Download citation
Download citation
link to html
The title complex, {[Ni(C15H11N4O2S)2(C10H8N2)(H2O)2]·H2O}n, was synthesized by the reaction of nickel chloride, 4-{[(1-phenyl-1H-tetra­zol-5-yl)sulfan­yl]meth­yl}benzoic acid (HL) and 4,4′-bi­pyridine (bpy) under hydro­thermal conditions. The asymmetric unit contains two half NiII ions, each located on an inversion centre, two L ligands, one bpy ligand, two coordinated water mol­ecules and one unligated water mol­ecule. Each NiII centre is six-coordinated by two monodentate carboxyl­ate O atoms from two different L ligands, two pyridine N atoms from two different bpy ligands and two terminal water mol­ecules, displaying a nearly ideal octa­hedral geometry. The NiII ions are bridged by 4,4′-bi­pyridine ligands to afford a linear array, with an Ni...Ni separation of 11.361 (1) Å, which is further decorated by two monodentate L ligands trans to each other, resulting in a one-dimensional fishbone-like chain structure. These one-dimensional fishbone-like chains are further linked by O—H...O, O—H...N and C—H...O hydrogen bonds and π–π stacking inter­actions to form a three-dimensional supra­molecular architecture. The thermal stability of the title complex was investigated via thermogravimetric analysis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614002277/sk3527sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614002277/sk3527Isup2.hkl
Contains datablock I

CCDC reference: 984425

Introduction top

In the fields of supra­molecular chemistry and crystal engineering, the design and assembly of metal–organic frameworks (MOFs) has attracted great inter­est in recent years, not only because of their potential applications in gas adsorption/separation (Li et al., 2009, 2012; Gutiérrez-Sevillano et al., 2013), catalysis (Corma et al., 2010; Yoon et al., 2012; Gascon et al., 2014), luminescence (Allendorf et al., 2009; Heine & Müller-Buschbaum, 2013) and magnetism (Kurmoo et al., 2009), but also because of the variety of their architectures and topologies (O'Keeffe & Yaghi, 2012; Li et al., 2014). In essence, the structural and functional diversity of such crystalline materials rests with the choice of building units (metal ions and organic ligands) and synthetic pathways. In particular, the organic ligands have a direct influence on the MOFs obtained because of their different spacer lengths, flexibility, steric hindrance effects, conformational preferences, and so on (Hoskins & Robson, 1989; Ji et al., 2011; Cook et al., 2013). Thus, selecting a suitable organic ligand with versatile binding modes to coordinate to a metal ion is crucial in the construction of metal–organic systems.

Up to now, rigid pyridine-based ligands and carboxyl­ate ligands were employed extensively for the preparation of functional MOFs (Eddaoudi et al., 2001; Ghosh et al., 2009; Inokuma et al., 2010; Kim et al., 2010; Lim et al., 2010; Cook et al., 2013). However, investigations of the use of flexible carboxyl­ate ligands in the construction of metal–organic systems is rare (Liu et al., 2008; Dai et al., 2009; Cui et al., 2012). The conformational freedom of flexible carboxyl­ate ligands may provide more possibilities for the construction of metal–organic systems and structures with unusual topologies. On the other hand, ancillary ligands containing donor N atoms, such as 4,4'-bi­pyridine, have been used widely together with carboxyl­ate ligands to meet the coordination geometry requirements of metal ions and construct the desired frameworks (Liu et al., 2008; Ji et al., 2011). In order to understand the structural aspects of MOFs containing flexible carboxyl­ate building blocks, we chose 4-{[(1-phenyl-1H-tetra­zol-5-yl)sulfanyl]methyl}­benzoic acid (HL) as a flexible carboxyl­ate ligand and introduced rigid bidentate linear 4,4'-bi­pyridine (bpy) as coligand, to react with the NiII ion, and successfully obtained a new complex, {[Ni(L)2(bpy)(H2O)2].H2O}n, (I), under hydro­thermal conditions. The synthesis, crystal structure and thermal properties of (I) are reported here.

Experimental top

Synthesis and crystallization top

4-{[(1-Phenyl-1H-tetra­zol-5-yl)sulfanyl]methyl}­benzoic acid (HL) was prepared according to our previously reported method (Zhang et al., 2012). For the synthesis of (I), a mixture of NiCl2.6H2O (23.8 mg, 0.1 mmol), HL (62.4 mg, 0.2 mmol) and 4,4'-bi­pyridine (15.6 mg, 0.1 mmol) in H2O (10 ml) was placed in a Teflon-lined stainless steel vessel, heated at 393 K for 3 d and then cooled to room temperature. Green block-shaped crystals of (I) were obtained (yield 54.6%, based on HL). Elemental analysis for C40H36N10NiO7S2: C 53.88, H 4.07, N 15.71%; found: C 53.79, H 4.12, N 15.85%. IR (KBr, cm-1): 3392, 3071, 1602, 1540, 1386, 1318, 1233, 1218, 1173, 1090, 1067, 1015, 866, 844, 816, 785, 760, 730, 694, 631.

The powder X-ray diffraction (PXRD) pattern was recorded on a Bruker D8 Advance diffractometer with Cu Kα radiation (λ = 1.5406 Å) at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms attached to anisotropically refined atoms were placed in geometrically idealized positions and included as riding atoms, with C—H = 0.93 (aromatic and pyridine) or 0.97 Å (methyl­ene) and Uiso(H) = 1.2Ueq(C). Water H atoms were located in difference Fourier syntheses and refined with an O—H distance restraint of 0.85 Å and Uiso(H) = 1.2Ueq(O). Examination of the refined structure using PLATON (Spek, 2009) revealed the presence of a void, having a total volume of 83 Å3 per unit cell, centred at approximately (1/2, 1/2, 0). Although this empty space is suitable for the inclusion of a small solvent molecule, such as water, the total electron density found within the cavity is only 0.2 electrons.

Results and discussion top

The asymmetric unit of the title compound, (I), contains two half NiII ions, two 4-{[(1-phenyl-1H-tetra­zol-5-yl)sulfanyl]methyl}­benzoate (L-) ligands, one bpy ligand, two coordinated water molecules and one isolated water molecule (Fig. 1). Each NiII ion is six-coordinated by two monodentate carboxyl­ate O atoms [O1 and O1i for Ni1; O3 and O3ii for Ni2; symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y+1, -z-1) from two different L- ligands, two pyridine N atoms (N9 and N9i for Ni1; N10 and N10ii for Ni2) from two different bpy ligands, and two terminal water molecules (O5 and O5i for Ni1; N6, N6i for Ni2), displaying a nearly ideal o­cta­hedral geometry. The Ni—O/N bond lengths (Table 2) range from 2.027 (2) to 2.141 (3) Å, which are within the normal range (Wang et al., 2005). The dihedral angles between planes of the tetra­zole rings and the adjacent terminal benzene rings are 40.4 (2) and 45.8 (2)° in the two L- ligands. The planes of the pyridine rings of each 4,4'-bi­pyridine molecule are twisted, with a dihedral angle of 19.8 (1)°.

As shown in Fig. 2, two monodentate L- ligands link to one NiII ion to form an [Ni(L)2(H2O)2] chair-like SBU (secondary building unit). One inter­esting feature of (I) is the presence of two different conformations of chair-like SBUs, viz. [Ni1(L)2(H2O)2] and [Ni2(L)2(H2O)2]. The Ni1 and Ni2 ions are bridged by an 4,4'-bi­pyridine ligand to afford a linear array with an Ni1···Ni2 separation of 11.361 (1) Å, which is further decorated with the monodentate L- ligands on both sides, resulting in a fishbone-like chain structure. Only a few examples containing a one-dimensional fishbone-like structural motif have been reported to date (Dai et al., 2009; Wang et al., 2009; Li et al., 2010; Li & Du, 2011; Chen et al., 2012; Wang et al., 2012; Çolak et al., 2013). Intra­chain O5—H5A···O2 and O6—H6A···O4 hydrogen bonds are observed between the coordinated water molecules and adjacent uncoordinated carboxyl­ate O atoms (Table 3), which may play an important role in stabilizing the fishbone-like chain structure. In addition, inter­chain hydrogen bonds [O5—H5B···O7iii, C3—H3···N3iv, C37—H37···N6iii and C12—H12···S2iv; symmetry codes: (iii) x, y-1, z-1; (iv) -x+2, -y+1, -z+1] and C—H···π inter­actions [H28···Cg1iv = 2.89 Å, C28···Cg1iv = 3.797 (6) Å and C28—H28···Cg1iv = 166°; Cg1 is the centroid of the C2—C7 ring] involving the isolated water molecules and L- ligands inter­link such one-dimensional arrays to afford a two-dimensional layer (Fig. 3), which are further extended via O—H···O, O—H···N and C—H···O hydrogen bonds [O7—H7A···O6v, O6—H6B···N4v, O7—H7B···N7vi, C19—H19···O2vii and C27—H27···O4v; symmetry codes: (v) -x+1, -y+1, -z; (vi) -x+1, -y+2, -z+1; (vii) x, y+1, z] and ππ stacking inter­actions, with a Cg1···Cg2v separation of 3.719 (3) Å (Cg2 is the centroid of the C17–C22 ring) between benzoate rings to form a three-dimensional supra­molecular architecture (Fig. 4).

To investigate the thermal stability of (I), thermogravimetric analysis (TGA) was carried out under a nitro­gen atmosphere (Fig. 5). The TGA curve for (I) shows weight losses of 2.15 and 4.07% in the temperature range 298–418 K, corresponding to the loss of one isolated water molecule (calculated 2.02%) and two coordinated water molecules (calculated 4.04%). The framework is then stable up to 583 K, but collapses on further heating. The phase purity of the bulk as-synthesized samples for (I) was examined by PXRD (powder X-ray diffraction) experiment. All major peaks of the experimental PXRD analysis match quite well with those of the simulated PXRD analysis, indicating reasonable crystalline phase purity (Fig. 6).

Related literature top

For related literature, see: Allendorf et al. (2009); Chen et al. (2012); Cook et al. (2013); Corma et al. (2010); Cui et al. (2012); Dai et al. (2009); Eddaoudi et al. (2001); Gascon et al. (2014); Ghosh et al. (2009); Gutiérrez-Sevillano, Martín-Calvo, Dubbeldam, Calero & Hamad (2013); Heine & Müller-Buschbaum (2013); Hoskins & Robson (1989); Inokuma et al. (2010); Ji et al. (2011); Kim et al. (2010); Kurmoo (2009); Li & Du (2011); Li et al. (2009, 2010, 2012, 2014); Lim et al. (2010); Liu et al. (2008); O'Keeffe & Yaghi (2012); Wang et al. (2005, 2009, 2012); Yoon et al. (2012); Zhang et al. (2012); Çolak et al. (2013).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SMART (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment around the NiII centres in (I), showing the atom-numbering scheme. The nonbonded water molecule is not shown. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y+1, -z-1.]
[Figure 2] Fig. 2. (a) Ball-stick and (b) space-filling representation of the one-dimensional fishbone-like chain structure formed by 4,4'-bipyridine, NiIIions and L- ligands.
[Figure 3] Fig. 3. (a) Ball-stick and (b) space-filling representation of the two-dimensional layer constructed via interchain hydrogen bonds (red dotted lines) and C—H···π interactions (turquoise dotted lines). Different chains are shown in different colours.
[Figure 4] Fig. 4. The three-dimensional supramolecular architecture constructed via interlayer hydrogen bonds (red dotted lines) and ππ stacking interactions (turquoise dotted lines). Different layers are shown in different colours.
[Figure 5] Fig. 5. The TGA curve measured for complex (I).
[Figure 6] Fig. 6. Powder X-ray diffraction patterns of complex (I).
catena-Poly[[[diaquabis(4-{[(1-phenyl-1H-tetrazol-5-yl)sulfanyl]methyl}benzoato-κO)nickel(II)]-µ-4,4'-bipyridine-κ2N:N'] monohydrate] top
Crystal data top
[Ni(C15H11N4O2S)2(C10H8N2)(H2O)2]·H2OZ = 2
Mr = 891.62F(000) = 924
Triclinic, P1Dx = 1.428 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.6931 (11) ÅCell parameters from 2364 reflections
b = 13.0160 (12) Åθ = 2.4–23.7°
c = 14.3559 (14) ŵ = 0.63 mm1
α = 103.065 (1)°T = 298 K
β = 112.942 (2)°Block, green
γ = 96.471 (1)°0.38 × 0.28 × 0.19 mm
V = 2073.6 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
7207 independent reflections
Radiation source: fine-focus sealed tube4118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
phi and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1515
Tmin = 0.796, Tmax = 0.890k = 1515
10523 measured reflectionsl = 1710
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.035P)2]
where P = (Fo2 + 2Fc2)/3
7207 reflections(Δ/σ)max = 0.001
544 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Ni(C15H11N4O2S)2(C10H8N2)(H2O)2]·H2Oγ = 96.471 (1)°
Mr = 891.62V = 2073.6 (3) Å3
Triclinic, P1Z = 2
a = 12.6931 (11) ÅMo Kα radiation
b = 13.0160 (12) ŵ = 0.63 mm1
c = 14.3559 (14) ÅT = 298 K
α = 103.065 (1)°0.38 × 0.28 × 0.19 mm
β = 112.942 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7207 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4118 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.890Rint = 0.040
10523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.01Δρmax = 0.61 e Å3
7207 reflectionsΔρmin = 0.51 e Å3
544 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.00000.00000.02966 (19)
Ni20.50000.50000.50000.0314 (2)
N11.0035 (3)0.4626 (3)0.7871 (3)0.0452 (9)
N20.9822 (3)0.5515 (3)0.8418 (3)0.0528 (10)
N30.9048 (3)0.5845 (3)0.7734 (3)0.0550 (10)
N40.8707 (3)0.5189 (3)0.6732 (3)0.0480 (9)
N50.5812 (3)0.9532 (3)0.3546 (3)0.0449 (9)
N60.5468 (4)1.0343 (3)0.4051 (3)0.0581 (11)
N70.4586 (3)1.0527 (3)0.3331 (3)0.0594 (11)
N80.4318 (3)0.9858 (3)0.2353 (3)0.0552 (10)
N90.9118 (3)0.1025 (2)0.0867 (2)0.0314 (8)
N100.5783 (3)0.4056 (2)0.4004 (2)0.0315 (8)
O10.9540 (2)0.06388 (19)0.11728 (18)0.0349 (6)
O20.7651 (3)0.0167 (2)0.0539 (2)0.0614 (9)
O30.4732 (2)0.59216 (19)0.38011 (18)0.0369 (7)
O40.3494 (3)0.4673 (2)0.3669 (2)0.0604 (9)
O50.8487 (2)0.12178 (19)0.07653 (19)0.0414 (7)
H5A0.80350.09920.04970.050*
H5B0.81330.14310.14370.050*
O60.3335 (2)0.39434 (18)0.55708 (18)0.0401 (7)
H6A0.33890.40270.49460.048*
H6B0.28810.43100.58870.048*
O70.7261 (3)0.8207 (2)0.7035 (2)0.0705 (10)
H7A0.71650.76260.65730.085*
H7B0.67120.85430.68160.085*
S10.93028 (11)0.33692 (10)0.58547 (9)0.0619 (4)
S20.52089 (11)0.82483 (9)0.15464 (9)0.0560 (3)
C10.8560 (4)0.0525 (3)0.1206 (3)0.0370 (10)
C20.8477 (3)0.1306 (3)0.2111 (3)0.0337 (9)
C30.9319 (3)0.2257 (3)0.2680 (3)0.0417 (10)
H30.99480.24000.25150.050*
C40.9238 (4)0.2996 (3)0.3490 (3)0.0455 (11)
H40.98090.36360.38600.055*
C50.8316 (4)0.2797 (3)0.3760 (3)0.0417 (10)
C60.7483 (4)0.1847 (3)0.3197 (3)0.0450 (11)
H60.68620.16970.33720.054*
C70.7552 (4)0.1113 (3)0.2377 (3)0.0436 (11)
H70.69710.04810.19980.052*
C80.8266 (4)0.3598 (3)0.4671 (3)0.0510 (12)
H8A0.74810.34780.46350.061*
H8B0.84850.43320.46610.061*
C90.9328 (4)0.4439 (3)0.6837 (3)0.0409 (10)
C101.0840 (4)0.4056 (4)0.8408 (3)0.0491 (11)
C111.1563 (5)0.3654 (4)0.7993 (4)0.0762 (16)
H111.15670.37850.73840.091*
C121.2290 (5)0.3043 (5)0.8507 (5)0.104 (2)
H121.27620.27340.82180.125*
C131.2327 (5)0.2886 (5)0.9418 (5)0.098 (2)
H131.28290.24850.97570.118*
C141.1624 (5)0.3322 (4)0.9834 (4)0.0831 (17)
H141.16490.32211.04620.100*
C151.0880 (4)0.3908 (4)0.9333 (4)0.0633 (14)
H151.04020.42040.96210.076*
C160.4153 (4)0.5591 (3)0.3344 (3)0.0385 (10)
C170.4270 (4)0.6364 (3)0.2346 (3)0.0376 (10)
C180.5070 (3)0.7346 (3)0.1885 (3)0.0401 (10)
H180.55770.75190.21790.048*
C190.5126 (4)0.8077 (3)0.0989 (3)0.0454 (11)
H190.56820.87280.06780.054*
C200.4360 (4)0.7841 (3)0.0555 (3)0.0465 (11)
C210.3566 (4)0.6861 (4)0.1017 (3)0.0616 (14)
H210.30530.66890.07290.074*
C220.3519 (4)0.6128 (4)0.1899 (3)0.0606 (14)
H220.29760.54680.21980.073*
C230.4392 (4)0.8648 (3)0.0392 (3)0.0554 (12)
H23A0.36010.86570.03190.066*
H23B0.47700.93680.04560.066*
C240.5098 (4)0.9254 (3)0.2503 (3)0.0440 (11)
C250.6863 (4)0.9209 (4)0.4107 (3)0.0477 (11)
C260.6913 (5)0.8143 (4)0.3957 (4)0.0622 (14)
H260.62480.76040.34940.075*
C270.7952 (5)0.7872 (4)0.4494 (4)0.0766 (16)
H270.79940.71480.43800.092*
C280.8914 (5)0.8657 (5)0.5190 (4)0.0790 (16)
H280.96150.84690.55490.095*
C290.8858 (5)0.9723 (5)0.5365 (4)0.0764 (16)
H290.95141.02550.58610.092*
C300.7829 (4)1.0014 (4)0.4807 (3)0.0597 (13)
H300.77951.07380.49040.072*
C310.8729 (4)0.0762 (3)0.1916 (3)0.0419 (11)
H310.89130.01570.22530.050*
C320.8076 (4)0.1331 (3)0.2523 (3)0.0444 (11)
H320.78310.11050.32520.053*
C330.7773 (3)0.2236 (3)0.2073 (3)0.0319 (9)
C340.8193 (3)0.2523 (3)0.0987 (3)0.0383 (10)
H340.80310.31310.06330.046*
C350.8848 (3)0.1917 (3)0.0425 (3)0.0408 (10)
H350.91220.21380.03080.049*
C360.7050 (3)0.2856 (3)0.2727 (3)0.0281 (9)
C370.6358 (3)0.2410 (3)0.3803 (3)0.0386 (10)
H370.62980.16860.41240.046*
C380.5763 (3)0.3015 (3)0.4399 (3)0.0374 (10)
H380.53170.26860.51210.045*
C390.6405 (3)0.4470 (3)0.2962 (3)0.0388 (10)
H390.64190.51850.26540.047*
C400.7024 (3)0.3917 (3)0.2318 (3)0.0370 (10)
H400.74330.42560.15940.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0342 (4)0.0312 (4)0.0227 (4)0.0143 (3)0.0081 (3)0.0103 (3)
Ni20.0456 (5)0.0291 (4)0.0197 (4)0.0176 (3)0.0102 (4)0.0099 (3)
N10.056 (2)0.048 (2)0.035 (2)0.0180 (19)0.021 (2)0.0125 (18)
N20.069 (3)0.045 (2)0.039 (2)0.017 (2)0.021 (2)0.0055 (19)
N30.072 (3)0.049 (2)0.044 (2)0.018 (2)0.027 (2)0.010 (2)
N40.059 (2)0.052 (2)0.040 (2)0.021 (2)0.025 (2)0.0149 (19)
N50.053 (2)0.047 (2)0.030 (2)0.0104 (19)0.020 (2)0.0002 (18)
N60.067 (3)0.059 (3)0.043 (2)0.017 (2)0.027 (2)0.004 (2)
N70.060 (3)0.060 (3)0.049 (3)0.017 (2)0.027 (2)0.009 (2)
N80.052 (3)0.062 (3)0.044 (2)0.016 (2)0.022 (2)0.001 (2)
N90.038 (2)0.0304 (18)0.0233 (18)0.0144 (15)0.0073 (16)0.0116 (15)
N100.040 (2)0.0307 (18)0.0215 (17)0.0122 (15)0.0092 (16)0.0092 (15)
O10.0358 (16)0.0436 (16)0.0281 (15)0.0176 (13)0.0135 (13)0.0119 (13)
O20.047 (2)0.066 (2)0.052 (2)0.0025 (16)0.0225 (17)0.0127 (17)
O30.0519 (18)0.0350 (15)0.0241 (14)0.0190 (13)0.0139 (14)0.0090 (12)
O40.090 (2)0.0442 (18)0.0424 (18)0.0026 (17)0.0362 (19)0.0007 (15)
O50.0406 (17)0.0454 (16)0.0303 (15)0.0089 (13)0.0104 (14)0.0055 (13)
O60.0524 (18)0.0360 (15)0.0273 (15)0.0140 (13)0.0100 (14)0.0117 (13)
O70.072 (2)0.060 (2)0.0475 (19)0.0275 (17)0.0036 (18)0.0080 (16)
S10.0761 (9)0.0716 (9)0.0367 (7)0.0399 (7)0.0209 (7)0.0081 (6)
S20.0704 (9)0.0605 (8)0.0324 (6)0.0284 (6)0.0202 (6)0.0014 (6)
C10.050 (3)0.036 (2)0.028 (2)0.016 (2)0.017 (2)0.012 (2)
C20.034 (2)0.042 (2)0.027 (2)0.0135 (19)0.013 (2)0.0122 (19)
C30.041 (3)0.050 (3)0.037 (2)0.007 (2)0.021 (2)0.011 (2)
C40.047 (3)0.045 (3)0.041 (3)0.009 (2)0.020 (2)0.005 (2)
C50.047 (3)0.052 (3)0.032 (2)0.018 (2)0.019 (2)0.015 (2)
C60.040 (3)0.062 (3)0.040 (3)0.012 (2)0.024 (2)0.016 (2)
C70.040 (3)0.048 (3)0.038 (2)0.005 (2)0.017 (2)0.007 (2)
C80.056 (3)0.064 (3)0.035 (2)0.025 (2)0.022 (2)0.011 (2)
C90.045 (3)0.052 (3)0.034 (2)0.014 (2)0.022 (2)0.015 (2)
C100.054 (3)0.060 (3)0.042 (3)0.019 (2)0.023 (3)0.023 (2)
C110.075 (4)0.108 (4)0.061 (4)0.041 (3)0.032 (3)0.035 (3)
C120.092 (5)0.143 (6)0.092 (5)0.071 (4)0.040 (4)0.042 (5)
C130.103 (5)0.133 (6)0.083 (5)0.071 (4)0.036 (4)0.063 (4)
C140.094 (5)0.094 (4)0.070 (4)0.034 (4)0.029 (4)0.047 (4)
C150.068 (4)0.065 (3)0.059 (3)0.023 (3)0.023 (3)0.024 (3)
C160.053 (3)0.038 (3)0.028 (2)0.018 (2)0.018 (2)0.010 (2)
C170.048 (3)0.039 (2)0.025 (2)0.012 (2)0.016 (2)0.0061 (19)
C180.045 (3)0.043 (3)0.035 (2)0.013 (2)0.020 (2)0.011 (2)
C190.044 (3)0.045 (3)0.036 (2)0.010 (2)0.012 (2)0.002 (2)
C200.057 (3)0.049 (3)0.027 (2)0.018 (2)0.015 (2)0.002 (2)
C210.077 (4)0.067 (3)0.043 (3)0.001 (3)0.039 (3)0.003 (3)
C220.078 (4)0.053 (3)0.043 (3)0.007 (3)0.031 (3)0.001 (2)
C230.069 (3)0.056 (3)0.039 (3)0.023 (2)0.022 (3)0.008 (2)
C240.052 (3)0.044 (3)0.033 (3)0.007 (2)0.021 (2)0.001 (2)
C250.056 (3)0.052 (3)0.035 (3)0.010 (2)0.021 (2)0.010 (2)
C260.070 (4)0.060 (3)0.054 (3)0.010 (3)0.024 (3)0.016 (3)
C270.092 (5)0.072 (4)0.071 (4)0.027 (4)0.034 (4)0.028 (3)
C280.081 (4)0.082 (4)0.066 (4)0.030 (4)0.015 (3)0.031 (3)
C290.075 (4)0.089 (4)0.051 (3)0.014 (3)0.017 (3)0.014 (3)
C300.067 (4)0.062 (3)0.045 (3)0.015 (3)0.020 (3)0.012 (3)
C310.055 (3)0.043 (3)0.031 (2)0.028 (2)0.015 (2)0.013 (2)
C320.063 (3)0.047 (3)0.023 (2)0.029 (2)0.013 (2)0.012 (2)
C330.039 (2)0.029 (2)0.027 (2)0.0090 (18)0.012 (2)0.0098 (18)
C340.055 (3)0.031 (2)0.028 (2)0.019 (2)0.014 (2)0.0095 (19)
C350.056 (3)0.036 (2)0.024 (2)0.018 (2)0.008 (2)0.0118 (19)
C360.036 (2)0.024 (2)0.026 (2)0.0109 (18)0.0121 (19)0.0099 (18)
C370.053 (3)0.028 (2)0.023 (2)0.012 (2)0.006 (2)0.0031 (18)
C380.049 (3)0.032 (2)0.021 (2)0.013 (2)0.004 (2)0.0061 (19)
C390.055 (3)0.029 (2)0.027 (2)0.021 (2)0.010 (2)0.0070 (19)
C400.053 (3)0.036 (2)0.018 (2)0.014 (2)0.010 (2)0.0084 (19)
Geometric parameters (Å, º) top
Ni1—O1i2.027 (2)C8—H8B0.9700
Ni1—O12.027 (2)C10—C111.365 (6)
Ni1—O52.071 (2)C10—C151.367 (6)
Ni1—O5i2.071 (2)C11—C121.389 (7)
Ni1—N92.141 (3)C11—H110.9300
Ni1—N9i2.141 (3)C12—C131.352 (7)
Ni2—O3ii2.033 (2)C12—H120.9300
Ni2—O32.033 (2)C13—C141.361 (7)
Ni2—O62.125 (2)C13—H130.9300
Ni2—O6ii2.125 (2)C14—C151.367 (7)
Ni2—N10ii2.122 (3)C14—H140.9300
Ni2—N102.122 (3)C15—H150.9300
N1—C91.348 (5)C16—C171.496 (5)
N1—N21.363 (4)C17—C181.379 (5)
N1—C101.416 (5)C17—C221.384 (5)
N2—N31.284 (5)C18—C191.388 (5)
N3—N41.365 (4)C18—H180.9300
N4—C91.321 (5)C19—C201.386 (5)
N5—C241.347 (5)C19—H190.9300
N5—N61.355 (4)C20—C211.375 (5)
N5—C251.431 (5)C20—C231.501 (5)
N6—N71.284 (5)C21—C221.379 (5)
N7—N81.361 (4)C21—H210.9300
N8—C241.316 (5)C22—H220.9300
N9—C311.334 (4)C23—H23A0.9700
N9—C351.340 (4)C23—H23B0.9700
N10—C391.330 (4)C25—C261.367 (6)
N10—C381.339 (4)C25—C301.373 (6)
O1—C11.257 (4)C26—C271.376 (6)
O2—C11.254 (4)C26—H260.9300
O3—C161.260 (4)C27—C281.356 (6)
O4—C161.250 (4)C27—H270.9300
O5—H5A0.8505C28—C291.368 (6)
O5—H5B0.8497C28—H280.9300
O6—H6A0.8520C29—C301.387 (6)
O6—H6B0.8499C29—H290.9300
O7—H7A0.8460C30—H300.9300
O7—H7B0.8580C31—C321.364 (5)
S1—C91.730 (4)C31—H310.9300
S1—C81.812 (4)C32—C331.379 (5)
S2—C241.732 (4)C32—H320.9300
S2—C231.807 (4)C33—C341.379 (5)
C1—C21.506 (5)C33—C361.487 (5)
C2—C31.380 (5)C34—C351.370 (5)
C2—C71.382 (5)C34—H340.9300
C3—C41.378 (5)C35—H350.9300
C3—H30.9300C36—C401.383 (4)
C4—C51.386 (5)C36—C371.384 (5)
C4—H40.9300C37—C381.364 (5)
C5—C61.373 (5)C37—H370.9300
C5—C81.504 (5)C38—H380.9300
C6—C71.378 (5)C39—C401.362 (5)
C6—H60.9300C39—H390.9300
C7—H70.9300C40—H400.9300
C8—H8A0.9700
O1i—Ni1—O1180.00 (11)C10—C11—H11121.0
O1i—Ni1—O587.94 (10)C12—C11—H11121.0
O1—Ni1—O592.06 (10)C13—C12—C11121.5 (6)
O1i—Ni1—O5i92.06 (10)C13—C12—H12119.3
O1—Ni1—O5i87.94 (10)C11—C12—H12119.3
O5—Ni1—O5i180.00 (17)C12—C13—C14119.4 (6)
O1i—Ni1—N990.50 (10)C12—C13—H13120.3
O1—Ni1—N989.50 (10)C14—C13—H13120.3
O5—Ni1—N990.43 (10)C13—C14—C15120.4 (5)
O5i—Ni1—N989.57 (10)C13—C14—H14119.8
O1i—Ni1—N9i89.50 (10)C15—C14—H14119.8
O1—Ni1—N9i90.50 (10)C10—C15—C14119.9 (5)
O5—Ni1—N9i89.57 (10)C10—C15—H15120.0
O5i—Ni1—N9i90.43 (10)C14—C15—H15120.0
N9—Ni1—N9i180.0 (2)O4—C16—O3124.6 (4)
O3ii—Ni2—O3180.000 (1)O4—C16—C17118.5 (4)
O3ii—Ni2—N10ii88.90 (10)O3—C16—C17116.8 (4)
O3—Ni2—N10ii91.10 (10)C18—C17—C22118.5 (3)
O3ii—Ni2—N1091.10 (10)C18—C17—C16121.5 (4)
O3—Ni2—N1088.90 (10)C22—C17—C16119.8 (4)
O3ii—Ni2—O689.45 (10)C17—C18—C19120.7 (4)
O3—Ni2—O690.55 (9)C17—C18—H18119.6
N10ii—Ni2—O689.89 (10)C19—C18—H18119.6
N10—Ni2—O690.11 (10)C20—C19—C18120.4 (4)
O3ii—Ni2—O6ii90.55 (9)C20—C19—H19119.8
O3—Ni2—O6ii89.45 (10)C18—C19—H19119.8
N10—Ni2—N10ii180.0 (1)C21—C20—C19118.5 (4)
N10ii—Ni2—O6ii90.11 (10)C21—C20—C23121.0 (4)
N10—Ni2—O6ii89.89 (10)C19—C20—C23120.4 (4)
O6—Ni2—O6ii180.000 (1)C20—C21—C22121.1 (4)
C9—N1—N2107.3 (4)C20—C21—H21119.4
C9—N1—C10131.9 (4)C22—C21—H21119.4
N2—N1—C10120.7 (3)C21—C22—C17120.6 (4)
N3—N2—N1107.0 (3)C21—C22—H22119.7
N2—N3—N4111.1 (3)C17—C22—H22119.7
C9—N4—N3105.5 (3)C20—C23—S2107.6 (3)
C24—N5—N6107.9 (4)C20—C23—H23A110.2
C24—N5—C25131.0 (4)S2—C23—H23A110.2
N6—N5—C25120.5 (3)C20—C23—H23B110.2
N7—N6—N5106.2 (3)S2—C23—H23B110.2
N6—N7—N8111.7 (3)H23A—C23—H23B108.5
C24—N8—N7105.4 (4)N8—C24—N5108.8 (4)
C31—N9—C35115.5 (3)N8—C24—S2126.9 (3)
C31—N9—Ni1120.8 (2)N5—C24—S2124.3 (4)
C35—N9—Ni1123.6 (2)C26—C25—C30120.9 (5)
C39—N10—C38115.3 (3)C26—C25—N5121.8 (4)
C39—N10—Ni2122.9 (2)C30—C25—N5117.3 (4)
C38—N10—Ni2121.6 (2)C25—C26—C27119.7 (5)
C1—O1—Ni1130.8 (2)C25—C26—H26120.1
C16—O3—Ni2126.3 (2)C27—C26—H26120.1
Ni1—O5—H5A104.0C28—C27—C26120.2 (5)
Ni1—O5—H5B120.5C28—C27—H27119.9
H5A—O5—H5B111.0C26—C27—H27119.9
Ni2—O6—H6A92.1C27—C28—C29120.3 (6)
Ni2—O6—H6B101.1C27—C28—H28119.9
H6A—O6—H6B111.4C29—C28—H28119.9
H7A—O7—H7B112.1C28—C29—C30120.4 (5)
C9—S1—C8101.7 (2)C28—C29—H29119.8
C24—S2—C2399.1 (2)C30—C29—H29119.8
O2—C1—O1125.4 (3)C25—C30—C29118.5 (5)
O2—C1—C2118.0 (4)C25—C30—H30120.7
O1—C1—C2116.6 (4)C29—C30—H30120.7
C3—C2—C7118.3 (3)N9—C31—C32123.6 (4)
C3—C2—C1120.0 (3)N9—C31—H31118.2
C7—C2—C1121.6 (4)C32—C31—H31118.2
C4—C3—C2120.9 (4)C31—C32—C33121.2 (4)
C4—C3—H3119.6C31—C32—H32119.4
C2—C3—H3119.6C33—C32—H32119.4
C3—C4—C5120.7 (4)C34—C33—C32115.4 (4)
C3—C4—H4119.7C34—C33—C36122.9 (3)
C5—C4—H4119.7C32—C33—C36121.7 (3)
C6—C5—C4118.3 (4)C35—C34—C33120.4 (3)
C6—C5—C8121.8 (4)C35—C34—H34119.8
C4—C5—C8119.8 (4)C33—C34—H34119.8
C5—C6—C7121.1 (4)N9—C35—C34123.9 (3)
C5—C6—H6119.4N9—C35—H35118.0
C7—C6—H6119.4C34—C35—H35118.0
C6—C7—C2120.7 (4)C40—C36—C37114.9 (3)
C6—C7—H7119.7C40—C36—C33123.1 (3)
C2—C7—H7119.7C37—C36—C33122.0 (3)
C5—C8—S1105.5 (3)C38—C37—C36121.0 (3)
C5—C8—H8A110.6C38—C37—H37119.5
S1—C8—H8A110.6C36—C37—H37119.5
C5—C8—H8B110.6N10—C38—C37123.7 (3)
S1—C8—H8B110.6N10—C38—H38118.2
H8A—C8—H8B108.8C37—C38—H38118.2
N4—C9—N1109.1 (4)N10—C39—C40124.3 (3)
N4—C9—S1128.2 (3)N10—C39—H39117.9
N1—C9—S1122.8 (3)C40—C39—H39117.9
C11—C10—C15120.7 (5)C39—C40—C36120.8 (3)
C11—C10—N1119.6 (4)C39—C40—H40119.6
C15—C10—N1119.7 (4)C36—C40—H40119.6
C10—C11—C12118.0 (5)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.851.892.687 (3)156
O6—H6A···O40.851.782.598 (3)160
O5—H5B···O7iii0.851.942.791 (4)174
C3—H3···N3iv0.932.653.351 (5)132
C37—H37···N6iii0.932.533.296 (5)140
C12—H12···S2iv0.932.943.774 (6)150
O7—H7A···O6v0.852.082.906 (3)167
O6—H6B···N4v0.852.172.985 (4)161
O7—H7B···N7vi0.862.132.966 (5)166
C19—H19···O2vii0.932.453.303 (5)152
C27—H27···O4v0.932.573.303 (6)136
Symmetry codes: (iii) x, y1, z1; (iv) x+2, y+1, z+1; (v) x+1, y+1, z; (vi) x+1, y+2, z+1; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C15H11N4O2S)2(C10H8N2)(H2O)2]·H2O
Mr891.62
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)12.6931 (11), 13.0160 (12), 14.3559 (14)
α, β, γ (°)103.065 (1), 112.942 (2), 96.471 (1)
V3)2073.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.38 × 0.28 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.796, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
10523, 7207, 4118
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.120, 1.01
No. of reflections7207
No. of parameters544
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.51

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—O12.027 (2)Ni2—O32.033 (2)
Ni1—O52.071 (2)Ni2—O62.125 (2)
Ni1—N92.141 (3)Ni2—N102.122 (3)
O1—Ni1—O592.06 (10)O3—Ni2—O690.55 (9)
O1—Ni1—O5i87.94 (10)O3—Ni2—O6ii89.45 (10)
N9—Ni1—N9i180.0 (2)N10—Ni2—N10ii180.0 (1)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O20.851.892.687 (3)156
O6—H6A···O40.851.782.598 (3)160
O5—H5B···O7iii0.851.942.791 (4)174
C3—H3···N3iv0.932.653.351 (5)132
C37—H37···N6iii0.932.533.296 (5)140
C12—H12···S2iv0.932.943.774 (6)150
O7—H7A···O6v0.852.082.906 (3)167
O6—H6B···N4v0.852.172.985 (4)161
O7—H7B···N7vi0.862.132.966 (5)166
C19—H19···O2vii0.932.453.303 (5)152
C27—H27···O4v0.932.573.303 (6)136
Symmetry codes: (iii) x, y1, z1; (iv) x+2, y+1, z+1; (v) x+1, y+1, z; (vi) x+1, y+2, z+1; (vii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds