 (3)0.0570 (9)
H151.25600.68750.07350.068*
C161.4709 (4)0.9774 (3)0.0281 (4)0.0604 (10)
H161.49231.00090.10990.073*
C170.7930 (3)0.4742 (3)0.5600 (3)0.0404 (7)
H170.86620.42890.56210.049*
C180.6993 (3)0.5033 (3)0.6687 (3)0.0473 (8)
H180.71000.47790.74200.057*
C190.5917 (3)0.5692 (3)0.6671 (3)0.0437 (8)
H190.52800.58880.73930.052*
C200.5773 (3)0.6071 (2)0.5565 (3)0.0360 (7)
C210.6757 (3)0.5747 (2)0.4516 (3)0.0325 (6)
C220.4665 (3)0.6785 (3)0.5461 (3)0.0387 (7)
C230.2746 (3)0.7765 (3)0.6331 (3)0.0576 (10)
H230.20920.80300.70120.069*
C240.2640 (3)0.8075 (3)0.5200 (4)0.0544 (9)
H240.19070.85100.51570.065*
C250.4572 (3)0.7132 (3)0.4318 (3)0.0393 (7)
C260.5605 (3)0.6796 (3)0.3231 (3)0.0388 (7)
C270.6672 (3)0.6121 (2)0.3333 (3)0.0345 (7)
C280.5582 (3)0.7118 (3)0.2066 (3)0.0531 (9)
H280.48840.75690.19600.064*
C290.6594 (3)0.6766 (3)0.1086 (3)0.0599 (10)
H290.65870.69650.03060.072*
C300.7632 (3)0.6110 (3)0.1263 (3)0.0511 (9)
H300.83220.58880.05870.061*
O61.2083 (13)0.0650 (11)0.8305 (11)0.225 (6)0.50
N51.0380 (9)0.0152 (9)0.9902 (10)0.105 (4)0.50
C311.1435 (11)0.0708 (9)0.9406 (12)0.140 (5)0.50
H311.17010.11500.98820.168*0.50
C320.9893 (17)0.0557 (15)0.9220 (17)0.144 (7)0.50
H32A1.02530.03300.83710.215*0.50
H32B0.89810.04270.94800.215*0.50
H32C1.01260.13790.93610.215*0.50
C330.9620 (16)0.0206 (15)1.1188 (11)0.148 (8)0.50
H33A1.01460.04051.16190.222*0.50
H33B0.92930.05491.15040.222*0.50
H33C0.89230.07981.12860.222*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0304 (2)0.0369 (2)0.0422 (2)0.00262 (14)0.01328 (15)0.00171 (15)
O10.0421 (12)0.0468 (13)0.0498 (13)0.0107 (10)0.0194 (10)0.0074 (11)
O20.090 (2)0.129 (3)0.0573 (18)0.062 (2)0.0351 (15)0.0260 (17)
O30.0452 (12)0.0542 (13)0.0383 (13)0.0182 (10)0.0153 (10)0.0071 (10)
O40.0554 (14)0.0545 (14)0.0498 (14)0.0222 (12)0.0185 (11)0.0049 (11)
O50.0483 (14)0.0433 (13)0.0480 (15)0.0042 (11)0.0220 (11)0.0007 (11)
N10.0349 (13)0.0334 (13)0.0408 (14)0.0048 (11)0.0162 (11)0.0002 (11)
N20.0440 (16)0.0435 (16)0.0489 (17)0.0035 (13)0.0008 (13)0.0044 (13)
N30.0387 (15)0.0456 (16)0.0618 (19)0.0032 (12)0.0203 (14)0.0053 (14)
N40.0336 (13)0.0492 (15)0.0354 (14)0.0019 (11)0.0120 (11)0.0025 (12)
C10.0444 (19)0.053 (2)0.046 (2)0.0062 (16)0.0170 (15)0.0018 (16)
C20.0397 (17)0.0380 (17)0.0438 (19)0.0003 (14)0.0171 (14)0.0019 (14)
C30.0379 (17)0.0415 (18)0.048 (2)0.0032 (14)0.0115 (14)0.0030 (15)
C40.051 (2)0.0453 (19)0.0410 (18)0.0021 (15)0.0165 (15)0.0006 (15)
C50.0419 (17)0.0305 (15)0.0473 (19)0.0024 (13)0.0196 (14)0.0011 (14)
C60.052 (2)0.054 (2)0.048 (2)0.0166 (17)0.0183 (16)0.0081 (17)
C70.053 (2)0.058 (2)0.0415 (19)0.0174 (17)0.0181 (16)0.0068 (16)
C80.0470 (18)0.0367 (17)0.049 (2)0.0011 (14)0.0221 (15)0.0012 (14)
C90.0297 (15)0.0363 (16)0.0481 (19)0.0033 (13)0.0161 (14)0.0037 (14)
C100.0356 (16)0.0372 (16)0.0423 (18)0.0080 (13)0.0170 (14)0.0032 (14)
C110.049 (2)0.051 (2)0.047 (2)0.0141 (16)0.0170 (16)0.0031 (16)
C120.061 (2)0.045 (2)0.070 (3)0.0098 (17)0.038 (2)0.0074 (18)
C130.0378 (18)0.051 (2)0.052 (2)0.0125 (15)0.0118 (15)0.0073 (16)
C140.059 (2)0.073 (3)0.053 (2)0.029 (2)0.0047 (18)0.0028 (19)
C150.057 (2)0.063 (2)0.051 (2)0.0244 (19)0.0118 (17)0.0049 (18)
C160.064 (2)0.059 (2)0.062 (2)0.0140 (19)0.0240 (18)0.0046 (19)
C170.0416 (17)0.0393 (17)0.0431 (18)0.0026 (14)0.0183 (14)0.0016 (14)
C180.056 (2)0.0487 (19)0.0388 (18)0.0059 (16)0.0198 (16)0.0031 (15)
C190.0451 (19)0.0448 (18)0.0368 (18)0.0077 (15)0.0073 (14)0.0039 (14)
C200.0344 (16)0.0338 (16)0.0386 (17)0.0089 (13)0.0094 (13)0.0022 (13)
C210.0315 (15)0.0274 (14)0.0390 (16)0.0054 (12)0.0124 (12)0.0006 (12)
C220.0341 (16)0.0311 (15)0.0468 (19)0.0081 (13)0.0074 (14)0.0025 (14)
C230.0406 (19)0.047 (2)0.068 (3)0.0009 (16)0.0037 (17)0.0080 (18)
C240.0342 (18)0.048 (2)0.075 (3)0.0018 (15)0.0118 (18)0.0040 (19)
C250.0343 (16)0.0326 (16)0.0508 (19)0.0032 (13)0.0137 (14)0.0050 (14)
C260.0351 (16)0.0389 (17)0.0441 (18)0.0026 (13)0.0165 (14)0.0010 (14)
C270.0314 (15)0.0326 (15)0.0402 (17)0.0043 (12)0.0128 (13)0.0021 (13)
C280.045 (2)0.064 (2)0.051 (2)0.0117 (17)0.0232 (16)0.0021 (17)
C290.057 (2)0.084 (3)0.040 (2)0.011 (2)0.0225 (17)0.0017 (18)
C300.0429 (19)0.070 (2)0.0372 (19)0.0023 (17)0.0116 (15)0.0042 (17)
O60.255 (10)0.238 (9)0.172 (8)0.007 (8)0.077 (7)0.023 (7)
N50.103 (8)0.110 (7)0.110 (6)0.031 (6)0.053 (7)0.027 (5)
C310.167 (9)0.146 (9)0.111 (8)0.002 (7)0.061 (7)0.003 (7)
C320.141 (10)0.138 (10)0.160 (10)0.013 (8)0.059 (8)0.045 (8)
C330.151 (11)0.130 (10)0.148 (10)0.012 (8)0.039 (8)0.011 (8)
Geometric parameters (Å, º) top
Zn1—O32.002 (2)C13—C141.371 (5)
Zn1—O52.043 (2)C13—C161.483 (5)
Zn1—O12.059 (2)C14—C151.379 (5)
Zn1—N12.128 (2)C14—H140.9300
Zn1—N42.160 (2)C15—H150.9300
O1—C11.252 (4)C16—C16ii1.255 (7)
O2—C11.249 (4)C16—H160.9300
O3—C91.267 (3)C17—C181.388 (4)
O4—C91.243 (4)C17—H170.9300
O5—H5A0.842 (10)C18—C191.359 (4)
O5—H5B0.835 (10)C18—H180.9300
N1—C171.325 (4)C19—C201.394 (4)
N1—C211.348 (4)C19—H190.9300
N2—C231.317 (4)C20—C211.391 (4)
N2—C221.354 (4)C20—C221.450 (4)
N3—C241.310 (4)C21—C271.455 (4)
N3—C251.348 (4)C22—C251.406 (4)
N4—C301.327 (4)C23—C241.391 (5)
N4—C271.359 (4)C23—H230.9300
C1—C21.497 (4)C24—H240.9300
C2—C31.382 (4)C25—C261.449 (4)
C2—C71.392 (4)C26—C271.389 (4)
C3—C41.379 (4)C26—C281.397 (4)
C3—H30.9300C28—C291.366 (5)
C4—C51.392 (4)C28—H280.9300
C4—H40.9300C29—C301.385 (5)
C5—C61.378 (4)C29—H290.9300
C5—C81.470 (4)C30—H300.9300
C6—C71.367 (4)O6—C311.251 (9)
C6—H60.9300N5—C311.321 (9)
C7—H70.9300N5—C321.460 (9)
C8—C8i1.317 (6)N5—C331.462 (9)
C8—H80.9300C31—H310.9300
C9—C101.498 (4)C32—H32A0.9600
C10—C111.371 (4)C32—H32B0.9600
C10—C151.385 (4)C32—H32C0.9600
C11—C121.399 (4)C33—H33A0.9600
C11—H110.9300C33—H33B0.9600
C12—C131.386 (5)C33—H33C0.9600
C12—H120.9300
O3—Zn1—O5128.13 (9)C14—C13—C16118.9 (3)
O3—Zn1—O197.25 (9)C12—C13—C16123.5 (3)
O5—Zn1—O187.82 (9)C13—C14—C15121.7 (3)
O3—Zn1—N1103.52 (9)C13—C14—H14119.1
O5—Zn1—N1128.18 (9)C15—C14—H14119.1
O1—Zn1—N189.82 (9)C14—C15—C10120.8 (3)
O3—Zn1—N499.89 (9)C14—C15—H15119.6
O5—Zn1—N489.00 (10)C10—C15—H15119.6
O1—Zn1—N4160.43 (9)C16ii—C16—C13128.0 (5)
N1—Zn1—N477.07 (9)C16ii—C16—H16116.0
C1—O1—Zn1123.0 (2)C13—C16—H16116.0
C9—O3—Zn1108.28 (18)N1—C17—C18122.4 (3)
Zn1—O5—H5A93 (2)N1—C17—H17118.8
Zn1—O5—H5B120 (3)C18—C17—H17118.8
H5A—O5—H5B113.2 (17)C19—C18—C17119.4 (3)
C17—N1—C21118.3 (3)C19—C18—H18120.3
C17—N1—Zn1126.3 (2)C17—C18—H18120.3
C21—N1—Zn1115.29 (19)C18—C19—C20119.6 (3)
C23—N2—C22115.7 (3)C18—C19—H19120.2
C24—N3—C25116.1 (3)C20—C19—H19120.2
C30—N4—C27117.8 (3)C21—C20—C19117.5 (3)
C30—N4—Zn1128.1 (2)C21—C20—C22119.1 (3)
C27—N4—Zn1114.09 (19)C19—C20—C22123.4 (3)
O2—C1—O1124.5 (3)N1—C21—C20122.8 (3)
O2—C1—C2116.9 (3)N1—C21—C27116.9 (2)
O1—C1—C2118.6 (3)C20—C21—C27120.3 (3)
C3—C2—C7118.1 (3)N2—C22—C25120.7 (3)
C3—C2—C1123.0 (3)N2—C22—C20118.6 (3)
C7—C2—C1118.9 (3)C25—C22—C20120.7 (3)
C4—C3—C2120.2 (3)N2—C23—C24123.4 (3)
C4—C3—H3119.9N2—C23—H23118.3
C2—C3—H3119.9C24—C23—H23118.3
C3—C4—C5121.7 (3)N3—C24—C23122.1 (3)
C3—C4—H4119.2N3—C24—H24119.0
C5—C4—H4119.2C23—C24—H24119.0
C6—C5—C4117.4 (3)N3—C25—C22122.0 (3)
C6—C5—C8121.2 (3)N3—C25—C26118.2 (3)
C4—C5—C8121.4 (3)C22—C25—C26119.8 (3)
C7—C6—C5121.3 (3)C27—C26—C28117.7 (3)
C7—C6—H6119.3C27—C26—C25119.4 (3)
C5—C6—H6119.3C28—C26—C25122.9 (3)
C6—C7—C2121.2 (3)N4—C27—C26122.8 (3)
C6—C7—H7119.4N4—C27—C21116.5 (3)
C2—C7—H7119.4C26—C27—C21120.7 (3)
C8i—C8—C5126.2 (4)C29—C28—C26119.3 (3)
C8i—C8—H8116.9C29—C28—H28120.3
C5—C8—H8116.9C26—C28—H28120.3
O4—C9—O3122.8 (3)C28—C29—C30119.5 (3)
O4—C9—C10119.3 (3)C28—C29—H29120.3
O3—C9—C10117.9 (3)C30—C29—H29120.3
C11—C10—C15118.3 (3)N4—C30—C29122.8 (3)
C11—C10—C9121.6 (3)N4—C30—H30118.6
C15—C10—C9120.0 (3)C29—C30—H30118.6
C10—C11—C12120.4 (3)C31—N5—C32123.0 (13)
C10—C11—H11119.8C31—N5—C33121.6 (12)
C12—C11—H11119.8C32—N5—C33115.4 (11)
C13—C12—C11121.2 (3)O6—C31—N5121.1 (15)
C13—C12—H12119.4O6—C31—H31119.5
C11—C12—H12119.4N5—C31—H31119.5
C14—C13—C12117.5 (3)
O3—Zn1—O1—C187.2 (3)C9—C10—C15—C14179.4 (3)
O5—Zn1—O1—C140.9 (3)C14—C13—C16—C16ii155.0 (6)
N1—Zn1—O1—C1169.2 (3)C12—C13—C16—C16ii23.9 (8)
N4—Zn1—O1—C1121.8 (3)C21—N1—C17—C180.2 (4)
O5—Zn1—O3—C922.6 (2)Zn1—N1—C17—C18175.5 (2)
O1—Zn1—O3—C9115.55 (19)N1—C17—C18—C190.2 (5)
N1—Zn1—O3—C9152.89 (19)C17—C18—C19—C200.4 (5)
N4—Zn1—O3—C974.0 (2)C18—C19—C20—C210.1 (4)
O3—Zn1—N1—C1781.6 (2)C18—C19—C20—C22179.4 (3)
O5—Zn1—N1—C17102.8 (2)C17—N1—C21—C200.5 (4)
O1—Zn1—N1—C1715.8 (2)Zn1—N1—C21—C20176.3 (2)
N4—Zn1—N1—C17178.9 (3)C17—N1—C21—C27179.4 (2)
O3—Zn1—N1—C2193.76 (19)Zn1—N1—C21—C273.6 (3)
O5—Zn1—N1—C2181.7 (2)C19—C20—C21—N10.3 (4)
O1—Zn1—N1—C21168.83 (19)C22—C20—C21—N1179.9 (2)
N4—Zn1—N1—C213.48 (19)C19—C20—C21—C27179.6 (3)
O3—Zn1—N4—C3079.1 (3)C22—C20—C21—C270.0 (4)
O5—Zn1—N4—C3049.5 (3)C23—N2—C22—C250.2 (4)
O1—Zn1—N4—C30130.1 (3)C23—N2—C22—C20179.8 (3)
N1—Zn1—N4—C30179.1 (3)C21—C20—C22—N2178.7 (3)
O3—Zn1—N4—C2798.9 (2)C19—C20—C22—N20.9 (4)
O5—Zn1—N4—C27132.5 (2)C21—C20—C22—C251.0 (4)
O1—Zn1—N4—C2751.9 (4)C19—C20—C22—C25179.5 (3)
N1—Zn1—N4—C272.87 (19)C22—N2—C23—C241.9 (5)
Zn1—O1—C1—O211.3 (5)C25—N3—C24—C230.8 (5)
Zn1—O1—C1—C2167.3 (2)N2—C23—C24—N32.5 (6)
O2—C1—C2—C3173.0 (3)C24—N3—C25—C221.3 (4)
O1—C1—C2—C38.3 (5)C24—N3—C25—C26178.8 (3)
O2—C1—C2—C78.4 (5)N2—C22—C25—N31.9 (5)
O1—C1—C2—C7170.3 (3)C20—C22—C25—N3178.5 (3)
C7—C2—C3—C40.6 (5)N2—C22—C25—C26178.3 (3)
C1—C2—C3—C4178.0 (3)C20—C22—C25—C261.4 (4)
C2—C3—C4—C51.0 (5)N3—C25—C26—C27179.1 (3)
C3—C4—C5—C62.3 (5)C22—C25—C26—C270.8 (4)
C3—C4—C5—C8176.9 (3)N3—C25—C26—C280.7 (5)
C4—C5—C6—C72.0 (5)C22—C25—C26—C28179.4 (3)
C8—C5—C6—C7177.1 (3)C30—N4—C27—C260.8 (4)
C5—C6—C7—C20.4 (6)Zn1—N4—C27—C26177.4 (2)
C3—C2—C7—C60.9 (5)C30—N4—C27—C21179.8 (3)
C1—C2—C7—C6177.8 (3)Zn1—N4—C27—C212.0 (3)
C6—C5—C8—C8i2.1 (6)C28—C26—C27—N41.0 (5)
C4—C5—C8—C8i177.0 (4)C25—C26—C27—N4179.2 (3)
Zn1—O3—C9—O41.9 (4)C28—C26—C27—C21179.6 (3)
Zn1—O3—C9—C10176.0 (2)C25—C26—C27—C210.2 (4)
O4—C9—C10—C11170.0 (3)N1—C21—C27—N41.1 (4)
O3—C9—C10—C1112.0 (4)C20—C21—C27—N4178.8 (2)
O4—C9—C10—C1510.4 (5)N1—C21—C27—C26179.5 (2)
O3—C9—C10—C15167.6 (3)C20—C21—C27—C260.6 (4)
C15—C10—C11—C121.0 (5)C27—C26—C28—C290.1 (5)
C9—C10—C11—C12179.5 (3)C25—C26—C28—C29180.0 (3)
C10—C11—C12—C130.2 (5)C26—C28—C29—C300.9 (6)
C11—C12—C13—C140.6 (5)C27—N4—C30—C290.4 (5)
C11—C12—C13—C16179.5 (3)Zn1—N4—C30—C29178.3 (3)
C12—C13—C14—C150.4 (6)C28—C29—C30—N41.2 (6)
C16—C13—C14—C15179.4 (4)C32—N5—C31—O60.2 (3)
C13—C14—C15—C100.4 (6)C33—N5—C31—O6179.5 (3)
C11—C10—C15—C141.1 (5)
Symmetry codes: (i) x+3, y, z+1; (ii) x+3, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.84 (1)1.73 (1)2.562 (3)170 (3)
O5—H5B···O4iii0.84 (1)1.87 (1)2.700 (3)175 (4)
Symmetry code: (iii) x+2, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Zn2(C2H3O2)2(C16H10O4)(C18H10N4)2(H2O)2]·2H2O[Zn(C16H10O4)(C14H8N4)(H2O)]·0.5C3H7NO
Mr1151.73618.42
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)293293
a, b, c (Å)13.1521 (12), 11.9082 (11), 15.9668 (15)11.2278 (11), 11.3944 (11), 11.8165 (11)
α, β, γ (°)90, 98.391 (2), 9084.345 (2), 69.421 (2), 83.982 (1)
V3)2473.9 (4)1404.4 (2)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.050.93
Crystal size (mm)0.33 × 0.30 × 0.270.25 × 0.21 × 0.19
Data collection
DiffractometerBruker APEX
diffractometer
Bruker APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.701, 0.7550.788, 0.837
No. of measured, independent and
observed [I > 2σ(I)] reflections
13276, 4853, 3145 7901, 5517, 4209
Rint0.0560.021
(sin θ/λ)max1)0.6170.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.116, 1.01 0.045, 0.119, 1.03
No. of reflections48535517
No. of parameters368416
No. of restraints639
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.97, 0.320.70, 0.33

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected geometric parameters (Å, º) for (I) top
Zn1—N12.127 (3)Zn1—O32.111 (3)
Zn1—N22.155 (3)Zn1—O42.294 (3)
Zn1—O12.009 (2)Zn1—O1W2.079 (2)
O1—Zn1—O1W91.20 (11)O3—Zn1—N297.25 (10)
O1—Zn1—O393.34 (10)N1—Zn1—N276.61 (10)
O1W—Zn1—O397.04 (10)O1—Zn1—O4152.73 (10)
O1—Zn1—N1111.64 (11)O1W—Zn1—O492.66 (11)
O1W—Zn1—N189.85 (10)O3—Zn1—O459.40 (10)
O3—Zn1—N1153.98 (11)N1—Zn1—O495.36 (10)
O1—Zn1—N289.42 (10)N2—Zn1—O493.35 (10)
O1W—Zn1—N2165.64 (11)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1W—HW12···O2W0.856 (18)1.837 (18)2.690 (4)175 (4)
O1W—HW11···O20.854 (18)1.788 (18)2.634 (4)170 (4)
O2W—HW21···O3i0.84 (4)1.97 (2)2.796 (4)166 (5)
O2W—HW22···N4ii0.84 (2)2.22 (2)3.045 (4)168 (6)
Symmetry codes: (i) x+2, y, z+2; (ii) x+5/2, y1/2, z+3/2.
Selected geometric parameters (Å, º) for (II) top
Zn1—O32.002 (2)Zn1—N12.128 (2)
Zn1—O52.043 (2)Zn1—N42.160 (2)
Zn1—O12.059 (2)
O3—Zn1—O5128.13 (9)O1—Zn1—N189.82 (9)
O3—Zn1—O197.25 (9)O3—Zn1—N499.89 (9)
O5—Zn1—O187.82 (9)O5—Zn1—N489.00 (10)
O3—Zn1—N1103.52 (9)O1—Zn1—N4160.43 (9)
O5—Zn1—N1128.18 (9)N1—Zn1—N477.07 (9)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.842 (10)1.729 (11)2.562 (3)170 (3)
O5—H5B···O4i0.835 (10)1.868 (11)2.700 (3)175 (4)
Symmetry code: (i) x+2, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds