Download citation
Download citation
link to html
2-Amino-4-meth­oxy-6-phenyl-11H-pyrimido[4,5-b][1,4]benzodiazepine, C18H15N5O, (I), and its 6-(2-fluoro­phenyl)-, 6-(3-nitro­phenyl)- and 6-(4-methoxy­phenyl)- analogues, viz. C18H14FN5O, (II), C18H14N6O3, (III), and C19H17N5O2, (IV), respectively, all adopt mol­ecular conformations which are almost identical, containing boat-shaped seven-membered rings. In each structure, paired N-H...N hydrogen bonds link the mol­ecules into centrosymmetric dimers. In each of (I)-(III), the dimers are further linked, forming a different three-dimensional framework in each case, while in compound (IV) the dimers are linked into sheets. The significance of this study lies in the observation of different crystal structures in four compounds whose mol­ecular structures are very similar.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010803669X/sk3273sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010803669X/sk3273Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010803669X/sk3273IIsup3.hkl
Contains datablock rra63f

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010803669X/sk3273IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010803669X/sk3273IVsup5.hkl
Contains datablock IV

CCDC references: 686626; 718162; 718163; 718164

Comment top

Pyrimidine-fused compounds are of considerable interest in medicinal chemistry as they have shown a wide variety of biological properties (Wang et al., 2004; McGuigan et al., 2004; Gangjee et al., 2004). Here, we report the structures of four different 2-amino-4-methoxy-11H-pyrimido[4,5-b][1,4]benzodiazepines, compounds (I)–(IV) (Fig. 1), containing differently substituted 6-aryl groups, all of which have been prepared using a synthetic strategy based on a nitrosation-aminolysis-nitroso reduction sequence followed by a Bischler–Napieralski cyclocondensation (Cobo et al., 2008). The structure of compound (II) has been very briefly reported, as a proof of constitution associated with the synthetic report (Cobo et al., 2008), but without any information on, or discussion of, either the molecular conformation or the hydrogen bonding. In the earlier report, the F-atom site occupancies were fixed at 0.75 and 0.25; these occupancies have now been refined to values of 0.774 (5) and 0.226 (5).

Compounds (I)–(IV) have very similar constitutions, differing only by a single substituent and its location in the pendent aryl ring. The molecules accordingly have very similar conformations (Fig. 1) which lack any internal symmetry, so that the molecules are chiral; the reference molecules were selected so that they all have the same hand. The compounds all crystallize in space group P21/n, and their unit-cell dimensions are similar. In addition, the atomic coordinates for corresponding atoms are similar in compounds (I)–(III), whereas the atomic coordinates for compound (IV) are approximately related to those in (I)–(III) by the relationship (1 - x, 1 - y, z), suggesting an approximate relationship equivalent to a twofold rotation around the z axis or, equivalently, a mirror reflection across the [001] plane. However, there are some differences in the patterns of supramolecular aggregation manifested by the intermolecular hydrogen bonds, so that no two of these compounds are strictly isostructural.

The overall molecular conformations are dominated by the seven-membered rings, for which the ring-puckering parameters (Cremer & Pople, 1975) indicate (Table 1) an almost ideal boat form (Evans & Boeyens, 1989) in each compound, with a local pseudo-mirror plane containing atoms N11 and H11 and the mid-point of the bond N5—C6, as demonstrated by the atom-displacements from the mean planes for this ring. The orientation of the pendent phenyl ring, as indicated by the torsion angle N5—C6—C61—C62 (Table 1), is similar in each compound. The nitro and methoxy substituents on the pendent aryl ring and on the fused pyrimidyl ring are both almost coplanar with the rings concerned, as indicated by both the relevant torsion angles and the displacements of the substituent atoms from the ring planes. The conformational similarity between compounds (I)–(IV) in terms of the ring-puckering parameters, the out-of-plane atom displacements and the torsion angles is striking. The bond lengths and angles present no unusual features.

A search of the Cambridge Structural Database (CSD, Version 5.29, January 2008; Allen, 2002) found no examples of pyrimido[4,5-b][1,4]benzodiazepines. However, the structures of several pyrido[2,3-b][1,4]diazepines, (V)–(X), which are very closely related to compounds (I)–(IV), have recently been reported. In each of compounds (V) (CSD refcode INEMOD; Spirlet et al., 2003), (VI) (ZAYPOE; Dupont et al., 1995), (VII) (KOYTIB; Dupont et al., 1992) and (VIII) (IDIMOX; Dupont et al., 2002), the conformation of the seven-membered ring is almost identical to those found in (I)–(IV), as also are those in the N11-substituted compounds (IX) and (X) (SONBOM and SONBIG, respectively; Dupont et al., 1991).

Despite the similarity in the unit-cell dimensions of compounds (I)–(IV) and the close similarity of their molecular structures, these compounds differ in both their crystal structures and in the patterns of the hydrogen bonding. In each compound, paired N—H···N hydrogen bonds, with atom N11 as the donor and pyrimidine atom N1 as the acceptor, generate centrosymmetric R22(8) motifs (Bernstein et al., 1995), centred for the sake of convenience at (1/2, 1/2, 1/2) in each case. However, the subsequent linking of the dimeric units is different in each case, leading to the formation of different three-dimensional hydrogen-bonded framework structures in each of (I)–(III), and to a two-dimensional network in (IV).

In each of (I)–(III), a second N—H···N hydrogen bond (Table 2) links the R22(8) dimers into a sheet. Amino atom N2 in the molecule at (x, y, z), which forms part of the dimer centred at (1/2, 1/2, 1/2), acts as hydrogen-bond donor to ring atom N5 in the molecule at (1/2 - x, 1/2 + y, 1/2 - z), which forms part of the dimer centred at (0, 1, 0). In this manner, the dimer centred at (1/2, 1/2, 1/2) is directly linked to the four dimers centred at (0, 0, 0), (0, 1, 0), (1, 0, 1) and (1, 1, 1), so forming a sheet parallel to (101) built solely from N—H···N hydrogen bonds and consisting of R22(8) rings alternating with R66(32) rings (Fig. 2).

These sheets are then linked to form a three-dimensional framework by the cooperative action of C—H···N and C—H···π(arene) hydrogen bonds in (I) and by just a single C—H···π(arene) hydrogen bond in (II). In each of (I) and (II) these additional hydrogen bonds form a chain running parallel to [010] in which alternate molecules form parts of adjacent (101) sheets. The final two hydrogen bonds in the structure of (III) link the (101) sheets into a continuous framework structure via two distinct motifs. Aryl atom C8 in the molecule at (x, y, z) acts as donor to nitro atom O632 in the molecule at (2 - x, -y, 1 - z), so forming a centrosymmetric R22(20) motif centred at (1, 0, 1/2). This motif links the R22(8) dimers into a chain running parallel to [110] and containing R22(8) rings centred at (1/2 + n, 1/2 - n, 1/2) (where n represents zero or an integer) alternating with R22(20) rings centred at (n, 1 - n, 1/2) (where n represents zero or an integer) (Fig. 3). The combination of a chain along [110] and a sheet parallel to (101) is sufficient to generate a three-dimensional framework structure. Finally, aryl atom C65 at (x, y, z) acts as donor to the ring C6a/C7–C10/C10a in the molecule at (3/2 - x, -1/2 + y, 1/2 - z), so forming a chain running parallel to the [010] direction and consisting of molecules related by the 21 screw axis along (3/4, y, 1/4), where successive molecules are components of two different (101) sheets (Fig. 4).

The linking of the R22(8) rings in (IV) again generates a sheet parallel to (101), just as in (III), but now the dimers are linked by a C—H···π(arene) hydrogen bond rather than by an N—H···N hydrogen bond (Fig. 5). Indeed, neither of the N—H bonds of the amino group plays any role in the hydrogen bonding, as there are no potential hydrogen-bond acceptors within 2.60 Å of the amino H atoms in (IV). There are no direction-specific interactions of any kind between adjacent sheets, so that the hydrogen-bonded structure of (IV) is strictly two-dimensional. It is striking that in neither compound does pyrimidine atom N3 play any role in the hydrogen bonding.

Thus, although the unit-cell dimensions of compounds (I)–(IV) are similar and their molecular constitutions and conformations are almost identical, unexpectedly the crystal structures, dominated by multiple hydrogen bonds, are somewhat different.

It is of interest briefly to compare the hydrogen-bonded structures of (I)–(IV) with those found in compounds (V)–(VIII). This comparison is of particular interest in view of the non-participation in the hydrogen-bonded structures of (I)–(IV) by atom N3, the sole point of difference in the fused tricyclic systems of (I)–(IV) on the one hand and (V)–(VIII) on the other.

In both (V) and (VI), paired N—H···N hydrogen bonds having the pyridine N atom as acceptor generate centrosymmetric R22(8) dimers, exactly as in (I)–(IV). In (V) these dimers are linked into chains of centrosymmetric rings by pairs of symmetry-related C—H···π(arene) hydrogen bonds, but there are no direction-specific interactions between the dimers in (VI). In neither compound do the two N atoms of the pendent piperidine substituent play any part in the hydrogen bonding. By contrast, there are two independent N—H···N hydrogen bonds in (VIII). An intramolecular hydrogen bond is formed by the two N atoms of the dimethylaminopropylamine substituent, and an intermolecular hydrogen bond utilizes the ring N—H as donor and the imine N atom of the diazepine ring as acceptor to form a simple C(5) chain. A single C—H···π(arene) hydrogen bond links these chains into sheets.

Compound (VII) crystallizes from acetone–methanol (50:50 v/v) as a sesquihydrate (Dupont et al., 1992) with two molecules of the organic component and three water molecules in the asymmetric unit. All of the N—H and O—H bonds are involved in the hydrogen bonding, which generates a ribbon or chain of edge-fused rings running parallel to the [111] direction of the triclinic cell, in which there are rings of R22(8), R44(8), R44(13) and R66(32) types, the second and fourth of which are centrosymmetric (Fig. 6). Embedded within the ribbon is a homodromic (Saenger & Lindner, 1980) and centrosymmetric ring of four hydrogen-bonded water molecules.

Related literature top

For related literature, see: Allen (2002); Bernstein et al. (1995); Cobo et al. (2008); Cremer & Pople (1975); Dupont et al. (1991, 1992, 1995, 2002); Evans & Boeyens (1989); Gangjee et al. (2004); McGuigan et al. (2004); Saenger & Lindner (1980); Spirlet et al. (2003); Wang et al. (2004).

Experimental top

Samples of compounds (I)–(IV) were prepared as described previously by Cobo et al. (2008). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in methanol.

Refinement top

All H atoms were located in difference maps, and then treated as riding atoms with distances C-H 0.95 Å (aromatic)) or 0.98 Å (CH3) and N-H 0.88 Å, and with Uiso(H) = kUeq(carrier) where k = 1.5 for the methyl groups and 1.2 for all other H atoms. Compound (I) was handled as a non-merohedral twin, using the HKLF5 option in SHELXL, with a twinning matrix (1,0,0 0,1,0, 0.310,0,1) giving twin fractions of 0.847 (4) and 0.153 (4). In compound (II) the F atom was disordered over two sites, bonded respectively to atoms C62 and C66, with occupancies 0.775 (5) and 0.225 (5); restraints were applied to nsure similarity of the C-F distances and C-C-F angles in the two orientations. For compound (IV) the merging index was 0.179, but this occurred for a weak dataset with only 42.7% of the reflections having I > 2σ(I), despite data collection at 120 K.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structures of (I)–(IV), showing the atom-labelling schemes. (a) Compound (I), (b) (II), (c) (III) and (d) (IV). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The refined occupancies of the F-atom sites in compound (II) are 0.774 (5) and 0.226 (5), respectively.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of (I), showing the formation of a sheet of alternating R22(8) and R66(36) rings parallel to (101) formed by two independent N—H···N hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms have been omitted. Entirely analogous sheets can be identified in the structures of (II) and (III).
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (III), showing the formation of a chain of alternating R22(8) and R22(20) rings along [110] formed by N—H···N and C—H···O hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms and not involved in the motif shown have been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (III), showing the formation of a chain along [010] formed by C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms and not involved in the motif shown have been omitted.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of (IV), showing the formation of a sheet parallel to (101) using a combination of N—H···N and C—H···π(arene) hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms and not involved in the motif shown have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of (V) (CSD refcode KOYTIB; Dupont et al., 1992), showing the formation of a chain containing four types of ring. The original atom coordinates have been used and, for the sake of clarity, H atoms bonded to C atoms have all been omitted.
(I) 2-Amino-4-methoxy-6-phenyl-11H-pyrimido[4,5-b][1,4]benzodiazepine top
Crystal data top
C18H15N5OF(000) = 664
Mr = 317.35Dx = 1.445 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3338 reflections
a = 7.022 (6) Åθ = 3.0–27.5°
b = 12.855 (9) ŵ = 0.10 mm1
c = 16.199 (8) ÅT = 120 K
β = 93.851 (5)°Block, colourless
V = 1459.0 (18) Å30.47 × 0.35 × 0.26 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3338 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2768 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1616
Tmin = 0.967, Tmax = 0.976l = 021
3338 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.085Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.225H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0493P)2 + 4.1282P]
where P = (Fo2 + 2Fc2)/3
3338 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
C18H15N5OV = 1459.0 (18) Å3
Mr = 317.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.022 (6) ŵ = 0.10 mm1
b = 12.855 (9) ÅT = 120 K
c = 16.199 (8) Å0.47 × 0.35 × 0.26 mm
β = 93.851 (5)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3338 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2768 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.976Rint = 0.000
3338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0850 restraints
wR(F2) = 0.225H-atom parameters constrained
S = 1.20Δρmax = 0.45 e Å3
3338 reflectionsΔρmin = 0.59 e Å3
219 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.3932 (4)0.35940 (19)0.16820 (13)0.0235 (6)
N10.4481 (4)0.5128 (2)0.38514 (16)0.0224 (6)
N20.3360 (5)0.6578 (2)0.31532 (17)0.0254 (7)
H210.34530.69260.36220.030*
H220.29430.68900.26930.030*
N30.3723 (4)0.5113 (2)0.23931 (16)0.0216 (6)
N50.4956 (4)0.2487 (2)0.30175 (16)0.0215 (6)
N110.5697 (4)0.3667 (2)0.45435 (16)0.0215 (6)
H110.50570.36520.49920.026*
C20.3853 (5)0.5575 (3)0.3141 (2)0.0211 (7)
C40.4114 (5)0.4125 (3)0.23912 (19)0.0214 (7)
C4a0.4765 (5)0.3557 (3)0.30917 (19)0.0203 (7)
C60.6288 (5)0.1976 (3)0.34079 (19)0.0200 (7)
C6a0.7839 (5)0.2408 (3)0.39693 (19)0.0209 (7)
C70.9682 (5)0.2030 (3)0.39337 (19)0.0228 (7)
H70.99110.14790.35620.027*
C81.1191 (5)0.2430 (3)0.4423 (2)0.0260 (8)
H81.24460.21680.43810.031*
C91.0852 (6)0.3218 (3)0.4975 (2)0.0268 (8)
H91.18710.34860.53280.032*
C100.9050 (5)0.3612 (3)0.5014 (2)0.0251 (7)
H100.88370.41590.53910.030*
C10a0.7521 (5)0.3227 (3)0.45121 (19)0.0206 (7)
C11a0.4976 (5)0.4133 (3)0.38066 (19)0.0198 (7)
C410.3365 (6)0.4167 (3)0.0952 (2)0.0265 (8)
H4110.43540.46790.08440.040*
H4120.21610.45280.10290.040*
H4130.31920.36890.04820.040*
C610.6320 (5)0.0853 (3)0.3227 (2)0.0218 (7)
C620.6699 (5)0.0121 (3)0.3845 (2)0.0260 (8)
H620.70380.03420.43950.031*
C630.6587 (6)0.0922 (3)0.3665 (2)0.0303 (8)
H630.68420.14200.40920.036*
C640.6104 (6)0.1250 (3)0.2865 (2)0.0297 (8)
H640.60090.19720.27420.036*
C650.5764 (5)0.0529 (3)0.2250 (2)0.0282 (8)
H650.54450.07530.17000.034*
C660.5881 (5)0.0512 (3)0.2422 (2)0.0245 (7)
H660.56600.10040.19890.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0372 (14)0.0232 (12)0.0098 (10)0.0017 (10)0.0010 (9)0.0015 (9)
N10.0331 (16)0.0209 (14)0.0127 (13)0.0023 (12)0.0014 (11)0.0012 (11)
N20.0409 (18)0.0211 (14)0.0139 (13)0.0018 (13)0.0009 (12)0.0014 (11)
N30.0282 (15)0.0236 (14)0.0131 (12)0.0013 (12)0.0015 (11)0.0007 (11)
N50.0300 (15)0.0209 (14)0.0134 (12)0.0001 (12)0.0010 (11)0.0017 (11)
N110.0313 (15)0.0251 (14)0.0080 (11)0.0033 (12)0.0008 (10)0.0008 (11)
C20.0245 (16)0.0242 (16)0.0145 (14)0.0005 (13)0.0004 (12)0.0001 (13)
C40.0282 (17)0.0239 (17)0.0121 (14)0.0008 (14)0.0017 (12)0.0028 (12)
C4a0.0261 (17)0.0215 (16)0.0133 (14)0.0017 (13)0.0000 (12)0.0012 (12)
C60.0262 (17)0.0222 (16)0.0119 (13)0.0005 (13)0.0032 (12)0.0007 (12)
C6a0.0295 (17)0.0212 (16)0.0118 (14)0.0016 (13)0.0005 (12)0.0018 (12)
C70.0331 (18)0.0226 (16)0.0128 (14)0.0022 (14)0.0029 (13)0.0024 (12)
C80.0275 (18)0.0305 (19)0.0198 (16)0.0010 (15)0.0015 (13)0.0028 (14)
C90.0338 (19)0.0282 (18)0.0178 (15)0.0039 (15)0.0032 (14)0.0010 (14)
C100.0360 (19)0.0247 (17)0.0140 (15)0.0015 (15)0.0016 (13)0.0011 (13)
C10a0.0290 (17)0.0212 (16)0.0114 (14)0.0007 (13)0.0000 (12)0.0039 (12)
C11a0.0245 (16)0.0223 (16)0.0122 (14)0.0005 (13)0.0008 (12)0.0004 (12)
C410.041 (2)0.0260 (18)0.0116 (14)0.0012 (15)0.0037 (14)0.0024 (13)
C610.0250 (17)0.0224 (17)0.0178 (15)0.0017 (13)0.0004 (12)0.0024 (13)
C620.0338 (19)0.0263 (18)0.0174 (15)0.0009 (15)0.0013 (13)0.0004 (14)
C630.040 (2)0.0240 (18)0.0270 (18)0.0006 (16)0.0021 (16)0.0033 (15)
C640.035 (2)0.0230 (18)0.0313 (19)0.0018 (15)0.0045 (16)0.0049 (15)
C650.0317 (19)0.0290 (19)0.0236 (17)0.0020 (15)0.0007 (14)0.0080 (15)
C660.0321 (18)0.0244 (17)0.0170 (15)0.0032 (14)0.0007 (13)0.0027 (13)
Geometric parameters (Å, º) top
O4—C41.335 (4)C7—H70.9500
O4—C411.427 (4)C8—C91.382 (5)
N1—C11a1.328 (4)C8—H80.9500
N1—C21.335 (4)C9—C101.368 (5)
N2—C21.335 (5)C9—H90.9500
N2—H210.8800C10—C10a1.393 (5)
N2—H220.8800C10—H100.9500
N3—C41.299 (5)C41—H4110.9800
N3—C21.347 (4)C41—H4120.9800
N5—C61.276 (5)C41—H4130.9800
N5—C4a1.388 (4)C61—C621.386 (5)
N11—C11a1.399 (4)C61—C661.391 (5)
N11—C10a1.404 (5)C62—C631.373 (5)
N11—H110.8800C62—H620.9500
C4—C4a1.400 (5)C63—C641.384 (5)
C4a—C11a1.374 (4)C63—H630.9500
C6—C611.473 (5)C64—C651.370 (5)
C6—C6a1.480 (5)C64—H640.9500
C6a—C71.387 (5)C65—C661.367 (5)
C6a—C10a1.399 (5)C65—H650.9500
C7—C81.380 (5)C66—H660.9500
C4—O4—C41117.0 (3)C9—C10—C10a121.4 (3)
C11a—N1—C2116.1 (3)C9—C10—H10119.3
C2—N2—H21120.0C10a—C10—H10119.3
C2—N2—H22120.0C10—C10a—C6a119.0 (3)
H21—N2—H22120.0C10—C10a—N11120.3 (3)
C4—N3—C2115.6 (3)C6a—C10a—N11120.7 (3)
C6—N5—C4a122.6 (3)N1—C11a—C4a123.4 (3)
C11a—N11—C10a114.9 (3)N1—C11a—N11116.5 (3)
C11a—N11—H11122.6C4a—C11a—N11120.0 (3)
C10a—N11—H11122.6O4—C41—H411109.5
N1—C2—N2118.3 (3)O4—C41—H412109.5
N1—C2—N3125.7 (3)H411—C41—H412109.5
N2—C2—N3116.0 (3)O4—C41—H413109.5
N3—C4—O4119.6 (3)H411—C41—H413109.5
N3—C4—C4a124.4 (3)H412—C41—H413109.5
O4—C4—C4a116.0 (3)C62—C61—C66118.8 (3)
C11a—C4a—N5127.0 (3)C62—C61—C6121.8 (3)
C11a—C4a—C4114.4 (3)C66—C61—C6119.3 (3)
N5—C4a—C4118.3 (3)C63—C62—C61120.3 (3)
N5—C6—C61115.3 (3)C63—C62—H62119.8
N5—C6—C6a126.6 (3)C61—C62—H62119.8
C61—C6—C6a118.0 (3)C62—C63—C64120.2 (4)
C7—C6a—C10a118.6 (3)C62—C63—H63119.9
C7—C6a—C6119.5 (3)C64—C63—H63119.9
C10a—C6a—C6121.8 (3)C65—C64—C63119.7 (4)
C8—C7—C6a121.9 (3)C65—C64—H64120.2
C8—C7—H7119.1C63—C64—H64120.2
C6a—C7—H7119.1C66—C65—C64120.6 (3)
C7—C8—C9119.1 (3)C66—C65—H65119.7
C7—C8—H8120.5C64—C65—H65119.7
C9—C8—H8120.5C65—C66—C61120.4 (3)
C10—C9—C8120.1 (3)C65—C66—H66119.8
C10—C9—H9120.0C61—C66—H66119.8
C8—C9—H9120.0
C11a—N1—C2—N2179.2 (3)C7—C6a—C10a—C101.9 (5)
C11a—N1—C2—N31.4 (5)C6—C6a—C10a—C10178.8 (3)
C4—N3—C2—N15.5 (5)C7—C6a—C10a—N11177.1 (3)
C4—N3—C2—N2176.7 (3)C6—C6a—C10a—N110.2 (5)
C2—N3—C4—O4176.8 (3)C11a—N11—C10a—C10116.9 (3)
C2—N3—C4—C4a4.5 (5)C11a—N11—C10a—C6a62.1 (4)
C41—O4—C4—N32.0 (5)C2—N1—C11a—C4a3.9 (5)
C41—O4—C4—C4a176.8 (3)C2—N1—C11a—N11177.9 (3)
C6—N5—C4a—C11a42.2 (5)N5—C4a—C11a—N1169.0 (3)
C6—N5—C4a—C4144.5 (3)C4—C4a—C11a—N14.6 (5)
N3—C4—C4a—C11a0.2 (5)N5—C4a—C11a—N119.2 (6)
O4—C4—C4a—C11a178.6 (3)C4—C4a—C11a—N11177.2 (3)
N3—C4—C4a—N5174.0 (3)C10a—N11—C11a—N1123.3 (3)
O4—C4—C4a—N57.2 (5)C10a—N11—C11a—C4a58.4 (4)
C4a—N5—C6—C61177.5 (3)N5—C6—C61—C62139.2 (4)
C4a—N5—C6—C6a1.7 (5)C6a—C6—C61—C6244.7 (5)
N5—C6—C6a—C7138.2 (4)N5—C6—C61—C6638.1 (5)
C61—C6—C6a—C737.4 (4)C6a—C6—C61—C66138.1 (3)
N5—C6—C6a—C10a38.7 (5)C66—C61—C62—C631.8 (6)
C61—C6—C6a—C10a145.7 (3)C6—C61—C62—C63175.4 (4)
C10a—C6a—C7—C80.7 (5)C61—C62—C63—C640.3 (6)
C6—C6a—C7—C8177.7 (3)C62—C63—C64—C650.9 (6)
C6a—C7—C8—C91.2 (5)C63—C64—C65—C660.6 (6)
C7—C8—C9—C102.0 (5)C64—C65—C66—C610.9 (6)
C8—C9—C10—C10a0.8 (5)C62—C61—C66—C652.1 (6)
C9—C10—C10a—C6a1.1 (5)C6—C61—C66—C65175.2 (3)
C9—C10—C10a—N11177.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H22···N5i0.882.403.129 (5)141
N11—H11···N1ii0.882.453.036 (4)125
C7—H7···N3iii0.952.573.503 (5)168
C65—H65···Cgiii0.952.653.500 (5)150
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z+1/2.
(II) 2-Amino-4-methoxy-6-(2-fluorophenyl)-11H-pyrimido[4,5- b][1,4]benzodiazepine top
Crystal data top
C18H14FN5OF(000) = 696
Mr = 335.34Dx = 1.517 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3340 reflections
a = 6.9115 (10) Åθ = 5.1–27.5°
b = 12.8801 (14) ŵ = 0.11 mm1
c = 16.560 (2) ÅT = 120 K
β = 95.11 (1)°Block, colourless
V = 1468.4 (3) Å30.24 × 0.14 × 0.11 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3340 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2361 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 5.1°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1616
Tmin = 0.976, Tmax = 0.988l = 2121
35898 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0798P)2 + 1.6324P]
where P = (Fo2 + 2Fc2)/3
3340 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.64 e Å3
9 restraintsΔρmin = 0.56 e Å3
Crystal data top
C18H14FN5OV = 1468.4 (3) Å3
Mr = 335.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9115 (10) ŵ = 0.11 mm1
b = 12.8801 (14) ÅT = 120 K
c = 16.560 (2) Å0.24 × 0.14 × 0.11 mm
β = 95.11 (1)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3340 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2361 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.988Rint = 0.067
35898 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0609 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.05Δρmax = 0.64 e Å3
3340 reflectionsΔρmin = 0.56 e Å3
237 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O40.3963 (2)0.36163 (12)0.17280 (9)0.0233 (4)
N10.4465 (3)0.51317 (15)0.38652 (11)0.0210 (4)
N20.3365 (3)0.65948 (15)0.31765 (13)0.0272 (5)
H210.34580.69350.36390.033*
H220.29560.69160.27240.033*
N30.3725 (3)0.51359 (15)0.24283 (11)0.0216 (4)
N50.4887 (3)0.24932 (14)0.30330 (11)0.0209 (4)
N110.5660 (3)0.36560 (15)0.45448 (11)0.0211 (4)
H110.50170.36480.49800.025*
C20.3849 (3)0.55857 (18)0.31605 (14)0.0213 (5)
C40.4104 (3)0.41405 (17)0.24240 (13)0.0195 (5)
C4A0.4703 (3)0.35649 (17)0.31143 (13)0.0194 (5)
C60.6230 (3)0.19628 (17)0.34256 (12)0.0205 (5)
C6A0.7800 (3)0.23756 (18)0.39958 (13)0.0212 (5)
C70.9656 (3)0.19729 (18)0.39802 (14)0.0233 (5)
H70.98730.14190.36200.028*
C81.1188 (4)0.2359 (2)0.44753 (15)0.0283 (6)
H81.24570.20870.44450.034*
C91.0880 (4)0.3144 (2)0.50161 (15)0.0282 (6)
H91.19280.33960.53730.034*
C100.9050 (4)0.35620 (18)0.50378 (14)0.0237 (5)
H100.88420.41070.54070.028*
C10A0.7505 (3)0.31901 (18)0.45218 (14)0.0211 (5)
C11A0.4939 (3)0.41293 (17)0.38231 (13)0.0193 (5)
C410.3504 (4)0.41893 (19)0.09990 (14)0.0264 (5)
H4110.23650.46270.10580.040*
H4120.32220.37070.05460.040*
H4130.46110.46280.08920.040*
C610.6253 (3)0.08501 (18)0.31931 (15)0.0227 (5)
C630.6291 (4)0.0969 (2)0.35323 (19)0.0382 (7)
H630.64110.14960.39350.046*
C640.5992 (4)0.1223 (2)0.2725 (2)0.0380 (7)
H640.58860.19310.25660.046*
C650.5847 (4)0.04629 (19)0.21534 (18)0.0354 (6)
H650.56480.06380.15950.042*
F620.6619 (3)0.02639 (15)0.45079 (11)0.0378 (7)0.775 (5)
C660.5991 (4)0.0561 (2)0.23870 (15)0.0294 (6)
H660.59080.10850.19820.035*0.775 (5)
C620.6412 (4)0.0058 (2)0.37472 (15)0.0307 (6)
H620.66160.02280.43060.037*0.225 (5)
F660.6133 (13)0.1222 (3)0.1820 (2)0.048 (3)0.225 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0337 (9)0.0216 (8)0.0140 (8)0.0004 (7)0.0018 (7)0.0018 (6)
N10.0254 (10)0.0190 (10)0.0182 (10)0.0020 (8)0.0003 (8)0.0015 (7)
N20.0422 (13)0.0180 (10)0.0201 (10)0.0042 (9)0.0043 (9)0.0006 (8)
N30.0255 (10)0.0208 (10)0.0181 (10)0.0000 (8)0.0004 (8)0.0012 (8)
N50.0277 (11)0.0168 (9)0.0179 (9)0.0002 (8)0.0002 (8)0.0016 (7)
N110.0259 (10)0.0234 (10)0.0139 (9)0.0032 (8)0.0014 (8)0.0012 (7)
C20.0223 (12)0.0213 (11)0.0196 (11)0.0007 (9)0.0008 (9)0.0006 (9)
C40.0211 (11)0.0199 (11)0.0172 (11)0.0025 (9)0.0003 (9)0.0009 (9)
C4A0.0232 (11)0.0198 (11)0.0149 (11)0.0003 (9)0.0004 (8)0.0004 (8)
C60.0251 (12)0.0202 (11)0.0161 (11)0.0005 (9)0.0016 (9)0.0014 (9)
C6A0.0271 (12)0.0203 (11)0.0162 (11)0.0010 (9)0.0020 (9)0.0008 (9)
C70.0284 (12)0.0219 (12)0.0196 (11)0.0021 (9)0.0023 (9)0.0008 (9)
C80.0244 (12)0.0363 (14)0.0239 (12)0.0021 (10)0.0010 (10)0.0004 (10)
C90.0260 (13)0.0327 (14)0.0248 (13)0.0038 (10)0.0031 (10)0.0008 (10)
C100.0303 (13)0.0236 (12)0.0166 (11)0.0010 (10)0.0012 (9)0.0019 (9)
C10A0.0241 (12)0.0209 (11)0.0181 (11)0.0005 (9)0.0014 (9)0.0033 (9)
C11A0.0214 (11)0.0204 (11)0.0160 (11)0.0004 (9)0.0011 (8)0.0008 (9)
C410.0356 (14)0.0278 (13)0.0154 (11)0.0010 (10)0.0011 (10)0.0019 (9)
C610.0230 (12)0.0193 (11)0.0257 (12)0.0001 (9)0.0014 (9)0.0022 (9)
C630.0339 (15)0.0217 (13)0.059 (2)0.0019 (11)0.0051 (13)0.0077 (13)
C640.0304 (14)0.0254 (14)0.059 (2)0.0024 (11)0.0083 (13)0.0143 (13)
C650.0320 (14)0.0337 (15)0.0411 (16)0.0013 (11)0.0063 (12)0.0177 (12)
F620.0625 (15)0.0303 (11)0.0196 (11)0.0037 (9)0.0030 (9)0.0007 (8)
C660.0284 (13)0.0295 (13)0.0308 (14)0.0005 (10)0.0045 (10)0.0081 (11)
C620.0314 (14)0.0282 (13)0.0322 (14)0.0001 (10)0.0010 (11)0.0012 (11)
F660.071 (6)0.043 (5)0.031 (4)0.005 (4)0.000 (4)0.009 (3)
Geometric parameters (Å, º) top
O4—C41.332 (3)C8—C91.379 (4)
O4—C411.426 (3)C8—H80.9500
N1—C11A1.335 (3)C9—C101.378 (3)
N1—C21.340 (3)C9—H90.9500
N2—C21.343 (3)C10—C10A1.392 (3)
N2—H210.8800C10—H100.9500
N2—H220.8800C41—H4110.9800
N3—C41.309 (3)C41—H4120.9800
N3—C21.340 (3)C41—H4130.9800
N5—C61.282 (3)C61—C621.370 (3)
N5—C4A1.394 (3)C61—C661.382 (3)
N11—C11A1.394 (3)C63—C641.374 (4)
N11—C10A1.413 (3)C63—C621.370 (4)
N11—H110.8800C63—H630.9500
C4—C4A1.394 (3)C64—C651.359 (4)
C4A—C11A1.378 (3)C64—H640.9500
C6—C6A1.473 (3)C65—C661.375 (3)
C6—C611.484 (3)C65—H650.9500
C6A—C71.386 (3)F62—C621.283 (3)
C6A—C10A1.390 (3)C66—F661.277 (4)
C7—C81.373 (3)C66—H660.9500
C7—H70.9500C62—H620.9500
C4—O4—C41117.64 (18)C10A—C10—H10119.8
C11A—N1—C2115.89 (19)C6A—C10A—C10119.8 (2)
C2—N2—H21120.0C6A—C10A—N11121.4 (2)
C2—N2—H22120.0C10—C10A—N11118.8 (2)
H21—N2—H22120.0N1—C11A—C4A122.9 (2)
C4—N3—C2115.6 (2)N1—C11A—N11116.7 (2)
C6—N5—C4A123.1 (2)C4A—C11A—N11120.4 (2)
C11A—N11—C10A114.66 (18)O4—C41—H411109.5
C11A—N11—H11122.7O4—C41—H412109.5
C10A—N11—H11122.7H411—C41—H412109.5
N1—C2—N3126.1 (2)O4—C41—H413109.5
N1—C2—N2117.7 (2)H411—C41—H413109.5
N3—C2—N2116.1 (2)H412—C41—H413109.5
N3—C4—O4120.1 (2)C62—C61—C66116.2 (2)
N3—C4—C4A124.2 (2)C62—C61—C6123.2 (2)
O4—C4—C4A115.7 (2)C66—C61—C6120.5 (2)
C11A—C4A—C4115.0 (2)C64—C63—C62118.9 (3)
C11A—C4A—N5126.9 (2)C64—C63—H63120.6
C4—C4A—N5118.1 (2)C62—C63—H63120.6
N5—C6—C6A126.3 (2)C65—C64—C63120.1 (3)
N5—C6—C61114.0 (2)C65—C64—H64119.9
C6A—C6—C61119.4 (2)C63—C64—H64119.9
C7—C6A—C10A118.8 (2)C66—C65—C64119.7 (3)
C7—C6A—C6118.9 (2)C66—C65—H65120.1
C10A—C6A—C6122.2 (2)C64—C65—H65120.1
C8—C7—C6A121.2 (2)F66—C66—C65116.2 (3)
C8—C7—H7119.4F66—C66—C61121.2 (3)
C6A—C7—H7119.4C65—C66—C61122.0 (2)
C7—C8—C9119.9 (2)C65—C66—H66119.0
C7—C8—H8120.1C61—C66—H66119.0
C9—C8—H8120.1F62—C62—C61119.9 (2)
C10—C9—C8119.9 (2)F62—C62—C63117.0 (2)
C10—C9—H9120.1C61—C62—C63123.1 (2)
C8—C9—H9120.1C61—C62—H62118.5
C9—C10—C10A120.4 (2)C63—C62—H62118.5
C9—C10—H10119.8
C11A—N1—C2—N32.0 (3)C9—C10—C10A—N11178.3 (2)
C11A—N1—C2—N2179.7 (2)C11A—N11—C10A—C6A62.1 (3)
C4—N3—C2—N15.6 (3)C11A—N11—C10A—C10117.8 (2)
C4—N3—C2—N2176.7 (2)C2—N1—C11A—C4A4.1 (3)
C2—N3—C4—O4178.0 (2)C2—N1—C11A—N11177.37 (19)
C2—N3—C4—C4A3.3 (3)C4—C4A—C11A—N15.9 (3)
C41—O4—C4—N33.6 (3)N5—C4A—C11A—N1170.0 (2)
C41—O4—C4—C4A175.2 (2)C4—C4A—C11A—N11175.6 (2)
N3—C4—C4A—C11A2.0 (3)N5—C4A—C11A—N118.5 (4)
O4—C4—C4A—C11A176.77 (19)C10A—N11—C11A—N1123.7 (2)
N3—C4—C4A—N5174.3 (2)C10A—N11—C11A—C4A57.6 (3)
O4—C4—C4A—N57.0 (3)N5—C6—C61—C62133.4 (2)
C6—N5—C4A—C11A41.2 (4)C6A—C6—C61—C6252.9 (3)
C6—N5—C4A—C4143.1 (2)N5—C6—C61—C6642.6 (3)
C4A—N5—C6—C6A1.8 (3)C6A—C6—C61—C66131.1 (2)
C4A—N5—C6—C61175.0 (2)C62—C63—C64—C650.9 (4)
N5—C6—C6A—C7139.1 (2)C63—C64—C65—C660.3 (4)
C61—C6—C6A—C733.7 (3)C64—C65—C66—F66169.9 (5)
N5—C6—C6A—C10A37.6 (3)C64—C65—C66—C611.0 (4)
C61—C6—C6A—C10A149.5 (2)C62—C61—C66—F66168.8 (5)
C10A—C6A—C7—C80.4 (4)C6—C61—C66—F6615.0 (6)
C6—C6A—C7—C8177.3 (2)C62—C61—C66—C651.6 (4)
C6A—C7—C8—C91.8 (4)C6—C61—C66—C65174.6 (2)
C7—C8—C9—C102.3 (4)C66—C61—C62—F62178.6 (2)
C8—C9—C10—C10A0.6 (4)C6—C61—C62—F622.4 (4)
C7—C6A—C10A—C102.1 (3)C66—C61—C62—C631.1 (4)
C6—C6A—C10A—C10178.8 (2)C6—C61—C62—C63175.1 (2)
C7—C6A—C10A—N11177.8 (2)C64—C63—C62—F62177.5 (3)
C6—C6A—C10A—N111.0 (3)C64—C63—C62—C610.1 (4)
C9—C10—C10A—C6A1.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H22···N5i0.882.363.099 (3)142
N11—H11···N1ii0.882.483.069 (3)125
C65—H65···Cgiii0.952.753.562 (3)145
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z+1/2.
(III) 2-Amino-4-methoxy-6-(3-nitrophenyl)-11H-pyrimido[4,5- b][1,4]benzodiazepine top
Crystal data top
C18H14N6O3F(000) = 752
Mr = 362.35Dx = 1.541 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3467 reflections
a = 7.047 (4) Åθ = 3.9–27.5°
b = 13.502 (7) ŵ = 0.11 mm1
c = 16.418 (5) ÅT = 120 K
β = 91.22 (5)°Block, yellow
V = 1561.8 (13) Å30.22 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3467 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1748 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.9°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1717
Tmin = 0.966, Tmax = 0.985l = 2121
24447 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0947P)2 + 0.1349P]
where P = (Fo2 + 2Fc2)/3
3467 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C18H14N6O3V = 1561.8 (13) Å3
Mr = 362.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.047 (4) ŵ = 0.11 mm1
b = 13.502 (7) ÅT = 120 K
c = 16.418 (5) Å0.22 × 0.15 × 0.14 mm
β = 91.22 (5)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3467 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1748 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.985Rint = 0.103
24447 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
3467 reflectionsΔρmin = 0.28 e Å3
245 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.4045 (3)0.38071 (14)0.16181 (11)0.0400 (6)
O6310.6404 (4)0.22025 (18)0.39187 (17)0.0721 (8)
O6320.6208 (4)0.10514 (18)0.48169 (16)0.0683 (8)
N10.4366 (3)0.51877 (17)0.38096 (13)0.0323 (6)
N20.3292 (3)0.65975 (17)0.31631 (15)0.0384 (6)
N30.3713 (3)0.52251 (17)0.23714 (14)0.0346 (6)
N50.4876 (3)0.26868 (17)0.29115 (13)0.0335 (6)
N110.5450 (3)0.37620 (17)0.44527 (14)0.0331 (6)
N630.6281 (4)0.1331 (2)0.41100 (19)0.0496 (7)
C20.3796 (4)0.5636 (2)0.31189 (17)0.0331 (7)
C40.4120 (4)0.4279 (2)0.23404 (16)0.0326 (7)
C4a0.4678 (4)0.3710 (2)0.30137 (16)0.0320 (7)
C60.6132 (4)0.2178 (2)0.32982 (16)0.0329 (7)
C6a0.7611 (4)0.2551 (2)0.38748 (17)0.0322 (7)
C70.9451 (4)0.2166 (2)0.38355 (17)0.0372 (7)
C81.0884 (4)0.2522 (2)0.43258 (18)0.0402 (8)
C91.0517 (4)0.3256 (2)0.48826 (18)0.0397 (7)
C100.8720 (4)0.3653 (2)0.49338 (17)0.0372 (7)
C10a0.7272 (4)0.3308 (2)0.44232 (16)0.0329 (7)
C11a0.4829 (4)0.4231 (2)0.37427 (16)0.0314 (7)
C410.3665 (5)0.4392 (2)0.09082 (17)0.0449 (8)
C610.6156 (4)0.1106 (2)0.30856 (18)0.0356 (7)
C620.6325 (4)0.0395 (2)0.36894 (18)0.0367 (7)
C630.6198 (4)0.0593 (2)0.34643 (19)0.0391 (7)
C640.5915 (4)0.0893 (2)0.2683 (2)0.0441 (8)
C650.5800 (5)0.0184 (2)0.2086 (2)0.0487 (9)
C660.5930 (4)0.0807 (2)0.22793 (18)0.0394 (7)
H210.32650.68740.36480.046*
H220.26020.68550.27630.046*
H110.54110.41640.48740.040*
H70.97070.16480.34620.045*
H81.21320.22640.42830.048*
H91.15070.34900.52340.048*
H100.84750.41610.53180.045*
H41A0.24580.47430.09680.067*
H41B0.35870.39610.04290.067*
H41C0.46890.48740.08410.067*
H620.65240.05790.42430.044*
H640.58000.15770.25520.053*
H650.56300.03780.15330.058*
H660.58640.12890.18580.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0561 (14)0.0397 (12)0.0240 (11)0.0035 (10)0.0002 (9)0.0008 (9)
O6310.083 (2)0.0343 (15)0.098 (2)0.0063 (12)0.0270 (16)0.0027 (14)
O6320.096 (2)0.0567 (16)0.0527 (16)0.0188 (14)0.0083 (14)0.0106 (13)
N10.0359 (14)0.0318 (14)0.0292 (13)0.0013 (11)0.0011 (10)0.0013 (10)
N20.0484 (16)0.0324 (14)0.0342 (14)0.0008 (11)0.0052 (12)0.0001 (11)
N30.0361 (14)0.0361 (14)0.0318 (14)0.0018 (11)0.0016 (11)0.0016 (11)
N50.0383 (14)0.0332 (14)0.0292 (13)0.0013 (11)0.0034 (11)0.0010 (11)
N110.0376 (14)0.0358 (14)0.0258 (12)0.0060 (11)0.0003 (10)0.0017 (10)
N630.0462 (18)0.0386 (17)0.064 (2)0.0038 (13)0.0069 (14)0.0049 (15)
C20.0313 (16)0.0342 (16)0.0338 (16)0.0025 (13)0.0031 (12)0.0010 (13)
C40.0311 (16)0.0383 (17)0.0284 (15)0.0001 (13)0.0011 (12)0.0028 (13)
C4a0.0334 (16)0.0322 (16)0.0304 (15)0.0004 (12)0.0011 (12)0.0000 (12)
C60.0382 (17)0.0358 (16)0.0249 (15)0.0014 (13)0.0055 (13)0.0006 (12)
C6a0.0380 (17)0.0303 (15)0.0282 (15)0.0017 (13)0.0007 (13)0.0045 (12)
C70.0430 (19)0.0383 (17)0.0305 (16)0.0057 (14)0.0056 (14)0.0049 (13)
C80.0355 (18)0.0448 (18)0.0405 (18)0.0014 (14)0.0012 (14)0.0060 (15)
C90.0376 (18)0.0465 (18)0.0347 (17)0.0006 (15)0.0058 (13)0.0029 (15)
C100.0438 (19)0.0389 (17)0.0289 (15)0.0017 (14)0.0011 (13)0.0003 (13)
C10a0.0350 (17)0.0364 (16)0.0273 (15)0.0006 (13)0.0003 (13)0.0021 (13)
C11a0.0305 (16)0.0360 (16)0.0277 (15)0.0005 (13)0.0011 (12)0.0029 (13)
C410.053 (2)0.055 (2)0.0268 (16)0.0011 (16)0.0018 (14)0.0007 (14)
C610.0332 (17)0.0378 (17)0.0358 (16)0.0045 (13)0.0023 (13)0.0036 (14)
C620.0364 (18)0.0360 (17)0.0377 (17)0.0040 (13)0.0020 (13)0.0025 (14)
C630.0336 (17)0.0351 (17)0.0488 (19)0.0018 (13)0.0013 (14)0.0007 (15)
C640.0381 (18)0.0379 (18)0.056 (2)0.0074 (15)0.0005 (15)0.0114 (16)
C650.047 (2)0.052 (2)0.047 (2)0.0100 (16)0.0034 (15)0.0172 (17)
C660.0367 (17)0.0452 (18)0.0363 (17)0.0068 (15)0.0004 (13)0.0021 (15)
Geometric parameters (Å, º) top
O4—C41.346 (3)C6a—C71.400 (4)
O4—C411.428 (3)C7—C81.365 (4)
O631—N631.221 (3)C7—H70.95
O632—N631.223 (4)C8—C91.376 (4)
N1—C11a1.338 (4)C8—H80.95
N1—C21.339 (3)C9—C101.379 (4)
N2—C21.349 (4)C9—H90.95
N2—H210.88C10—C10a1.387 (4)
N2—H220.8801C10—H100.95
N3—C41.311 (4)C41—H41A0.98
N3—C21.347 (3)C41—H41B0.98
N5—C61.278 (3)C41—H41C0.98
N5—C4a1.399 (4)C61—C621.383 (4)
N11—C11a1.389 (3)C61—C661.390 (4)
N11—C10a1.424 (4)C62—C631.387 (4)
N11—H110.88C62—H620.95
N63—C631.455 (4)C63—C641.356 (4)
C4—C4a1.395 (4)C64—C651.372 (5)
C4a—C11a1.390 (4)C64—H640.95
C6—C6a1.481 (4)C65—C661.377 (4)
C6—C611.490 (4)C65—H650.95
C6a—C10a1.387 (4)C66—H660.95
C4—O4—C41117.4 (2)C8—C9—H9119.8
C11a—N1—C2115.8 (2)C10—C9—H9119.8
C2—N2—H21117.9C9—C10—C10a119.8 (3)
C2—N2—H22118.8C9—C10—H10120.1
H21—N2—H22119.0C10a—C10—H10120.1
C4—N3—C2115.6 (2)C6a—C10a—C10120.3 (3)
C6—N5—C4a122.7 (2)C6a—C10a—N11120.5 (3)
C11a—N11—C10a115.8 (2)C10—C10a—N11119.2 (3)
C11a—N11—H11111.3N1—C11a—N11116.4 (2)
C10a—N11—H11109.6N1—C11a—C4a123.0 (2)
O631—N63—O632123.1 (3)N11—C11a—C4a120.6 (2)
O631—N63—C63118.3 (3)O4—C41—H41A109.5
O632—N63—C63118.6 (3)O4—C41—H41B109.5
N1—C2—N3126.3 (3)H41A—C41—H41B109.5
N1—C2—N2117.6 (3)O4—C41—H41C109.5
N3—C2—N2116.0 (3)H41A—C41—H41C109.5
N3—C4—O4119.4 (2)H41B—C41—H41C109.5
N3—C4—C4a124.3 (3)C62—C61—C66119.2 (3)
O4—C4—C4a116.3 (2)C62—C61—C6120.5 (3)
C11a—C4a—C4114.8 (3)C66—C61—C6120.3 (3)
C11a—C4a—N5126.6 (2)C61—C62—C63118.2 (3)
C4—C4a—N5118.4 (2)C61—C62—H62120.9
N5—C6—C6a127.2 (3)C63—C62—H62120.9
N5—C6—C61114.6 (2)C64—C63—C62123.2 (3)
C6a—C6—C61118.0 (3)C64—C63—N63119.2 (3)
C10a—C6a—C7118.5 (3)C62—C63—N63117.6 (3)
C10a—C6a—C6122.5 (3)C63—C64—C65118.2 (3)
C7—C6a—C6119.0 (3)C63—C64—H64120.9
C8—C7—C6a121.1 (3)C65—C64—H64120.9
C8—C7—H7119.5C64—C65—C66120.7 (3)
C6a—C7—H7119.5C64—C65—H65119.6
C7—C8—C9119.9 (3)C66—C65—H65119.6
C7—C8—H8120.1C65—C66—C61120.5 (3)
C9—C8—H8120.1C65—C66—H66119.7
C8—C9—C10120.4 (3)C61—C66—H66119.7
C11a—N1—C2—N32.4 (4)C9—C10—C10a—N11176.7 (3)
C11a—N1—C2—N2179.1 (2)C11a—N11—C10a—C6a61.2 (4)
C4—N3—C2—N14.6 (4)C11a—N11—C10a—C10117.0 (3)
C4—N3—C2—N2176.9 (2)C2—N1—C11a—N11179.0 (2)
C2—N3—C4—O4179.1 (2)C2—N1—C11a—C4a2.2 (4)
C2—N3—C4—C4a2.4 (4)C10a—N11—C11a—N1123.6 (3)
C41—O4—C4—N34.8 (4)C10a—N11—C11a—C4a57.6 (3)
C41—O4—C4—C4a173.8 (3)C4—C4a—C11a—N14.0 (4)
N3—C4—C4a—C11a1.6 (4)N5—C4a—C11a—N1170.5 (3)
O4—C4—C4a—C11a177.0 (2)C4—C4a—C11a—N11177.3 (2)
N3—C4—C4a—N5173.4 (3)N5—C4a—C11a—N118.3 (4)
O4—C4—C4a—N58.0 (4)N5—C6—C61—C62136.2 (3)
C6—N5—C4a—C11a39.9 (4)C6a—C6—C61—C6248.0 (4)
C6—N5—C4a—C4145.8 (3)N5—C6—C61—C6641.2 (4)
C4a—N5—C6—C6a2.8 (4)C6a—C6—C61—C66134.6 (3)
C4a—N5—C6—C61178.1 (2)C66—C61—C62—C632.1 (4)
N5—C6—C6a—C10a38.5 (4)C6—C61—C62—C63175.3 (3)
C61—C6—C6a—C10a146.3 (3)C61—C62—C63—C640.0 (4)
N5—C6—C6a—C7137.8 (3)C61—C62—C63—N63176.9 (3)
C61—C6—C6a—C737.4 (4)O631—N63—C63—C6411.8 (4)
C10a—C6a—C7—C80.2 (4)O632—N63—C63—C64167.6 (3)
C6—C6a—C7—C8176.6 (3)O631—N63—C63—C62171.2 (3)
C6a—C7—C8—C91.6 (4)O632—N63—C63—C629.4 (4)
C7—C8—C9—C101.8 (4)C62—C63—C64—C651.8 (5)
C8—C9—C10—C10a0.3 (4)N63—C63—C64—C65178.6 (3)
C7—C6a—C10a—C101.7 (4)C63—C64—C65—C661.3 (5)
C6—C6a—C10a—C10178.0 (3)C64—C65—C66—C610.8 (5)
C7—C6a—C10a—N11176.4 (2)C62—C61—C66—C652.6 (4)
C6—C6a—C10a—N110.1 (4)C6—C61—C66—C65174.9 (3)
C9—C10—C10a—C6a1.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H22···N5i0.882.343.177 (4)160
N11—H11···N1ii0.882.333.186 (3)163
C8—H8···O632iii0.952.483.162 (4)129
C65—H65···Cgiv0.952.773.526 (4)138
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+2, y, z+1; (iv) x+3/2, y1/2, z+1/2.
(IV) 2-Amino-4-methoxy-6-(4-methoxyphenyl)-11H-pyrimido[4,5- b][1,4]benzodiazepine top
Crystal data top
C19H17N5O2F(000) = 728
Mr = 347.38Dx = 1.423 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3072 reflections
a = 7.6718 (18) Åθ = 3.8–26.0°
b = 13.2928 (15) ŵ = 0.10 mm1
c = 15.969 (2) ÅT = 120 K
β = 95.343 (12)°Lath, yellow
V = 1621.5 (5) Å30.17 × 0.15 × 0.08 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3072 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1312 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.179
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.8°
ϕ and ω scansh = 98
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1614
Tmin = 0.974, Tmax = 0.992l = 1919
22968 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0939P)2]
where P = (Fo2 + 2Fc2)/3
3072 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C19H17N5O2V = 1621.5 (5) Å3
Mr = 347.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6718 (18) ŵ = 0.10 mm1
b = 13.2928 (15) ÅT = 120 K
c = 15.969 (2) Å0.17 × 0.15 × 0.08 mm
β = 95.343 (12)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3072 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1312 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.992Rint = 0.179
22968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 0.94Δρmax = 0.30 e Å3
3072 reflectionsΔρmin = 0.32 e Å3
237 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.6006 (3)0.66252 (18)0.17304 (15)0.0334 (7)
O640.3677 (4)1.2297 (2)0.31953 (17)0.0427 (8)
N10.5693 (4)0.4980 (2)0.38468 (19)0.0304 (8)
N20.7098 (4)0.3710 (2)0.3202 (2)0.0365 (9)
N30.6431 (4)0.5125 (2)0.24295 (19)0.0298 (8)
N50.4992 (4)0.7610 (2)0.30853 (18)0.0296 (8)
N110.4328 (4)0.6288 (2)0.45010 (19)0.0309 (8)
C20.6382 (5)0.4642 (3)0.3164 (2)0.0289 (10)
C40.5892 (5)0.6078 (3)0.2429 (2)0.0271 (9)
C4a0.5217 (5)0.6551 (3)0.3108 (2)0.0260 (9)
C60.3788 (5)0.8058 (3)0.3454 (2)0.0290 (10)
C6a0.2346 (5)0.7562 (3)0.3870 (2)0.0307 (10)
C70.0642 (5)0.7951 (3)0.3728 (2)0.0318 (10)
C80.0743 (5)0.7494 (3)0.4068 (2)0.0348 (10)
C90.0465 (5)0.6642 (3)0.4559 (3)0.0358 (11)
C100.1197 (5)0.6255 (3)0.4700 (2)0.0344 (10)
C10a0.2613 (5)0.6708 (3)0.4351 (2)0.0277 (9)
C11a0.5067 (5)0.5930 (3)0.3794 (2)0.0305 (10)
C410.6586 (6)0.6116 (3)0.1016 (2)0.0399 (11)
C610.3751 (5)0.9178 (3)0.3404 (2)0.0288 (9)
C620.3221 (5)0.9755 (3)0.4052 (2)0.0323 (10)
C630.3166 (5)1.0795 (3)0.4006 (2)0.0330 (10)
C640.3658 (5)1.1267 (3)0.3305 (2)0.0299 (10)
C650.4222 (5)1.0708 (3)0.2646 (2)0.0354 (10)
C660.4278 (5)0.9680 (3)0.2703 (2)0.0287 (10)
C6410.2923 (6)1.2875 (3)0.3773 (3)0.0386 (11)
H210.70000.33500.36580.044*
H220.75530.33840.27950.044*
H110.42810.58760.49300.037*
H70.04410.85370.33920.038*
H80.18890.77640.39640.042*
H90.14150.63270.47970.043*
H100.13890.56720.50400.041*
H41A0.77740.58580.11560.060*
H41B0.65860.65880.05440.060*
H41C0.57940.55550.08580.060*
H620.28860.94300.45420.039*
H630.27901.11780.44590.040*
H650.45671.10370.21590.042*
H660.46840.93010.22550.034*
H64A0.16851.26920.37750.058*
H64B0.30171.35870.36250.058*
H64C0.35261.27590.43330.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0461 (19)0.0330 (16)0.0218 (14)0.0040 (13)0.0067 (12)0.0018 (13)
O640.048 (2)0.0305 (17)0.0501 (19)0.0001 (14)0.0097 (15)0.0035 (14)
N10.033 (2)0.0271 (19)0.0309 (19)0.0028 (15)0.0032 (15)0.0037 (15)
N20.046 (2)0.030 (2)0.0334 (19)0.0069 (17)0.0065 (17)0.0010 (15)
N30.034 (2)0.0273 (19)0.0280 (18)0.0008 (15)0.0017 (15)0.0004 (15)
N50.035 (2)0.0259 (19)0.0276 (18)0.0002 (15)0.0010 (15)0.0001 (15)
N110.036 (2)0.035 (2)0.0215 (17)0.0049 (16)0.0033 (15)0.0030 (15)
C20.030 (3)0.032 (2)0.025 (2)0.0017 (19)0.0015 (18)0.001 (2)
C40.028 (2)0.031 (2)0.022 (2)0.0038 (18)0.0004 (17)0.0012 (19)
C4a0.026 (2)0.029 (2)0.022 (2)0.0007 (17)0.0005 (17)0.0012 (18)
C60.033 (3)0.027 (2)0.026 (2)0.0018 (19)0.0004 (19)0.0022 (18)
C6a0.038 (3)0.029 (2)0.025 (2)0.0025 (19)0.0036 (19)0.0022 (19)
C70.038 (3)0.026 (2)0.031 (2)0.003 (2)0.0020 (19)0.0009 (18)
C80.034 (3)0.041 (3)0.028 (2)0.001 (2)0.0019 (19)0.005 (2)
C90.032 (3)0.039 (3)0.039 (2)0.007 (2)0.013 (2)0.005 (2)
C100.040 (3)0.032 (2)0.032 (2)0.002 (2)0.007 (2)0.0008 (19)
C10a0.033 (3)0.024 (2)0.026 (2)0.0006 (19)0.0022 (18)0.0030 (18)
C11a0.030 (2)0.034 (2)0.027 (2)0.0033 (19)0.0003 (18)0.004 (2)
C410.046 (3)0.044 (3)0.030 (2)0.003 (2)0.008 (2)0.001 (2)
C610.027 (2)0.032 (2)0.027 (2)0.0009 (19)0.0010 (18)0.0025 (19)
C620.038 (3)0.031 (2)0.028 (2)0.005 (2)0.0037 (18)0.0038 (19)
C630.039 (3)0.030 (2)0.031 (2)0.0025 (19)0.0067 (19)0.0054 (19)
C640.028 (2)0.029 (2)0.033 (2)0.0010 (18)0.0009 (18)0.001 (2)
C650.038 (3)0.039 (3)0.030 (2)0.002 (2)0.0059 (19)0.009 (2)
C660.027 (2)0.030 (2)0.028 (2)0.0013 (18)0.0006 (17)0.0024 (19)
C6410.045 (3)0.023 (2)0.045 (3)0.006 (2)0.009 (2)0.002 (2)
Geometric parameters (Å, º) top
O4—C41.341 (4)C7—H70.95
O4—C411.433 (4)C8—C91.383 (5)
O64—C6411.370 (5)C8—H80.95
O64—C641.380 (4)C9—C101.373 (6)
N1—C21.333 (4)C9—H90.95
N1—C11a1.351 (5)C10—C10a1.402 (5)
N2—C21.354 (4)C10—H100.95
N2—H210.8799C41—H41A0.98
N2—H220.8801C41—H41B0.98
N3—C41.333 (4)C41—H41C0.98
N3—C21.341 (4)C61—C621.379 (5)
N5—C61.286 (4)C61—C661.395 (5)
N5—C4a1.418 (4)C62—C631.386 (5)
N11—C11a1.393 (5)C62—H620.95
N11—C10a1.429 (5)C63—C641.367 (5)
N11—H110.8801C63—H630.95
C4—C4a1.394 (5)C64—C651.391 (5)
C4a—C11a1.386 (5)C65—C661.370 (5)
C6—C611.492 (5)C65—H650.95
C6—C6a1.495 (5)C66—H660.95
C6a—C10a1.376 (5)C641—H64A0.98
C6a—C71.404 (5)C641—H64B0.98
C7—C81.379 (5)C641—H64C0.98
C4—O4—C41117.1 (3)C10a—C10—H10119.5
C641—O64—C64117.4 (3)C6a—C10a—C10119.7 (4)
C2—N1—C11a115.5 (3)C6a—C10a—N11120.2 (3)
C2—N2—H21117.9C10—C10a—N11120.1 (4)
C2—N2—H22127.2N1—C11a—C4a123.4 (3)
H21—N2—H22114.5N1—C11a—N11116.0 (3)
C4—N3—C2115.0 (3)C4a—C11a—N11120.5 (3)
C6—N5—C4a122.6 (3)O4—C41—H41A109.5
C11a—N11—C10a115.8 (3)O4—C41—H41B109.5
C11a—N11—H11117.8H41A—C41—H41B109.5
C10a—N11—H11105.6O4—C41—H41C109.5
N1—C2—N3126.8 (3)H41A—C41—H41C109.5
N1—C2—N2117.5 (3)H41B—C41—H41C109.5
N3—C2—N2115.7 (3)C62—C61—C66117.7 (3)
N3—C4—O4118.1 (3)C62—C61—C6121.3 (3)
N3—C4—C4a124.5 (3)C66—C61—C6121.0 (3)
O4—C4—C4a117.4 (3)C61—C62—C63121.7 (4)
C11a—C4a—C4114.3 (3)C61—C62—H62119.2
C11a—C4a—N5126.3 (3)C63—C62—H62119.2
C4—C4a—N5118.7 (3)C64—C63—C62119.4 (4)
N5—C6—C61116.7 (3)C64—C63—H63120.3
N5—C6—C6a126.3 (3)C62—C63—H63120.3
C61—C6—C6a116.9 (3)C63—C64—O64124.5 (4)
C10a—C6a—C7118.8 (4)C63—C64—C65120.3 (4)
C10a—C6a—C6122.3 (4)O64—C64—C65115.2 (3)
C7—C6a—C6118.9 (3)C66—C65—C64119.5 (4)
C8—C7—C6a121.0 (4)C66—C65—H65120.2
C8—C7—H7119.5C64—C65—H65120.2
C6a—C7—H7119.5C65—C66—C61121.3 (4)
C7—C8—C9120.0 (4)C65—C66—H66119.3
C7—C8—H8120.0C61—C66—H66119.3
C9—C8—H8120.0O64—C641—H64A109.5
C10—C9—C8119.4 (4)O64—C641—H64B109.5
C10—C9—H9120.3H64A—C641—H64B109.5
C8—C9—H9120.3O64—C641—H64C109.5
C9—C10—C10a121.0 (4)H64A—C641—H64C109.5
C9—C10—H10119.5H64B—C641—H64C109.5
C11a—N1—C2—N33.7 (6)C9—C10—C10a—C6a1.0 (6)
C11a—N1—C2—N2177.1 (3)C9—C10—C10a—N11179.5 (3)
C4—N3—C2—N17.5 (6)C11a—N11—C10a—C6a64.1 (4)
C4—N3—C2—N2173.2 (3)C11a—N11—C10a—C10116.4 (4)
C2—N3—C4—O4176.0 (3)C2—N1—C11a—C4a4.1 (5)
C2—N3—C4—C4a3.9 (5)C2—N1—C11a—N11179.4 (3)
C41—O4—C4—N34.4 (5)C4—C4a—C11a—N17.0 (5)
C41—O4—C4—C4a175.8 (3)N5—C4a—C11a—N1163.5 (4)
N3—C4—C4a—C11a2.8 (5)C4—C4a—C11a—N11176.7 (3)
O4—C4—C4a—C11a177.4 (3)N5—C4a—C11a—N1112.8 (6)
N3—C4—C4a—N5168.5 (3)C10a—N11—C11a—N1128.3 (4)
O4—C4—C4a—N511.3 (5)C10a—N11—C11a—C4a55.1 (5)
C6—N5—C4a—C11a39.8 (6)N5—C6—C61—C62147.2 (4)
C6—N5—C4a—C4150.0 (4)C6a—C6—C61—C6237.3 (5)
C4a—N5—C6—C61177.8 (3)N5—C6—C61—C6631.9 (5)
C4a—N5—C6—C6a7.2 (6)C6a—C6—C61—C66143.7 (4)
N5—C6—C6a—C10a40.5 (6)C66—C61—C62—C631.6 (6)
C61—C6—C6a—C10a144.4 (4)C6—C61—C62—C63179.3 (4)
N5—C6—C6a—C7136.0 (4)C61—C62—C63—C640.4 (6)
C61—C6—C6a—C739.0 (5)C62—C63—C64—O64179.1 (4)
C10a—C6a—C7—C80.5 (5)C62—C63—C64—C650.5 (6)
C6—C6a—C7—C8177.2 (3)C641—O64—C64—C639.6 (6)
C6a—C7—C8—C90.2 (6)C641—O64—C64—C65171.7 (3)
C7—C8—C9—C100.4 (6)C63—C64—C65—C660.2 (6)
C8—C9—C10—C10a0.2 (6)O64—C64—C65—C66178.9 (3)
C7—C6a—C10a—C101.1 (5)C64—C65—C66—C611.1 (6)
C6—C6a—C10a—C10177.6 (3)C62—C61—C66—C652.0 (6)
C7—C6a—C10a—N11179.4 (3)C6—C61—C66—C65179.0 (4)
C6—C6a—C10a—N112.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···N1i0.882.263.132 (4)171
C65—H65···Cgii0.952.613.492 (4)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC18H15N5OC18H14FN5OC18H14N6O3C19H17N5O2
Mr317.35335.34362.35347.38
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)120120120120
a, b, c (Å)7.022 (6), 12.855 (9), 16.199 (8)6.9115 (10), 12.8801 (14), 16.560 (2)7.047 (4), 13.502 (7), 16.418 (5)7.6718 (18), 13.2928 (15), 15.969 (2)
β (°) 93.851 (5) 95.11 (1) 91.22 (5) 95.343 (12)
V3)1459.0 (18)1468.4 (3)1561.8 (13)1621.5 (5)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.100.110.110.10
Crystal size (mm)0.47 × 0.35 × 0.260.24 × 0.14 × 0.110.22 × 0.15 × 0.140.17 × 0.15 × 0.08
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.967, 0.9760.976, 0.9880.966, 0.9850.974, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
3338, 3338, 2768 35898, 3340, 2361 24447, 3467, 1748 22968, 3072, 1312
Rint0.0000.0670.1030.179
(sin θ/λ)max1)0.6490.6500.6500.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.085, 0.225, 1.20 0.060, 0.171, 1.05 0.061, 0.182, 1.02 0.069, 0.189, 0.94
No. of reflections3338334034673072
No. of parameters219237245237
No. of restraints0900
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.590.64, 0.560.25, 0.280.30, 0.32

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PRPKAPPA (Ferguson, 1999).

Conformational parameters (Å, °) for compounds (I)–(IV) top
Displacements from the mean plane of the seven-membered ring
(I)(II)(III)(IV)
N50.214 (3)0.208 (2)0.205 (2)0.186 (3)
C4a-0.312 (4)-0.307 (2)-0.305 (3)-0.328 (4)
C11a-0.140 (4)-0.137 (2)-0.133 (3)-0.103 (4)
N110.469 (3)0.464 (2)0.458 (2)0.465 (3)
C10a-0.174 (4)-0.178 (2)-0.176 (3)-0.206 (4)
C6a-0.295 (4)-0.287 (2)-0.285 (3)-0.281 (4)
C60.239 (4)0.236 (2)0.236 (3)0.267 (4)
Puckering parameters for the seven-membered ring
ϕ253.9 (3)54.4 (2)54.6 (2)59.1 (3)
ϕ3257.9 (14)258.4 (9)258.0 (11)257.7 (15)
QT0.746 (3)0.736 (2)0.729 (3)0.750 (4)
Torsion angles
C4a-C4-O4-C41-176.8 (3)-175.2 (2)-173.8 (3)-175.8 (3)
N5-C6-C61-C62-139.2 (4)-133.4 (2)-136.2 (3)-147.2 (4)
C62-C63-N63-O631-171.2 (3)
C63-C64-O64-C641-9.6 (6)
Displacements from mean planes of the aryl/pyrimidyl rings
C410.046 (4)0.135 (3)0.178 (3)-0.112 (4)
O6310.125 (3)
O632-0.252 (3)
C641-0.169 (5)
Ring-puckering angles correspond to the atom-sequence N5-/C4a/C11a/N11/C10a/C6a/C6.
Hydrogen-bond parameters (Å, °) for compounds (I)–(IV) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)N2—H22···N5i0.882.403.129 (5)141
N11—H11···N1ii0.882.453.036 (4)125
C7—H7···N3iii0.952.573.503 (5)168
C65—H65···Cgiii0.952.653.500 (5)150
(II)N2—H22···N5i0.882.363.099 (3)142
N11—H11···N1ii0.882.483.069 (3)125
C65—H65···Cgiii0.952.753.562 (3)145
(III)N2—H22···N5i0.882.343.177 (4)160
N11—H11···N1ii0.882.333.186 (4)163
C8—H8···O632iv0.952.483.162 (4)129
C65—H65···Cgiii0.952.773.526 (4)138
(IV)N11—H11···N1ii0.882.263.132 (4)171
C65—H65···Cgi0.952.613.492 (4)155
Symmetry codes: (i) 1/2 - x, 1/2 + y, 1/2 - z; (ii) 1 - x, 1 - y, 1 - z; (iii) 3/2 - x, -1/2 + y, 1/2 - z; (iv) 2 - x, -y, 1 - z. Cg represents the centroid of the C6a/C7–C10/C10a ring.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds