Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614013163/sk3547sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614013163/sk3547Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229614013163/sk3547IIsup3.hkl | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614013163/sk3547Isup4.cml | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614013163/sk3547IIsup5.cml |
CCDC references: 1006982; 1006983
For both compounds, data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008) and WinGX (Farrugia, 2012); molecular graphics: Mercury (Macrae et al., 2006) and PLATON (Spek, 2003).; software used to prepare material for publication: enCIFer (Allen et al., 2004).
C4H8NO4+·Cl− | Z = 1 |
Mr = 169.56 | F(000) = 88 |
Triclinic, P1 | Dx = 1.642 Mg m−3 |
a = 5.5888 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 5.6045 (6) Å | Cell parameters from 4428 reflections |
c = 6.1697 (7) Å | θ = 3.7–32.8° |
α = 114.57 (1)° | µ = 0.51 mm−1 |
β = 97.752 (9)° | T = 100 K |
γ = 95.720 (8)° | Prism, colourless |
V = 171.52 (3) Å3 | 0.14 × 0.09 × 0.06 mm |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 2273 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 2259 reflections with I > 2σ(I) |
Detector resolution: 10.4508 pixels mm-1 | Rint = 0.020 |
ω scans | θmax = 32.8°, θmin = 3.7° |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)] | h = −8→8 |
Tmin = 0.963, Tmax = 0.981 | k = −8→8 |
4428 measured reflections | l = −9→9 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | All H-atom parameters refined |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.033P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
2273 reflections | Δρmax = 0.30 e Å−3 |
123 parameters | Δρmin = −0.18 e Å−3 |
3 restraints | Absolute structure: Flack x determined using 1069 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.03 (3) |
Experimental. Absorption correction: CrysAlisPro (2012), Agilent Technologies UK Ltd, Oxford, UK, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid, 1995. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.33694 (3) | 0.19280 (4) | 0.00641 (3) | 0.01163 (9) | |
O1 | 1.1985 (2) | 0.4542 (3) | 0.6692 (2) | 0.0134 (2) | |
O2 | 0.8786 (3) | 0.5621 (3) | 0.8553 (2) | 0.0200 (3) | |
O3 | 0.3787 (2) | 0.9020 (3) | 0.3361 (2) | 0.0156 (3) | |
O4 | 0.7723 (2) | 1.0058 (3) | 0.3238 (2) | 0.0169 (3) | |
N1 | 0.9237 (3) | 0.4702 (3) | 0.2710 (2) | 0.0096 (2) | |
C1 | 0.9953 (3) | 0.5527 (4) | 0.7016 (3) | 0.0110 (3) | |
C2 | 0.9217 (3) | 0.6696 (3) | 0.5227 (3) | 0.0087 (3) | |
C3 | 0.6740 (3) | 0.7536 (3) | 0.5416 (3) | 0.0110 (3) | |
C4 | 0.6157 (3) | 0.8998 (3) | 0.3881 (3) | 0.0100 (3) | |
H1 | 1.228 (6) | 0.381 (7) | 0.756 (6) | 0.039 (9)* | |
H2 | 1.049 (4) | 0.826 (5) | 0.561 (4) | 0.008 (5)* | |
H3 | 1.074 (5) | 0.403 (6) | 0.259 (5) | 0.023 (7)* | |
H4 | 0.806 (5) | 0.331 (6) | 0.226 (5) | 0.023 (6)* | |
H5 | 0.894 (5) | 0.539 (6) | 0.160 (5) | 0.028 (7)* | |
H6 | 0.669 (5) | 0.880 (5) | 0.712 (4) | 0.013 (6)* | |
H7 | 0.544 (5) | 0.609 (6) | 0.497 (5) | 0.020 (6)* | |
H8 | 0.353 (5) | 0.978 (6) | 0.245 (5) | 0.026 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01271 (15) | 0.01316 (16) | 0.01092 (14) | 0.00439 (11) | 0.00192 (11) | 0.00671 (11) |
O1 | 0.0120 (6) | 0.0198 (6) | 0.0144 (5) | 0.0055 (5) | 0.0030 (4) | 0.0125 (5) |
O2 | 0.0207 (6) | 0.0352 (8) | 0.0165 (6) | 0.0132 (6) | 0.0095 (5) | 0.0195 (6) |
O3 | 0.0114 (6) | 0.0211 (6) | 0.0223 (6) | 0.0060 (5) | 0.0041 (5) | 0.0163 (5) |
O4 | 0.0127 (5) | 0.0209 (6) | 0.0250 (6) | 0.0030 (5) | 0.0040 (5) | 0.0176 (5) |
N1 | 0.0110 (5) | 0.0123 (6) | 0.0078 (5) | 0.0030 (5) | 0.0031 (5) | 0.0058 (5) |
C1 | 0.0104 (7) | 0.0139 (7) | 0.0103 (6) | 0.0028 (5) | 0.0012 (5) | 0.0069 (5) |
C2 | 0.0099 (6) | 0.0101 (7) | 0.0072 (6) | 0.0020 (5) | 0.0017 (5) | 0.0049 (5) |
C3 | 0.0111 (7) | 0.0144 (7) | 0.0123 (7) | 0.0050 (6) | 0.0044 (5) | 0.0091 (6) |
C4 | 0.0103 (7) | 0.0101 (7) | 0.0100 (7) | 0.0031 (5) | 0.0019 (5) | 0.0045 (6) |
O1—C1 | 1.315 (2) | N1—H4 | 0.89 (3) |
O1—H1 | 0.81 (3) | N1—H5 | 0.92 (3) |
O2—C1 | 1.208 (2) | C1—C2 | 1.533 (2) |
O3—C4 | 1.323 (2) | C2—C3 | 1.510 (3) |
O3—H8 | 0.84 (3) | C2—H2 | 0.99 (2) |
O4—C4 | 1.209 (2) | C3—C4 | 1.513 (2) |
N1—C2 | 1.492 (2) | C3—H6 | 1.00 (3) |
N1—H3 | 0.95 (3) | C3—H7 | 0.95 (3) |
C1—O1—H1 | 111 (2) | C3—C2—C1 | 111.37 (13) |
C4—O3—H8 | 110 (2) | N1—C2—H2 | 107.2 (13) |
C2—N1—H3 | 112.2 (16) | C3—C2—H2 | 110.1 (14) |
C2—N1—H4 | 109.9 (19) | C1—C2—H2 | 107.7 (13) |
H3—N1—H4 | 106 (3) | C2—C3—C4 | 111.26 (13) |
C2—N1—H5 | 112 (2) | C2—C3—H6 | 111.3 (15) |
H3—N1—H5 | 109 (2) | C4—C3—H6 | 106.2 (15) |
H4—N1—H5 | 107 (2) | C2—C3—H7 | 113.3 (17) |
O2—C1—O1 | 126.37 (16) | C4—C3—H7 | 108.9 (16) |
O2—C1—C2 | 121.88 (16) | H6—C3—H7 | 105 (2) |
O1—C1—C2 | 111.72 (14) | O4—C4—O3 | 124.22 (14) |
N1—C2—C3 | 111.06 (12) | O4—C4—C3 | 122.70 (14) |
N1—C2—C1 | 109.32 (13) | O3—C4—C3 | 113.07 (14) |
O2—C1—C2—N1 | −131.63 (18) | N1—C2—C3—C4 | −64.97 (17) |
O1—C1—C2—N1 | 50.39 (19) | C1—C2—C3—C4 | 172.92 (13) |
O2—C1—C2—C3 | −8.5 (2) | C2—C3—C4—O4 | −21.3 (2) |
O1—C1—C2—C3 | 173.49 (14) | C2—C3—C4—O3 | 159.64 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H5···O2i | 0.92 (3) | 1.93 (3) | 2.8030 (19) | 158 (3) |
N1—H4···O4ii | 0.89 (3) | 2.14 (3) | 2.817 (2) | 132 (2) |
O1—H1···Cl1iii | 0.81 (3) | 2.26 (3) | 3.0657 (13) | 176 (3) |
O3—H8···Cl1iv | 0.84 (3) | 2.26 (3) | 3.0909 (14) | 173 (3) |
N1—H5···O4 | 0.92 (3) | 2.58 (3) | 3.099 (2) | 116 (2) |
N1—H3···Cl1v | 0.95 (3) | 2.33 (3) | 3.1682 (15) | 147 (2) |
N1—H4···Cl1 | 0.89 (3) | 2.66 (3) | 3.3562 (15) | 136 (2) |
C2—H2···O3v | 0.99 (2) | 2.56 (2) | 3.305 (2) | 132.1 (18) |
C3—H7···O1vi | 0.95 (3) | 2.57 (3) | 3.357 (2) | 141 (2) |
Symmetry codes: (i) x, y, z−1; (ii) x, y−1, z; (iii) x+1, y, z+1; (iv) x, y+1, z; (v) x+1, y, z; (vi) x−1, y, z. |
C4H8NO4+·Cl− | Dx = 1.535 Mg m−3 |
Mr = 169.56 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P21212 | Cell parameters from 17470 reflections |
a = 9.7082 (2) Å | θ = 3.2–45.5° |
b = 8.9123 (3) Å | µ = 0.48 mm−1 |
c = 8.4820 (2) Å | T = 100 K |
V = 733.88 (3) Å3 | Prism, colourless |
Z = 4 | 0.20 × 0.14 × 0.12 mm |
F(000) = 352 |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 6012 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 5353 reflections with I > 2σ(I) |
Detector resolution: 10.4508 pixels mm-1 | Rint = 0.027 |
ω scans | θmax = 45.5°, θmin = 3.2° |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)] | h = −19→19 |
Tmin = 0.936, Tmax = 0.955 | k = −17→12 |
17470 measured reflections | l = −16→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | All H-atom parameters refined |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.0448P)2 + 0.017P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.003 |
6012 reflections | Δρmax = 0.46 e Å−3 |
123 parameters | Δρmin = −0.57 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 2029 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.031 (16) |
Experimental. Absorption correction: CrysAlisPro (2012), Agilent Technologies UK Ltd, Oxford, UK, Version 1.171.36.24 (release 03-12-2012 CrysAlis171 .NET) (compiled Dec 3 2012,18:21:49) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid, 1995. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.66179 (2) | 0.17292 (3) | 0.26316 (3) | 0.01443 (5) | |
O1 | 0.30341 (12) | 0.50000 (11) | 0.17327 (10) | 0.02335 (19) | |
O2 | 0.34892 (10) | 0.45850 (9) | 0.42956 (9) | 0.01692 (14) | |
O3 | −0.04610 (10) | 0.18092 (13) | 0.14412 (12) | 0.0262 (2) | |
O4 | 0.04221 (9) | 0.29182 (10) | 0.35986 (10) | 0.01801 (15) | |
N1 | 0.32151 (10) | 0.16396 (11) | 0.40818 (11) | 0.01400 (13) | |
C1 | 0.32323 (10) | 0.41414 (12) | 0.29825 (12) | 0.01320 (15) | |
C2 | 0.31630 (9) | 0.24865 (11) | 0.25713 (12) | 0.01193 (13) | |
C3 | 0.19377 (10) | 0.20373 (12) | 0.15602 (12) | 0.01299 (15) | |
C4 | 0.05605 (10) | 0.23073 (11) | 0.23259 (13) | 0.01351 (15) | |
H1 | 0.322 (3) | 0.587 (4) | 0.200 (4) | 0.070 (9)* | |
H2 | 0.3993 (18) | 0.227 (2) | 0.199 (2) | 0.020 (4)* | |
H3 | 0.3987 (18) | 0.184 (2) | 0.460 (2) | 0.020 (4)* | |
H4 | 0.2485 (17) | 0.185 (2) | 0.465 (2) | 0.016 (4)* | |
H5 | 0.328 (3) | 0.070 (3) | 0.386 (3) | 0.042 (6)* | |
H6 | 0.1978 (19) | 0.255 (2) | 0.061 (2) | 0.020 (4)* | |
H7 | 0.201 (2) | 0.103 (2) | 0.127 (2) | 0.019 (4)* | |
H8 | −0.119 (3) | 0.192 (3) | 0.195 (3) | 0.046 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.01398 (8) | 0.01229 (9) | 0.01702 (9) | 0.00002 (7) | 0.00008 (7) | 0.00187 (7) |
O1 | 0.0429 (6) | 0.0118 (3) | 0.0153 (3) | −0.0024 (3) | −0.0019 (3) | 0.0018 (3) |
O2 | 0.0210 (4) | 0.0143 (3) | 0.0155 (3) | −0.0013 (3) | −0.0019 (3) | −0.0028 (2) |
O3 | 0.0128 (3) | 0.0382 (5) | 0.0277 (5) | −0.0020 (3) | −0.0017 (3) | −0.0158 (4) |
O4 | 0.0143 (3) | 0.0265 (4) | 0.0132 (3) | 0.0004 (3) | 0.0012 (2) | −0.0036 (3) |
N1 | 0.0161 (3) | 0.0119 (3) | 0.0140 (3) | 0.0002 (3) | −0.0025 (3) | 0.0010 (3) |
C1 | 0.0132 (3) | 0.0121 (3) | 0.0142 (3) | −0.0008 (3) | 0.0012 (3) | −0.0001 (3) |
C2 | 0.0121 (3) | 0.0116 (3) | 0.0121 (3) | 0.0000 (2) | 0.0006 (3) | −0.0003 (3) |
C3 | 0.0136 (3) | 0.0141 (4) | 0.0113 (3) | 0.0003 (3) | −0.0002 (3) | −0.0022 (3) |
C4 | 0.0122 (3) | 0.0142 (4) | 0.0142 (4) | −0.0005 (3) | −0.0007 (3) | −0.0009 (3) |
O1—C1 | 1.3215 (14) | N1—H4 | 0.876 (17) |
O1—H1 | 0.83 (3) | N1—H5 | 0.86 (2) |
O2—C1 | 1.2079 (13) | C1—C2 | 1.5171 (14) |
O3—C4 | 1.3204 (13) | C2—C3 | 1.5201 (14) |
O3—H8 | 0.84 (3) | C2—H2 | 0.963 (18) |
O4—C4 | 1.2165 (13) | C3—C4 | 1.5058 (14) |
N1—C2 | 1.4879 (14) | C3—H6 | 0.929 (18) |
N1—H3 | 0.888 (18) | C3—H7 | 0.937 (18) |
C1—O1—H1 | 107 (2) | C1—C2—C3 | 114.86 (8) |
C4—O3—H8 | 107.7 (18) | N1—C2—H2 | 108.0 (12) |
C2—N1—H3 | 110.6 (12) | C1—C2—H2 | 105.9 (11) |
C2—N1—H4 | 109.7 (12) | C3—C2—H2 | 108.3 (11) |
H3—N1—H4 | 111.7 (15) | C4—C3—C2 | 114.17 (8) |
C2—N1—H5 | 107.9 (16) | C4—C3—H6 | 109.5 (12) |
H3—N1—H5 | 104 (2) | C2—C3—H6 | 109.2 (12) |
H4—N1—H5 | 113 (2) | C4—C3—H7 | 109.7 (12) |
O2—C1—O1 | 125.47 (10) | C2—C3—H7 | 110.0 (12) |
O2—C1—C2 | 122.64 (9) | H6—C3—H7 | 103.8 (16) |
O1—C1—C2 | 111.84 (8) | O4—C4—O3 | 124.87 (10) |
N1—C2—C1 | 107.08 (8) | O4—C4—C3 | 123.53 (9) |
N1—C2—C3 | 112.26 (8) | O3—C4—C3 | 111.59 (9) |
O2—C1—C2—N1 | 9.71 (13) | N1—C2—C3—C4 | 60.53 (11) |
O1—C1—C2—N1 | −172.76 (9) | C1—C2—C3—C4 | −62.11 (12) |
O2—C1—C2—C3 | 135.10 (10) | C2—C3—C4—O4 | 4.49 (15) |
O1—C1—C2—C3 | −47.36 (13) | C2—C3—C4—O3 | −175.92 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H4···O2i | 0.876 (17) | 2.400 (18) | 2.8257 (13) | 110.3 (14) |
N1—H3···O4ii | 0.888 (18) | 2.078 (18) | 2.9354 (12) | 162.0 (16) |
N1—H4···O4 | 0.877 (17) | 2.390 (17) | 2.9696 (13) | 123.9 (14) |
O3—H8···Cl1iii | 0.84 (3) | 2.21 (3) | 3.0111 (10) | 160 (2) |
O1—H1···Cl1iv | 0.83 (3) | 2.21 (3) | 3.0320 (10) | 172 (3) |
N1—H5···Cl1v | 0.86 (2) | 2.40 (2) | 3.2487 (10) | 167 (2) |
N1—H4···Cl1vi | 0.876 (17) | 2.766 (18) | 3.5056 (10) | 143.1 (14) |
C2—H2···Cl1 | 0.963 (18) | 2.650 (18) | 3.4217 (10) | 137.5 (15) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1; (ii) x+1/2, −y+1/2, −z+1; (iii) x−1, y, z; (iv) −x+1, −y+1, z; (v) −x+1, −y, z; (vi) x−1/2, −y+1/2, −z+1. |