Download citation
Download citation
link to html
Four imidazo[2,1-b][1,3,4]thia­diazo­les containing a simply-substituted 6-aryl group have been synthesized by reaction of 2-amino-1,3,4-thia­diazo­les with bromo­acetyl­arenes using micro­wave irradiation and brief reaction times. 6-(2-Chloro­phen­yl)imidazo[2,1-b][1,3,4]thia­diazole, C10H6ClN3S, (I), 6-(2-chloro­phen­yl)-2-methyl­imidazo[2,1-b][1,3,4]thia­diazole, C11H8ClN3S, (II), 6-(3,4-di­chloro­phen­yl)imidazo[2,1-b][1,3,4]thia­diazole, C10H5Cl2N3S, (III), and 6-(4-fluoro-3-meth­oxy­phen­yl)-2-methyl­imidazo[2,1-b][1,3,4]thia­diazole, C12H10FN3OS, (IV), crystallize with Z′ values of 2, 1, 1 and 2 res­pec­tively. The mol­ecular skeletons are all nearly planar and the dihedral angles between the imidazole and aryl rings are 1.51 (8) and 7.28 (8)° in (I), 9.65 (7)° in (II), 10.44 (8)° in (III), and 1.05 (8) and 7.21 (8)° in (IV). The mol­ecules in (I) are linked by three independent C—H...N hydrogen bonds to form ribbons containing alternating R22(8) and R44(18) rings, and these ribbons are linked into a three-dimensional array by three independent π-stacking inter­actions. Both (II) and (III) contain centrosymmetric dimers formed by π-stacking inter­actions but hydrogen bonds are absent, and the mol­ecules of (IV) are linked into centrosymmetric R22(8) dimers by C—H...N hydrogen bonds. Comparisons are made with a number of related compounds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614018762/sk3560sup1.cif
Contains datablocks global, I, II, III, IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018762/sk3560Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018762/sk3560IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018762/sk3560IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614018762/sk3560IVsup5.hkl
Contains datablock IV

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018762/sk3560Isup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018762/sk3560IIsup7.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018762/sk3560IIIsup8.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229614018762/sk3560IVsup9.cml
Supplementary material

CCDC references: 1019953; 1019954; 1019955; 1019956

Introduction top

Compounds containing the imidazo[2,1-b][1,3,4]thia­diazole unit exhibit a wide range of biological activity, including anti­microbial (Ravi et al., 2009), anti­tubercular (Andanappa et al., 2004; Shankar et al., 2012) and anti-inflamatory (Jadhav et al., 2008) activities. Imidazo[2,1-b][1,3,4]thia­diazole derivatives also act as cyclo­oxygenase inhibitors (Andanappa et al., 2008) and anti­hyperlipidemic agents (Jadhav et al., 2008). We report here the synthesis, molecular structures and supra­molecular assembly of four related 6-aryl­imidazo[2,1-b][1,3,4]thia­diazo­les, namely 6-(2-chloro­phenyl)­imidazo[2,1-b][1,3,4]thia­diazole, (I), 6-(2-chloro­phenyl)-2-methyl­imidazo[2,1-b][1,3,4]thia­diazole, (II), 6-(3,4-di­chloro­phenyl)­imidazo[2,1-b][1,3,4]thia­diazole, (III), and 6-(4-fluoro-3-meth­oxy­phenyl)-2-methyl­imidazo[2,1-b][1,3,4]thia­diazole, (IV), which we compare with the related compounds (V)–(VIII) (see Scheme 1). The purposes of the present study are: (i) the comparison of the series of closely related molecular structures (I)–(IV); (ii) the exploration of the similarities and differences in their supra­molecular assembly; (iii) the comparison of the structures of (I)–(IV) with the recently reported structures of some simple analogues, viz. compounds (V) (Praveen et al., 2013), (VI) (Fun, Hemamalini et al., 2011), (VII) (Fun, Yeap et al., 2011) and (VIII) (Banu et al., 2011) (see Scheme 1).

Experimental top

Synthesis and crystallization top

For the synthesis of each of compounds (I)–(IV) a mixture of the appropriately substituted bromo­acetyl­arene (10 mmol) with either 2-amino-1,3,4-thia­diazole [for (I) and (III)] or 2-amino-5-methyl-1,3,4-thia­diazole [for (II) and (IV)] (10 mmol) in N,N-di­methyl­formamide (20 ml) was placed in a Pyrex glass tube and subjected to microwave irradiation at 373 K for 10 min, using a Biotage Initiator-microwave reactor fitted with a rotating stage. The reaction mixtures were allowed to cool to ambient temperature and were then poured onto crushed ice. The resulting solid products were collected by filtration and dried in air. Colourless crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in ethyl acetate. Data for compound (I): yield 69%, m.p. 448–450 K; 1H NMR (di­methyl sulfoxide-d6): δ 7.33 (m, 1H, aryl), 7.42 (m, 1H, aryl), 7.53 (d, J = 7.92 Hz, 1H, aryl), 8.11 (d, J = 7.60 Hz, 1H, aryl), 8.60 (s, 1H, imidazole), 9.27 (s, 1H, thia­diazole); MS: 236 (M+1)+ for C10H635ClN3S. Data for compound (II): yield 63%, m.p. 398–400 K; 1H NMR (di­methyl sulfoxide-d6): δ 2.73 (s, 3H, methyl), 7.31 (m, 1H, aryl), 7.41 (m, 1H, aryl), 7.52 (d, J = 7.80 Hz, 1H, aryl), 8.09 (d, J = 7.84 Hz, 1H, aryl), 8.71 (s, 1H, imidazole); MS: 249 = (M+1)+ for C11H835ClN3S. Data for compound (III): yield 75%, m.p. 418–419 K; 1H NMR (di­methyl sulfoxide-d6): δ 7.66 (d, J = 8.40 Hz, 1H, aryl), 7.84 (d, J = 8.40 Hz, 1H, aryl), 8.09 (s, 1H, aryl), 8.86 (s, 1H, imidazole); MS: 271 (M+2)+ for C10H535Cl2N3S. Data for compound (IV): yield 76%, m.p. 375–378 K; 1H NMR (di­methyl sulfoxide-d6): δ 2.73 (s, 3H, methyl), 3.90 (s, 3H, meth­oxy), 7.24 (m, 1H, aryl), 7.42 (m, 1H, aryl), 7.62 (m, 1H, aryl), 8.64 (s, 1H, imidazole); MS: 264 (M+1)+ for C12H10FN3OS.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were located in difference maps and then treated as riding atoms, with C—H = 0.95 (aryl and heterocyclic) or 0.98 Å (methyl) and with Uiso(H) = kUeq (C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. For compound (IV), two low-angle reflections, viz. 101 and 111, which had been attenuated by the beam stop, were omitted from the final refinements. Examination of the refined structures using PLATON (Spek, 2009) showed that none of them contained any solvent-accessible voids.

Results and discussion top

The compounds reported here were all prepared using a cyclo­condensation reaction between 2-amino-1,3,4-thia­diazole and a bromo­acetyl­arene mediated by microwave irradiation (cf. Scheme 1). Exactly the same type of microwave-induced reaction had been used in the preparation of compound (V). The same type of cyclo­condensation was used in the syntheses of compounds (VI)–(VIII) but, instead of using microwave irradiation, the reaction mixture were heated under reflux in ethanol solutions, for periods of 4 h for each of (VI) and (VII) and for 18 h for (VIII). Unfortunately, no yields were reported for compounds (VI)–(VIII), but the extended reaction times used in their preparations certainly point to the efficacy of the microvave-induced syntheses for compounds (I)–(V).

The crystallization characteristics of compounds (I)–(IV) (Figs. 1–4) show some inter­esting and unexpected features. Although the molecular constitutions of compounds (I) and (II) differ only in the presence of a methyl group in (II) which is absent from (I), compound (I) crystallizes in the space group P1 with Z' = 2, while compound (II) crystallizes in the space group Pbca with Z' = 1. Again, the constitutions of compounds (I) and (III) differ only in the number and locations of the chloro substituents in the aryl ring but these compounds, Although crystallizing in the same space group do so with Z' values of 2 and 1, respectively. Compound (IV) also crystallizes with Z' = 2. By contrast, compound (V), which differs from (I) only in the location of the single chloro substituent, crystallizes in the monoclinic space group P21/n with Z' = 1 (Praveen et al., 2013). Hence, no two of the simple chloro­aryl derivatives (I)–(III) and (V) are isomorphous. For compounds (I) and (IV), it will be convenient to refer to the molecules containing atoms S11 and S21 (Figs. 1 and 4) as types 1 and 2, respectively.

The bond distances in the molecules of compounds (I)–(IV) (Table 2) present some inter­esting patterns. The bond Sx1—Cx2 (where x = 1, 2 or nul; see Table 2 for definitions) is consistently longer than Sx1—Cx7A, regardless of whether or not there is a methyl substituent at atom Cx2; the Cx2—Nx3 bond is always the shortest C—N bond in the molecule, and it may be regarded as a fully localized double bond. Of the four independent N—C bonds in the imidazole ring, Nx7—Cx7A is always significantly shorter than the other three such bonds, which have fairly similar lengths, suggesting a considerable degree of bond fixation in this ring. On the other hand, in each of compounds (I)–(III) there are close inter­molecular contacts between inversion-related pairs of imidazole ring, as discussed in detail below, and these contacts are strongly suggestive of a ππ stacking inter­action in each case. A similar contact is present in the structure of (V).

The molecular skeletons in compounds (I)–(IV) are all close to planarity, as shown by the very small dihedral angles (Table 2) between the planes of the aryl and imidazole rings. The corresponding dihedral angles in compounds (V), (VII) and (VIII) are also small [6.24 (11), 4.63 (7) and 8.62 (18)°, respectively], although that in compound (VI) is rather larger [24.36 (7)°]. In compound (IV), the torsion angles Cx62—Cx63—Ox63—Cx67 (Table 2) show that the C atom of the meth­oxy group is close to the plane of the adjacent aryl ring; the displacements of atoms C167 and C267 from the planes of the C161–C166 and C261–C266 rings are 0.054 (2) and 0.231 (2) Å, respectively. Consistent with this, the two exocyclic C—C—O angles in each of the independent molecules of (IV) differ by almost 10° as typically found in planar meth­oxy­aryl systems (Seip & Seip, 1973; Ferguson et al., 1996). The C—O—C angles are both significantly larger than the near-tetra­hedral value of 111.5 (15)° observed in di­methyl ether (Kimura & Kubo, 1959). Entirely comparable C—C—O and C—O—C angles are found in the structure of compound (VII), although this was not mentioned in the original structure report (Fun, Yeap et al., 2011).

Although compound (I) has the simplest molecular constitution amongst the compounds reported here, it exhibits the most elaborate supra­molecular assembly, involving both hydrogen bonds (Table 3) and close ππ inter­actions involving the imidazole rings. Within the selected asymmetric unit the two independent molecules are linked by a short and almost linear C—H···N hydrogen bond. Two further C—H···N hydrogen bonds link the molecules of type 1 into a ribbon running parallel to the [110] direction and containing two types of centrosymmetric ring, in which R22(8) (Bernstein et al., 1995) rings centred at (n, 1-n, 1/2) alternate with R44(18) rings centred at (1/2+n, 1/2-n, 1/2), where n represents an integer in each case (Fig. 5). Only one of these ribbons passes through each unit cell, but adjacent ribbons are linked by three independent ππ stacking inter­actions to form a three-dimensional array, whose formation can be easily analysed in terms of simple sub-structures (Ferguson et al., 1998a,b; Gregson et al., 2000).

Two of these inter­actions, involving only the type 1 molecules, link the ribbons into sheets. The imidazole rings of the type 1 molecules at (x, y, z) and (-x+1, -y+1, -z+1) are parallel, with an inter­planar spacing of 3.4770 (6) Å and a ring-centroid separation of 3.6542 (9) Å, corresponding to a ring-centroid offset of 1.124 Å. The imidazole ring of the type 1 molecule at (x, y, z) makes a dihedral angle of only 1.51 (8)° with the aryl ring of the type 1 molecule at (-x+2, -y+1, -z+2); the ring-centroid separation is 3.7460 (9) Å and the shortest perpendicular distances from the centroid of one ring to the plane of the other is 3.4542 (7) Å, corresponding to a ring-centroid offset of ca 1.45 Å. The combination of these two stacking inter­actions generates a chain running parallel to the [100] direction (Fig. 6) which links the hydrogen-bonded ribbons to form a sheet lying parallel to (001). The third π-stacking inter­action involves only type 2 molecules. The imidazole ring of the type 2 molecule at (x, y, z) makes a dihedral angle of 7.28 (8)° with the aryl ring of the type 2 molecule at (-x+1, -y+2, -z+1); the ring-centroid separation is 3.7159 (9) Å and the shortest perpendicular distances from the centroid of one ring to the plane of the other is 3.3905 (7) Å, corresponding to a ring-centroid offset of ca 1.52 Å (Fig. 7). The effect of this final π-stacking inter­action is to link adjacent (001) sheets, so forming a three-dimensional structure.

The supra­molecular assembly in compounds (II) and (III) is very much simpler than that in compound (I). The structure of (II) contains one short inter­molecular C—H···π(arene) contact (Table 3), but the H···Cg and C···Cg distances are both quite long and the C—H···Cg angle is less than 140° so that this contact is probably not structurally significant (cf. Wood et al., 2009), while there are no hydrogen bonds of any kind in the structure of (III). In both structures, there is a single π-stacking inter­action between inversion-related pairs of imidazole rings forming centrosymmetric dimers, centred in each case at (1/2, 1/2, 1/2) (Figs. 8 and 9). In (II), the inter­planar spacing is 3.4635 (6) Å, the ring-centroid separation is 3.6112 (8) Å and the ring-centroid offset is 1.022 Å; in (III), these values are 3.5296 (6) Å, 3.6696 (8)° and 1.008 Å, respectively.

In the structure of compound (IV), inversion-related pairs of type 1 molecules are linked by symmetry-related C—H···N hydrogen bonds (Table 3) to form a cyclic centrosymmetric dimer characterized by an R22(8) motif (Fig. 10). The only other short inter­molecular contacts involve C—H bonds in methyl groups. However, when groups are approximately local C2 and C3 symmetry are linked by a single bond, as here, the barrier to rotation about the linking bond is very low, only a few J mol-1 (Tannenbaum et al., 1956; Naylor & Wilson, 1957), and in such circumstances hydro­carbyl substituents generally undergo very rapid rotation around the bond linking them to the adjacent planar unit, even in the solid state (Riddell & Rogerson, 1996, 1997). Hence such contacts cannot be regarded as structurally significant. In addition to the C—H···N hydrogen bond which generates a dimer of type 1 molecules, there is a further, fairly short inter­molecular contact, this time between the two molecules within the selected asymmetric unit. The imidazole rings of these two molecules make a dihedral angle of only 5.712 (9)°, but the ring-centroid separation is long [3.9051 (10) Å]. The shortest perpendicular distances from the centroid of one ring to the plane of the other is quite short [3.4074 (7) Å], corresponding to a ring-centroid offset of 1.91 Å, which is probably too long for this contact to be regarded as structurally significant.

The supra­molecular assembly in compounds (I)–(IV) reported here may be compared with that in compounds (V)–(VIII) (see Scheme 1). In compound (V) (Praveen et al., 2013), there are no hydrogen bonds of any kind but inversion-related pairs of molecules are linked by a π-stacking inter­action involving the imidazole rings, exactly comparable to compounds (II) and (III), but in the structure of compound (VI) (Fun, Hemamalini et al., 2011) there are neither hydrogen bonds nor π-stacking inter­actions. The supra­molecular assembly in compound (VII) (Fun, Yeap et al., 2011) is more complex that that of (V) or (VI). Inversion-related pairs of molecules are linked into centrosymmetric dimers by symmetry-related pairs of C—H···π(arene) hydrogen bonds and these dimers are linked by an aromatic ππ stacking inter­action involving inversion-related pairs of aryl rings, so forming a chain of π-stacked hydrogen-bonded dimer running parallel to the [010] direction (Fig. 11), although this chain formation was not described in the original structure report. Finally, in compound (VIII (Banu et al., 2011) molecules related by a 21 screw axis are linked by a C—H···N hydrogen bond to form a C(6) chain running parallel to the [010] direction.

Thus, across the entire series of compounds (I)–(VIII), rather similar molecular constitutions are associated with a wide variety of supra­molecular assembly patterns, ranging from isolated molecules in compound (VI), via π-stacked dimers in compounds (II), (III) and (V) and hydrogen-bonded dimers in compound (IV), to simple hydrogen-bonded chains in compound (VIII) and chains of π-stacked hydrogen-bonded dimers in compound (VII), to a three-dimensional array of π-stacked hydrogen bonded ribbons in compound (I).

Related literature top

For related literature, see: Andanappa et al. (2004, 2008); Banu et al. (2011); Bernstein et al. (1995); Ferguson et al. (1996, 1998a, 1998b); Fun, Hemamalini, Prasad, Castelino & Anitha (2011); Fun, Yeap, Prasad, Castelino & Anitha (2011); Gregson et al. (2000); Jadhav et al. (2008); Kimura & Kubo (1959); Naylor & Wilson (1957); Praveen et al. (2013); Ravi et al. (2009); Riddell & Rogerson (1996, 1997); Seip & Seip (1973); Shankar et al. (2012); Spek (2009); Tannenbaum (1956); Wood et al. (2009).

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2014); molecular graphics: PLATON (Spek, 2009). Software used to prepare material for publication: SHELXL2014 (Sheldrick, 2014) and PLATON (Spek, 2009) for (I), (III); SHELXL2014 (Sheldrick, 2014 and PLATON (Spek, 2009) for (II); SHELXL2014 (Sheldrick, 2014) and PLATON(Spek, 2009 for (IV).

Figures top
[Figure 1] Fig. 1. The structures of the two independent molecules in compound (I), showing the atom-labeling scheme for (a) a type 1 molecule and (b) a type 2 molecule. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of compound (II), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The molecular structure of compound (III), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. The structures of the two independent molecules in compound (IV), showing the atom-labeling scheme for (a) a type 1 molecule and (b) a type 2 molecule. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of compound (I), showing the formation of a ribbon of hydrogen-bonded R22(8) and R44(18) rings running parallel to the [110] direction and built from type 1 molecules only. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, H atoms not involved in the motifs shown have been omitted.
[Figure 6] Fig. 6. A stereoview of part of the crystal structure of compound (I), showing the formation of a π-stacked chain of type 1 molecules running parallel to the [100] direction and built from type 1 molecules only. For the sake of clarity, all H atoms have been omitted.
[Figure 7] Fig. 7. Part of the crystal structure of compound (I), showing the formation of a centrosymmetric π-stacked dimer centred at (1/2, 1, 1/2) which links the (001) sheets. For the sake of clarity, all H atoms have been omitted and atoms marked with an asterisk (*) are at the symmetry position (-x+1, -y+2, -z+1).
[Figure 8] Fig. 8. Part of the crystal structure of compound (II), showing the formation of a centrosymmetric π-stacked dimer centred at (1/2, 1/2, 1/2). For the sake of clarity, all H atoms have been omitted and the S atom marked with an asterisk (*) is at the symmetry position (-x+1, -y+1, -z+1).
[Figure 9] Fig. 9. Part of the crystal structure of compound (III), showing the formation of a centrosymmetric π-stacked dimer centred at (1/2, 1/2, 1/2). For the sake of clarity, all H atoms have been omitted and the S atom marked with an asterisk (*) is at the symmetry position (-x+1, -y+1, -z+1).
[Figure 10] Fig. 10. Part of the crystal structure of compound (IV), showing the formation of a centrosymmetric hydrogen-bonded R22(8) dimer centred at (1/2, 1/2, 1/2). For the sake of clarity, H atoms not involved in the motif shown have been omitted and atoms marked with an asterisk (*) are at the symmetry position (-x+1, -y+1, -z+1).
[Figure 11] Fig. 11. A stereoview of part of the crystal structure of compound (VII), showing the formation of a π-stacked chain of hydrogen-bonded dimers running parallel to the [010] direction. The original atomic coordinates (Fun, Yeap et al., 2011) have been used. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, H atoms bonded to C atoms which are not involved in the motif shown have been omitted.
(I) 6-(2-Chlorophenyl)imidazo[2,1-b][1,3,4]thiadiazole top
Crystal data top
C10H6ClN3SZ = 4
Mr = 235.69F(000) = 480
Triclinic, P1Dx = 1.599 Mg m3
a = 7.5805 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7942 (5) ÅCell parameters from 4729 reflections
c = 13.6175 (6) Åθ = 1.5–28.3°
α = 97.712 (2)°µ = 0.57 mm1
β = 96.549 (2)°T = 200 K
γ = 99.416 (2)°Block, colourless
V = 978.77 (8) Å30.39 × 0.37 × 0.29 mm
Data collection top
Bruker APEXII CCD
diffractometer
4168 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
φ and ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 710
Tmin = 0.779, Tmax = 0.851k = 1212
16930 measured reflectionsl = 1418
4729 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.4007P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4729 reflectionsΔρmax = 0.40 e Å3
271 parametersΔρmin = 0.32 e Å3
Crystal data top
C10H6ClN3Sγ = 99.416 (2)°
Mr = 235.69V = 978.77 (8) Å3
Triclinic, P1Z = 4
a = 7.5805 (4) ÅMo Kα radiation
b = 9.7942 (5) ŵ = 0.57 mm1
c = 13.6175 (6) ÅT = 200 K
α = 97.712 (2)°0.39 × 0.37 × 0.29 mm
β = 96.549 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4729 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4168 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.851Rint = 0.026
16930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.03Δρmax = 0.40 e Å3
4729 reflectionsΔρmin = 0.32 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S110.63036 (5)0.83031 (4)0.95902 (3)0.03096 (10)
C120.6159 (2)0.77634 (17)0.83053 (12)0.0321 (3)
H120.58510.83540.78380.039*
N130.64851 (19)0.65344 (14)0.80129 (9)0.0324 (3)
N140.68820 (17)0.59455 (13)0.88501 (9)0.0257 (3)
C150.7354 (2)0.46903 (15)0.89990 (11)0.0274 (3)
H150.74900.39440.85070.033*
C160.75892 (18)0.47526 (14)1.00245 (10)0.0234 (3)
N170.72793 (17)0.60324 (12)1.05002 (9)0.0261 (3)
C17A0.68590 (19)0.67001 (14)0.97609 (10)0.0244 (3)
C1610.81017 (18)0.37360 (14)1.06587 (10)0.0240 (3)
C1620.84856 (19)0.24170 (15)1.03223 (11)0.0265 (3)
Cl120.82721 (6)0.17517 (4)0.90520 (3)0.03711 (11)
C1630.9007 (2)0.15413 (16)1.09785 (13)0.0312 (3)
H1630.92740.06581.07250.037*
C1640.9139 (2)0.19499 (17)1.19985 (13)0.0363 (4)
H1640.95110.13581.24500.044*
C1650.8722 (3)0.32295 (19)1.23553 (13)0.0400 (4)
H1650.87840.35121.30550.048*
C1660.8218 (2)0.40998 (17)1.16984 (12)0.0342 (3)
H1660.79390.49761.19600.041*
S210.36631 (5)1.18560 (4)0.79107 (3)0.03005 (10)
C220.1501 (2)1.18596 (16)0.73233 (11)0.0296 (3)
H220.07651.24610.76060.036*
N230.09280 (17)1.10206 (14)0.64925 (10)0.0305 (3)
N240.22771 (16)1.02941 (13)0.62857 (9)0.0248 (2)
C250.2429 (2)0.92574 (15)0.55299 (10)0.0265 (3)
H250.15720.88540.49580.032*
C260.41060 (19)0.89356 (14)0.57898 (10)0.0237 (3)
N270.49777 (17)0.97618 (13)0.66889 (9)0.0265 (3)
C27A0.38205 (19)1.05534 (15)0.69457 (10)0.0248 (3)
C2610.5077 (2)0.79204 (15)0.52924 (10)0.0248 (3)
C2620.4367 (2)0.69015 (16)0.44566 (11)0.0293 (3)
Cl220.21459 (6)0.67224 (5)0.38873 (4)0.04887 (14)
C2630.5365 (2)0.59638 (17)0.40445 (12)0.0355 (3)
H2630.48380.52820.34790.043*
C2640.7127 (2)0.60240 (18)0.44583 (13)0.0373 (4)
H2640.78190.53840.41790.045*
C2650.7884 (2)0.70205 (18)0.52824 (13)0.0358 (3)
H2650.90980.70650.55700.043*
C2660.6875 (2)0.79502 (16)0.56860 (11)0.0302 (3)
H2660.74160.86320.62490.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.0410 (2)0.02360 (18)0.02883 (19)0.01038 (15)0.00159 (15)0.00342 (14)
C120.0367 (8)0.0318 (8)0.0274 (7)0.0064 (6)0.0010 (6)0.0076 (6)
N130.0414 (7)0.0316 (7)0.0231 (6)0.0065 (5)0.0017 (5)0.0054 (5)
N140.0317 (6)0.0238 (6)0.0198 (5)0.0038 (5)0.0007 (5)0.0009 (4)
C150.0350 (7)0.0208 (6)0.0249 (7)0.0052 (5)0.0030 (6)0.0007 (5)
C160.0237 (6)0.0202 (6)0.0250 (6)0.0029 (5)0.0028 (5)0.0010 (5)
N170.0327 (6)0.0221 (6)0.0234 (6)0.0066 (5)0.0036 (5)0.0015 (5)
C17A0.0277 (7)0.0214 (6)0.0226 (6)0.0042 (5)0.0025 (5)0.0009 (5)
C1610.0242 (6)0.0213 (6)0.0254 (7)0.0024 (5)0.0027 (5)0.0023 (5)
C1620.0257 (6)0.0233 (7)0.0293 (7)0.0032 (5)0.0052 (5)0.0010 (5)
Cl120.0531 (2)0.02745 (19)0.0321 (2)0.01368 (16)0.00953 (17)0.00129 (15)
C1630.0302 (7)0.0229 (7)0.0409 (8)0.0067 (5)0.0041 (6)0.0049 (6)
C1640.0419 (9)0.0303 (8)0.0387 (9)0.0086 (7)0.0025 (7)0.0127 (7)
C1650.0588 (11)0.0348 (9)0.0273 (8)0.0123 (8)0.0027 (7)0.0056 (7)
C1660.0485 (9)0.0262 (7)0.0281 (7)0.0105 (6)0.0041 (7)0.0019 (6)
S210.0380 (2)0.02969 (19)0.02121 (17)0.01047 (15)0.00104 (14)0.00321 (14)
C220.0337 (7)0.0287 (7)0.0281 (7)0.0105 (6)0.0064 (6)0.0026 (6)
N230.0296 (6)0.0319 (7)0.0305 (6)0.0111 (5)0.0040 (5)0.0006 (5)
N240.0273 (6)0.0255 (6)0.0218 (5)0.0077 (5)0.0022 (5)0.0015 (5)
C250.0302 (7)0.0264 (7)0.0213 (6)0.0064 (5)0.0003 (5)0.0013 (5)
C260.0300 (7)0.0221 (6)0.0187 (6)0.0054 (5)0.0021 (5)0.0029 (5)
N270.0318 (6)0.0265 (6)0.0206 (5)0.0092 (5)0.0002 (5)0.0003 (5)
C27A0.0303 (7)0.0248 (7)0.0189 (6)0.0066 (5)0.0007 (5)0.0019 (5)
C2610.0324 (7)0.0226 (6)0.0206 (6)0.0072 (5)0.0051 (5)0.0036 (5)
C2620.0367 (8)0.0263 (7)0.0240 (7)0.0074 (6)0.0007 (6)0.0010 (5)
Cl220.0461 (2)0.0448 (2)0.0458 (2)0.01490 (19)0.01480 (19)0.01819 (19)
C2630.0499 (9)0.0288 (8)0.0278 (7)0.0107 (7)0.0075 (7)0.0019 (6)
C2640.0483 (9)0.0355 (9)0.0340 (8)0.0186 (7)0.0159 (7)0.0042 (7)
C2650.0353 (8)0.0403 (9)0.0353 (8)0.0150 (7)0.0079 (7)0.0055 (7)
C2660.0335 (7)0.0318 (8)0.0252 (7)0.0086 (6)0.0037 (6)0.0013 (6)
Geometric parameters (Å, º) top
S11—C17A1.7287 (15)S21—C27A1.7333 (14)
S11—C121.7441 (16)S21—C221.7405 (16)
C12—N131.288 (2)C22—N231.290 (2)
C12—H120.9500C22—H220.9500
N13—N141.3703 (17)N23—N241.3717 (17)
N14—C17A1.3594 (18)N24—C27A1.3575 (18)
N14—C151.3693 (19)N24—C251.3742 (18)
C15—C161.379 (2)C25—C261.378 (2)
C15—H150.9500C25—H250.9500
C16—N171.3997 (18)C26—N271.4018 (17)
C16—C1611.4727 (19)C26—C2611.470 (2)
N17—C17A1.3093 (19)N27—C27A1.3087 (19)
C161—C1621.399 (2)C261—C2661.400 (2)
C161—C1661.402 (2)C261—C2621.4003 (19)
C162—C1631.388 (2)C262—C2631.384 (2)
C162—Cl121.7441 (15)C262—Cl221.7427 (16)
C163—C1641.380 (2)C263—C2641.378 (3)
C163—H1630.9500C263—H2630.9500
C164—C1651.381 (2)C264—C2651.385 (2)
C164—H1640.9500C264—H2640.9500
C165—C1661.381 (2)C265—C2661.381 (2)
C165—H1650.9500C265—H2650.9500
C166—H1660.9500C266—H2660.9500
C17A—S11—C1287.72 (7)C27A—S21—C2287.38 (7)
N13—C12—S11117.55 (12)N23—C22—S21118.02 (12)
N13—C12—H12121.2N23—C22—H22121.0
S11—C12—H12121.2S21—C22—H22121.0
C12—N13—N14107.55 (12)C22—N23—N24107.25 (12)
C17A—N14—C15108.02 (12)C27A—N24—N23118.36 (12)
C17A—N14—N13118.43 (12)C27A—N24—C25107.97 (12)
C15—N14—N13133.54 (12)N23—N24—C25133.63 (12)
N14—C15—C16104.46 (12)N24—C25—C26104.32 (12)
N14—C15—H15127.8N24—C25—H25127.8
C16—C15—H15127.8C26—C25—H25127.8
C15—C16—N17110.91 (12)C25—C26—N27111.03 (12)
C15—C16—C161131.26 (13)C25—C26—C261131.46 (13)
N17—C16—C161117.82 (12)N27—C26—C261117.51 (12)
C17A—N17—C16103.95 (12)C27A—N27—C26103.84 (12)
N17—C17A—N14112.65 (13)N27—C27A—N24112.83 (12)
N17—C17A—S11138.59 (11)N27—C27A—S21138.21 (11)
N14—C17A—S11108.76 (10)N24—C27A—S21108.96 (10)
C162—C161—C166115.90 (13)C266—C261—C262116.06 (13)
C162—C161—C16126.07 (13)C266—C261—C26117.91 (13)
C166—C161—C16118.03 (13)C262—C261—C26126.03 (13)
C163—C162—C161122.07 (14)C263—C262—C261122.42 (14)
C163—C162—Cl12115.91 (11)C263—C262—Cl22116.03 (12)
C161—C162—Cl12122.00 (11)C261—C262—Cl22121.54 (12)
C164—C163—C162120.23 (15)C264—C263—C262119.66 (15)
C164—C163—H163119.9C264—C263—H263120.2
C162—C163—H163119.9C262—C263—H263120.2
C163—C164—C165119.19 (15)C263—C264—C265119.79 (15)
C163—C164—H164120.4C263—C264—H264120.1
C165—C164—H164120.4C265—C264—H264120.1
C166—C165—C164120.26 (16)C266—C265—C264119.97 (16)
C166—C165—H165119.9C266—C265—H265120.0
C164—C165—H165119.9C264—C265—H265120.0
C165—C166—C161122.32 (15)C265—C266—C261122.09 (14)
C165—C166—H166118.8C265—C266—H266119.0
C161—C166—H166118.8C261—C266—H266119.0
C17A—S11—C12—N130.16 (14)C27A—S21—C22—N231.15 (13)
S11—C12—N13—N140.07 (18)S21—C22—N23—N240.34 (17)
C12—N13—N14—C17A0.10 (19)C22—N23—N24—C27A1.02 (18)
C12—N13—N14—C15178.82 (16)C22—N23—N24—C25178.35 (15)
C17A—N14—C15—C160.34 (16)C27A—N24—C25—C260.35 (16)
N13—N14—C15—C16179.34 (15)N23—N24—C25—C26177.18 (14)
N14—C15—C16—N170.45 (16)N24—C25—C26—N270.17 (16)
N14—C15—C16—C161179.95 (14)N24—C25—C26—C261179.68 (14)
C15—C16—N17—C17A0.39 (16)C25—C26—N27—C27A0.09 (16)
C161—C16—N17—C17A179.96 (12)C261—C26—N27—C27A179.50 (12)
C16—N17—C17A—N140.17 (16)C26—N27—C27A—N240.32 (17)
C16—N17—C17A—S11178.84 (14)C26—N27—C27A—S21179.45 (14)
C15—N14—C17A—N170.11 (17)N23—N24—C27A—N27177.53 (12)
N13—N14—C17A—N17179.28 (13)C25—N24—C27A—N270.44 (17)
C15—N14—C17A—S11178.96 (10)N23—N24—C27A—S211.86 (16)
N13—N14—C17A—S110.22 (16)C25—N24—C27A—S21179.83 (10)
C12—S11—C17A—N17178.89 (18)C22—S21—C27A—N27177.60 (18)
C12—S11—C17A—N140.19 (11)C22—S21—C27A—N241.55 (11)
C15—C16—C161—C1620.3 (2)C25—C26—C261—C266172.61 (15)
N17—C16—C161—C162179.15 (13)N27—C26—C261—C2666.9 (2)
C15—C16—C161—C166179.44 (16)C25—C26—C261—C2628.0 (3)
N17—C16—C161—C1661.10 (19)N27—C26—C261—C262172.46 (14)
C166—C161—C162—C1632.0 (2)C266—C261—C262—C2630.7 (2)
C16—C161—C162—C163178.20 (14)C26—C261—C262—C263178.66 (15)
C166—C161—C162—Cl12175.99 (12)C266—C261—C262—Cl22179.48 (11)
C16—C161—C162—Cl123.8 (2)C26—C261—C262—Cl220.1 (2)
C161—C162—C163—C1640.9 (2)C261—C262—C263—C2640.4 (3)
Cl12—C162—C163—C164177.25 (12)Cl22—C262—C263—C264179.21 (13)
C162—C163—C164—C1650.9 (3)C262—C263—C264—C2650.0 (3)
C163—C164—C165—C1661.3 (3)C263—C264—C265—C2660.0 (3)
C164—C165—C166—C1610.1 (3)C264—C265—C266—C2610.4 (3)
C162—C161—C166—C1651.5 (2)C262—C261—C266—C2650.7 (2)
C16—C161—C166—C165178.67 (16)C26—C261—C266—C265178.69 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N270.952.333.280 (2)178
C25—H25···N23i0.952.613.480 (2)153
C263—H263···N13ii0.952.513.456 (2)179
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1.
(II) 6-(2-Chlorophenyl)-2-methylimidazo[2,1-b][1,3,4]thiadiazole top
Crystal data top
C11H8ClN3SDx = 1.538 Mg m3
Mr = 249.71Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2666 reflections
a = 7.5567 (3) Åθ = 3.2–28.3°
b = 11.4589 (5) ŵ = 0.52 mm1
c = 24.9006 (11) ÅT = 200 K
V = 2156.18 (16) Å3Block, colourless
Z = 80.59 × 0.47 × 0.27 mm
F(000) = 1024
Data collection top
Bruker APEXII CCD
diffractometer
2356 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
φ and ω scansθmax = 28.3°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1010
Tmin = 0.773, Tmax = 0.870k = 1115
15450 measured reflectionsl = 3133
2666 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0406P)2 + 1.0733P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2666 reflectionsΔρmax = 0.31 e Å3
146 parametersΔρmin = 0.42 e Å3
Crystal data top
C11H8ClN3SV = 2156.18 (16) Å3
Mr = 249.71Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.5567 (3) ŵ = 0.52 mm1
b = 11.4589 (5) ÅT = 200 K
c = 24.9006 (11) Å0.59 × 0.47 × 0.27 mm
Data collection top
Bruker APEXII CCD
diffractometer
2666 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2356 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.870Rint = 0.015
15450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.06Δρmax = 0.31 e Å3
2666 reflectionsΔρmin = 0.42 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.80106 (5)0.65665 (3)0.45158 (2)0.03626 (12)
C20.85112 (17)0.51521 (13)0.42998 (6)0.0287 (3)
N30.81433 (16)0.43078 (11)0.46262 (5)0.0312 (3)
N40.74098 (15)0.47874 (10)0.50798 (4)0.0262 (2)
C50.67939 (19)0.43257 (12)0.55510 (5)0.0287 (3)
H50.67390.35270.56520.034*
C60.62709 (16)0.52820 (11)0.58465 (5)0.0243 (3)
N70.65651 (16)0.63161 (10)0.55642 (5)0.0289 (2)
C7A0.72392 (17)0.59658 (12)0.51079 (5)0.0266 (3)
C210.93002 (19)0.49516 (15)0.37581 (6)0.0369 (3)
H21A0.84350.51580.34810.055*
H21B0.96260.41280.37210.055*
H21C1.03580.54380.37170.055*
C610.54653 (16)0.53729 (11)0.63833 (5)0.0252 (3)
C620.52735 (19)0.44666 (12)0.67546 (5)0.0297 (3)
Cl620.61184 (7)0.30845 (4)0.66226 (2)0.05021 (14)
C630.4444 (2)0.46260 (14)0.72479 (6)0.0352 (3)
H630.43220.39870.74880.042*
C640.3800 (2)0.57038 (15)0.73882 (6)0.0370 (3)
H640.32290.58150.77240.044*
C650.3993 (2)0.66291 (15)0.70344 (6)0.0359 (3)
H650.35640.73800.71300.043*
C660.48064 (19)0.64626 (13)0.65427 (5)0.0304 (3)
H660.49220.71070.63050.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0470 (2)0.02767 (19)0.03408 (19)0.00163 (15)0.01139 (15)0.00237 (14)
C20.0254 (6)0.0316 (7)0.0291 (6)0.0011 (5)0.0019 (5)0.0043 (5)
N30.0355 (6)0.0298 (6)0.0285 (6)0.0010 (5)0.0011 (5)0.0074 (5)
N40.0299 (5)0.0221 (5)0.0267 (5)0.0007 (4)0.0020 (4)0.0030 (4)
C50.0366 (7)0.0222 (6)0.0274 (6)0.0018 (5)0.0027 (5)0.0005 (5)
C60.0243 (5)0.0224 (6)0.0264 (6)0.0006 (5)0.0047 (5)0.0007 (5)
N70.0340 (6)0.0227 (5)0.0300 (6)0.0011 (5)0.0031 (5)0.0010 (4)
C7A0.0281 (6)0.0216 (6)0.0300 (6)0.0012 (5)0.0002 (5)0.0003 (5)
C210.0320 (7)0.0484 (9)0.0303 (7)0.0008 (7)0.0018 (5)0.0077 (6)
C610.0241 (6)0.0267 (6)0.0247 (6)0.0022 (5)0.0056 (5)0.0009 (5)
C620.0319 (6)0.0281 (7)0.0292 (6)0.0018 (5)0.0037 (5)0.0015 (5)
Cl620.0779 (3)0.0297 (2)0.0430 (2)0.01115 (19)0.0113 (2)0.01119 (16)
C630.0384 (7)0.0400 (8)0.0272 (7)0.0071 (6)0.0022 (6)0.0051 (6)
C640.0359 (7)0.0488 (9)0.0262 (7)0.0060 (7)0.0005 (5)0.0053 (6)
C650.0392 (7)0.0371 (8)0.0315 (7)0.0017 (6)0.0004 (6)0.0073 (6)
C660.0348 (7)0.0285 (7)0.0278 (6)0.0007 (6)0.0032 (5)0.0014 (5)
Geometric parameters (Å, º) top
S1—C7A1.7283 (14)C21—H21B0.9800
S1—C21.7491 (15)C21—H21C0.9800
C2—N31.2937 (19)C61—C621.3980 (19)
C2—C211.4927 (19)C61—C661.4016 (19)
N3—N41.3731 (16)C62—C631.391 (2)
N4—C7A1.3583 (17)C62—Cl621.7389 (15)
N4—C51.3686 (17)C63—C641.372 (2)
C5—C61.3777 (19)C63—H630.9500
C5—H50.9500C64—C651.386 (2)
C6—N71.3957 (17)C64—H640.9500
C6—C611.4725 (18)C65—C661.383 (2)
N7—C7A1.3082 (17)C65—H650.9500
C21—H21A0.9800C66—H660.9500
C7A—S1—C288.06 (7)C2—C21—H21C109.5
N3—C2—C21122.58 (13)H21A—C21—H21C109.5
N3—C2—S1116.96 (11)H21B—C21—H21C109.5
C21—C2—S1120.45 (11)C62—C61—C66115.96 (12)
C2—N3—N4107.71 (12)C62—C61—C6126.20 (12)
C7A—N4—C5107.93 (11)C66—C61—C6117.84 (12)
C7A—N4—N3118.59 (11)C63—C62—C61122.21 (13)
C5—N4—N3133.46 (12)C63—C62—Cl62116.87 (11)
N4—C5—C6104.36 (12)C61—C62—Cl62120.90 (11)
N4—C5—H5127.8C64—C63—C62120.16 (14)
C6—C5—H5127.8C64—C63—H63119.9
C5—C6—N7111.13 (12)C62—C63—H63119.9
C5—C6—C61131.28 (12)C63—C64—C65119.30 (14)
N7—C6—C61117.58 (11)C63—C64—H64120.3
C7A—N7—C6103.83 (11)C65—C64—H64120.3
N7—C7A—N4112.74 (12)C66—C65—C64120.24 (15)
N7—C7A—S1138.59 (11)C66—C65—H65119.9
N4—C7A—S1108.67 (10)C64—C65—H65119.9
C2—C21—H21A109.5C65—C66—C61122.10 (14)
C2—C21—H21B109.5C65—C66—H66119.0
H21A—C21—H21B109.5C61—C66—H66119.0
C7A—S1—C2—N30.40 (11)C2—S1—C7A—N7178.65 (16)
C7A—S1—C2—C21179.46 (12)C2—S1—C7A—N40.86 (10)
C21—C2—N3—N4178.84 (12)C5—C6—C61—C629.8 (2)
S1—C2—N3—N40.20 (15)N7—C6—C61—C62171.26 (13)
C2—N3—N4—C7A0.96 (16)C5—C6—C61—C66169.56 (14)
C2—N3—N4—C5179.32 (14)N7—C6—C61—C669.33 (17)
C7A—N4—C5—C60.05 (14)C66—C61—C62—C631.4 (2)
N3—N4—C5—C6178.44 (13)C6—C61—C62—C63178.00 (13)
N4—C5—C6—N70.25 (15)C66—C61—C62—Cl62177.10 (10)
N4—C5—C6—C61178.70 (13)C6—C61—C62—Cl623.49 (19)
C5—C6—N7—C7A0.45 (15)C61—C62—C63—C640.9 (2)
C61—C6—N7—C7A178.66 (11)Cl62—C62—C63—C64177.67 (12)
C6—N7—C7A—N40.49 (15)C62—C63—C64—C650.2 (2)
C6—N7—C7A—S1179.99 (13)C63—C64—C65—C660.7 (2)
C5—N4—C7A—N70.36 (16)C64—C65—C66—C610.2 (2)
N3—N4—C7A—N7178.40 (11)C62—C61—C66—C650.9 (2)
C5—N4—C7A—S1179.99 (9)C6—C61—C66—C65178.58 (13)
N3—N4—C7A—S11.25 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C64—H64···Cg10.952.693.6297 (16)135
(III) 6-(3,4-Dichlorophenyl)imidazo[2,1-b][1,3,4]thiadiazole top
Crystal data top
C10H5Cl2N3SZ = 2
Mr = 270.13F(000) = 272
Triclinic, P1Dx = 1.743 Mg m3
a = 5.5186 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.5194 (3) ÅCell parameters from 2453 reflections
c = 12.8406 (5) Åθ = 1.6–28.3°
α = 102.027 (2)°µ = 0.80 mm1
β = 91.293 (2)°T = 200 K
γ = 98.430 (2)°Block, colourless
V = 514.74 (3) Å30.39 × 0.38 × 0.30 mm
Data collection top
Bruker APEXII CCD
diffractometer
2254 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
φ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 77
Tmin = 0.747, Tmax = 0.794k = 109
12326 measured reflectionsl = 1616
2453 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0289P)2 + 0.2696P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2453 reflectionsΔρmax = 0.36 e Å3
145 parametersΔρmin = 0.33 e Å3
Crystal data top
C10H5Cl2N3Sγ = 98.430 (2)°
Mr = 270.13V = 514.74 (3) Å3
Triclinic, P1Z = 2
a = 5.5186 (2) ÅMo Kα radiation
b = 7.5194 (3) ŵ = 0.80 mm1
c = 12.8406 (5) ÅT = 200 K
α = 102.027 (2)°0.39 × 0.38 × 0.30 mm
β = 91.293 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2453 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2254 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.794Rint = 0.017
12326 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.12Δρmax = 0.36 e Å3
2453 reflectionsΔρmin = 0.33 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.38539 (7)0.23816 (5)0.21457 (3)0.02811 (10)
C20.6946 (3)0.3233 (2)0.20847 (12)0.0309 (3)
H20.76010.34340.14340.037*
N30.8315 (2)0.35812 (19)0.29503 (11)0.0315 (3)
N40.6869 (2)0.31365 (16)0.37429 (10)0.0239 (2)
C50.7299 (3)0.31705 (19)0.48029 (11)0.0246 (3)
H50.88080.35500.52150.029*
C60.5040 (2)0.25266 (17)0.51328 (10)0.0197 (2)
N70.3244 (2)0.20853 (16)0.43029 (9)0.0227 (2)
C7A0.4436 (2)0.24777 (18)0.34882 (11)0.0219 (3)
C610.4443 (2)0.22702 (17)0.62041 (10)0.0203 (3)
C620.6141 (3)0.29729 (18)0.70661 (11)0.0230 (3)
H620.76880.36340.69620.028*
C630.5574 (3)0.27087 (19)0.80769 (11)0.0239 (3)
Cl630.77020 (8)0.36636 (6)0.91302 (3)0.04046 (12)
C640.3335 (3)0.17252 (19)0.82416 (11)0.0237 (3)
Cl640.26526 (8)0.12731 (6)0.94788 (3)0.03559 (11)
C650.1627 (3)0.10504 (19)0.73917 (11)0.0261 (3)
H650.00780.03970.75010.031*
C660.2170 (3)0.13257 (18)0.63811 (11)0.0232 (3)
H660.09820.08670.58040.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0326 (2)0.03413 (19)0.01719 (17)0.00065 (14)0.00128 (14)0.00772 (13)
C20.0342 (8)0.0359 (8)0.0253 (7)0.0052 (6)0.0105 (6)0.0123 (6)
N30.0285 (6)0.0405 (7)0.0284 (7)0.0018 (5)0.0098 (5)0.0158 (5)
N40.0220 (6)0.0271 (6)0.0228 (6)0.0002 (4)0.0043 (5)0.0084 (4)
C50.0225 (6)0.0282 (7)0.0223 (7)0.0010 (5)0.0014 (5)0.0076 (5)
C60.0216 (6)0.0191 (6)0.0176 (6)0.0016 (5)0.0001 (5)0.0032 (4)
N70.0228 (6)0.0271 (6)0.0177 (5)0.0009 (4)0.0010 (4)0.0056 (4)
C7A0.0231 (6)0.0236 (6)0.0187 (6)0.0021 (5)0.0010 (5)0.0047 (5)
C610.0239 (6)0.0193 (6)0.0181 (6)0.0044 (5)0.0020 (5)0.0037 (4)
C620.0220 (6)0.0247 (6)0.0211 (6)0.0024 (5)0.0001 (5)0.0031 (5)
C630.0263 (7)0.0273 (7)0.0174 (6)0.0065 (5)0.0037 (5)0.0023 (5)
Cl630.0346 (2)0.0608 (3)0.02111 (19)0.00011 (18)0.00828 (15)0.00398 (16)
C640.0310 (7)0.0255 (6)0.0163 (6)0.0075 (5)0.0030 (5)0.0062 (5)
Cl640.0453 (2)0.0452 (2)0.02001 (18)0.00896 (17)0.00597 (15)0.01367 (15)
C650.0267 (7)0.0268 (7)0.0236 (7)0.0015 (5)0.0031 (6)0.0067 (5)
C660.0252 (7)0.0241 (6)0.0183 (6)0.0003 (5)0.0010 (5)0.0035 (5)
Geometric parameters (Å, º) top
S1—C7A1.7310 (14)C61—C621.3951 (19)
S1—C21.7419 (16)C61—C661.3963 (19)
C2—N31.288 (2)C62—C631.3891 (19)
C2—H20.9500C62—H620.9500
N3—N41.3730 (16)C63—C641.389 (2)
N4—C7A1.3683 (18)C63—Cl631.7319 (14)
N4—C51.3706 (18)C64—C651.385 (2)
C5—C61.3787 (18)C64—Cl641.7308 (13)
C5—H50.9500C65—C661.3885 (18)
C6—N71.3918 (17)C65—H650.9500
C6—C611.4664 (18)C66—H660.9500
N7—C7A1.3105 (17)
C7A—S1—C287.78 (7)C62—C61—C66118.83 (12)
N3—C2—S1117.87 (11)C62—C61—C6120.44 (12)
N3—C2—H2121.1C66—C61—C6120.73 (12)
S1—C2—H2121.1C63—C62—C61120.16 (13)
C2—N3—N4107.53 (12)C63—C62—H62119.9
C7A—N4—C5107.67 (11)C61—C62—H62119.9
C7A—N4—N3118.21 (12)C64—C63—C62120.69 (13)
C5—N4—N3134.12 (12)C64—C63—Cl63120.76 (11)
N4—C5—C6104.11 (12)C62—C63—Cl63118.55 (11)
N4—C5—H5127.9C65—C64—C63119.37 (12)
C6—C5—H5127.9C65—C64—Cl64119.10 (11)
C5—C6—N7111.90 (12)C63—C64—Cl64121.51 (11)
C5—C6—C61127.32 (13)C64—C65—C66120.26 (13)
N7—C6—C61120.78 (12)C64—C65—H65119.9
C7A—N7—C6103.47 (11)C66—C65—H65119.9
N7—C7A—N4112.85 (12)C65—C66—C61120.66 (13)
N7—C7A—S1138.53 (11)C65—C66—H66119.7
N4—C7A—S1108.61 (10)C61—C66—H66119.7
C7A—S1—C2—N30.49 (13)C5—C6—C61—C6210.8 (2)
S1—C2—N3—N40.68 (17)N7—C6—C61—C62170.07 (12)
C2—N3—N4—C7A0.59 (18)C5—C6—C61—C66169.40 (13)
C2—N3—N4—C5178.33 (15)N7—C6—C61—C669.73 (19)
C7A—N4—C5—C60.43 (15)C66—C61—C62—C630.9 (2)
N3—N4—C5—C6179.44 (14)C6—C61—C62—C63179.33 (12)
N4—C5—C6—N70.50 (15)C61—C62—C63—C640.9 (2)
N4—C5—C6—C61179.70 (12)C61—C62—C63—Cl63178.12 (10)
C5—C6—N7—C7A0.36 (15)C62—C63—C64—C651.9 (2)
C61—C6—N7—C7A179.62 (12)Cl63—C63—C64—C65177.06 (11)
C6—N7—C7A—N40.07 (15)C62—C63—C64—Cl64176.50 (11)
C6—N7—C7A—S1178.89 (13)Cl63—C63—C64—Cl644.52 (17)
C5—N4—C7A—N70.24 (16)C63—C64—C65—C661.2 (2)
N3—N4—C7A—N7179.43 (12)Cl64—C64—C65—C66177.23 (11)
C5—N4—C7A—S1178.94 (9)C64—C65—C66—C610.5 (2)
N3—N4—C7A—S10.25 (15)C62—C61—C66—C651.6 (2)
C2—S1—C7A—N7178.75 (17)C6—C61—C66—C65178.64 (12)
C2—S1—C7A—N40.11 (10)
(IV) 6-(4-Fluoro-3-methoxyphenyl)-2-methylimidazo[2,1-b][1,3,4]thiadiazole top
Crystal data top
C12H10FN3OSZ = 4
Mr = 263.29F(000) = 544
Triclinic, P1Dx = 1.521 Mg m3
a = 8.6766 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.7888 (4) ÅCell parameters from 5697 reflections
c = 12.5227 (4) Åθ = 2.2–28.4°
α = 103.039 (2)°µ = 0.29 mm1
β = 95.189 (2)°T = 200 K
γ = 110.365 (2)°Block, colourless
V = 1149.69 (7) Å30.51 × 0.49 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
4829 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
φ and ω scansθmax = 28.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1111
Tmin = 0.761, Tmax = 0.957k = 1515
19758 measured reflectionsl = 1616
5695 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0578P)2 + 0.3149P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
5695 reflectionsΔρmax = 0.38 e Å3
329 parametersΔρmin = 0.24 e Å3
Crystal data top
C12H10FN3OSγ = 110.365 (2)°
Mr = 263.29V = 1149.69 (7) Å3
Triclinic, P1Z = 4
a = 8.6766 (3) ÅMo Kα radiation
b = 11.7888 (4) ŵ = 0.29 mm1
c = 12.5227 (4) ÅT = 200 K
α = 103.039 (2)°0.51 × 0.49 × 0.16 mm
β = 95.189 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
5695 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4829 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 0.957Rint = 0.019
19758 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 0.38 e Å3
5695 reflectionsΔρmin = 0.24 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S110.00646 (4)0.13559 (3)0.37155 (3)0.03362 (10)
C120.08673 (17)0.27326 (13)0.32795 (11)0.0301 (3)
N130.22531 (15)0.35907 (11)0.38809 (9)0.0308 (2)
N140.27389 (14)0.31605 (11)0.47316 (9)0.0285 (2)
C150.40549 (18)0.36681 (13)0.56107 (11)0.0308 (3)
H150.49470.44670.57920.037*
C160.37966 (17)0.27620 (13)0.61728 (11)0.0279 (3)
N170.23394 (15)0.17076 (11)0.56618 (10)0.0314 (3)
C17A0.17615 (17)0.19957 (13)0.48028 (11)0.0285 (3)
C1210.00056 (19)0.28957 (15)0.22791 (12)0.0373 (3)
H12A0.00270.22840.16110.056*
H12B0.05780.37500.22190.056*
H12C0.11570.27610.23480.056*
C1610.48497 (17)0.28344 (13)0.71864 (11)0.0289 (3)
C1620.43884 (17)0.18333 (13)0.76701 (11)0.0289 (3)
H1620.33990.11120.73340.035*
C1630.53600 (17)0.18833 (14)0.86345 (11)0.0305 (3)
C1640.68099 (18)0.29526 (15)0.91037 (12)0.0343 (3)
F1640.77811 (12)0.29987 (10)1.00385 (8)0.0463 (2)
C1650.72848 (19)0.39468 (15)0.86428 (13)0.0380 (3)
H1650.82750.46670.89820.046*
C1660.63049 (19)0.38888 (14)0.76772 (13)0.0350 (3)
H1660.66270.45700.73500.042*
O1630.50367 (13)0.09665 (10)0.91665 (9)0.0379 (2)
C1670.35126 (19)0.01095 (14)0.87181 (13)0.0370 (3)
H17A0.35040.04940.79360.055*
H17B0.25590.01520.87650.055*
H17C0.34310.07220.91460.055*
S210.78227 (5)0.13419 (4)0.62262 (3)0.03651 (11)
C220.94908 (17)0.27885 (14)0.68237 (12)0.0330 (3)
N230.96304 (15)0.36656 (12)0.63253 (10)0.0327 (3)
N240.83426 (14)0.31918 (11)0.54278 (9)0.0300 (2)
C250.79000 (17)0.36683 (13)0.46012 (11)0.0308 (3)
H250.84260.44880.45140.037*
C260.65212 (16)0.26908 (13)0.39250 (11)0.0285 (3)
N270.61083 (14)0.16220 (11)0.43120 (10)0.0311 (3)
C27A0.72405 (17)0.19776 (13)0.52154 (11)0.0299 (3)
C2211.06817 (19)0.29945 (17)0.78443 (13)0.0416 (4)
H22A1.12270.23880.77040.062*
H22B1.00740.28800.84590.062*
H22C1.15300.38520.80430.062*
C2610.55382 (16)0.27107 (13)0.29205 (11)0.0282 (3)
C2620.40568 (16)0.16877 (13)0.23951 (11)0.0287 (3)
H2620.36990.09840.26910.034*
C2630.31052 (17)0.16897 (13)0.14477 (11)0.0301 (3)
C2640.36614 (18)0.27413 (14)0.10393 (12)0.0337 (3)
F2640.27138 (12)0.27444 (9)0.01147 (8)0.0461 (2)
C2650.51152 (19)0.37496 (14)0.15271 (12)0.0349 (3)
H2650.54680.44490.12250.042*
C2660.60700 (17)0.37331 (14)0.24735 (12)0.0327 (3)
H2660.70910.44230.28170.039*
O2630.16416 (13)0.07545 (10)0.08734 (9)0.0384 (2)
C2670.11887 (19)0.04054 (14)0.11693 (13)0.0373 (3)
H27A0.01720.10290.06600.056*
H27B0.09820.02700.19360.056*
H27C0.21010.07130.11150.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S110.03049 (18)0.03356 (19)0.03207 (18)0.00582 (14)0.00091 (13)0.01204 (14)
C120.0296 (6)0.0333 (7)0.0292 (6)0.0121 (6)0.0071 (5)0.0116 (5)
N130.0332 (6)0.0335 (6)0.0275 (6)0.0119 (5)0.0038 (5)0.0138 (5)
N140.0299 (6)0.0280 (6)0.0279 (6)0.0088 (5)0.0048 (4)0.0119 (4)
C150.0310 (7)0.0308 (7)0.0287 (6)0.0086 (6)0.0028 (5)0.0108 (5)
C160.0286 (6)0.0301 (6)0.0269 (6)0.0116 (5)0.0058 (5)0.0104 (5)
N170.0304 (6)0.0322 (6)0.0309 (6)0.0093 (5)0.0040 (5)0.0123 (5)
C17A0.0287 (6)0.0288 (6)0.0287 (6)0.0100 (5)0.0064 (5)0.0104 (5)
C1210.0330 (7)0.0450 (8)0.0337 (7)0.0119 (6)0.0018 (6)0.0166 (6)
C1610.0282 (6)0.0333 (7)0.0295 (6)0.0145 (6)0.0069 (5)0.0118 (5)
C1620.0280 (6)0.0328 (7)0.0279 (6)0.0123 (5)0.0039 (5)0.0116 (5)
C1630.0308 (7)0.0364 (7)0.0293 (7)0.0164 (6)0.0061 (5)0.0124 (6)
C1640.0317 (7)0.0410 (8)0.0300 (7)0.0159 (6)0.0001 (5)0.0079 (6)
F1640.0418 (5)0.0546 (6)0.0377 (5)0.0160 (4)0.0085 (4)0.0136 (4)
C1650.0307 (7)0.0353 (7)0.0406 (8)0.0082 (6)0.0020 (6)0.0067 (6)
C1660.0334 (7)0.0336 (7)0.0376 (7)0.0109 (6)0.0034 (6)0.0133 (6)
O1630.0374 (6)0.0410 (6)0.0356 (5)0.0121 (5)0.0012 (4)0.0190 (5)
C1670.0365 (8)0.0382 (8)0.0380 (8)0.0121 (6)0.0041 (6)0.0183 (6)
S210.03315 (19)0.0365 (2)0.03448 (19)0.00513 (15)0.00028 (14)0.01498 (15)
C220.0257 (6)0.0395 (7)0.0295 (7)0.0066 (6)0.0033 (5)0.0110 (6)
N230.0264 (5)0.0362 (6)0.0281 (6)0.0055 (5)0.0020 (4)0.0080 (5)
N240.0252 (5)0.0301 (6)0.0277 (6)0.0042 (5)0.0002 (4)0.0065 (4)
C250.0279 (6)0.0306 (7)0.0296 (7)0.0074 (5)0.0005 (5)0.0077 (5)
C260.0248 (6)0.0313 (7)0.0274 (6)0.0096 (5)0.0033 (5)0.0067 (5)
N270.0269 (5)0.0312 (6)0.0299 (6)0.0061 (5)0.0012 (4)0.0077 (5)
C27A0.0260 (6)0.0309 (7)0.0285 (6)0.0062 (5)0.0036 (5)0.0076 (5)
C2210.0321 (7)0.0519 (9)0.0352 (8)0.0074 (7)0.0020 (6)0.0183 (7)
C2610.0243 (6)0.0321 (7)0.0266 (6)0.0118 (5)0.0026 (5)0.0044 (5)
C2620.0254 (6)0.0307 (7)0.0288 (6)0.0103 (5)0.0021 (5)0.0073 (5)
C2630.0269 (6)0.0318 (7)0.0295 (6)0.0122 (5)0.0003 (5)0.0046 (5)
C2640.0321 (7)0.0388 (8)0.0316 (7)0.0158 (6)0.0011 (5)0.0106 (6)
F2640.0432 (5)0.0505 (6)0.0418 (5)0.0130 (4)0.0072 (4)0.0208 (4)
C2650.0358 (7)0.0352 (7)0.0362 (7)0.0138 (6)0.0054 (6)0.0147 (6)
C2660.0264 (6)0.0318 (7)0.0361 (7)0.0086 (6)0.0019 (5)0.0073 (6)
O2630.0323 (5)0.0346 (5)0.0404 (6)0.0066 (4)0.0094 (4)0.0112 (4)
C2670.0345 (7)0.0304 (7)0.0393 (8)0.0065 (6)0.0051 (6)0.0088 (6)
Geometric parameters (Å, º) top
S11—C17A1.7297 (14)S21—C27A1.7307 (15)
S11—C121.7605 (14)S21—C221.7531 (15)
C12—N131.2970 (18)C22—N231.3004 (19)
C12—C1211.4849 (19)C22—C2211.4854 (19)
N13—N141.3717 (15)N23—N241.3708 (15)
N14—C17A1.3678 (18)N24—C27A1.3651 (18)
N14—C151.3687 (17)N24—C251.3693 (18)
C15—C161.3740 (19)C25—C261.3759 (18)
C15—H150.9500C25—H250.9500
C16—N171.3978 (17)C26—N271.3940 (18)
C16—C1611.4630 (18)C26—C2611.4641 (18)
N17—C17A1.3075 (18)N27—C27A1.3111 (17)
C121—H12A0.9800C221—H22A0.9800
C121—H12B0.9800C221—H22B0.9800
C121—H12C0.9800C221—H22C0.9800
C161—C1661.393 (2)C261—C2661.394 (2)
C161—C1621.3991 (19)C261—C2621.3963 (18)
C162—C1631.3862 (18)C262—C2631.3838 (18)
C162—H1620.9500C262—H2620.9500
C163—O1631.3559 (17)C263—O2631.3594 (16)
C163—C1641.395 (2)C263—C2641.395 (2)
C164—F1641.3581 (16)C264—F2641.3595 (16)
C164—C1651.374 (2)C264—C2651.366 (2)
C165—C1661.388 (2)C265—C2661.3912 (19)
C165—H1650.9500C265—H2650.9500
C166—H1660.9500C266—H2660.9500
O163—C1671.4318 (18)O263—C2671.4291 (18)
C167—H17A0.9800C267—H27A0.9800
C167—H17B0.9800C267—H27B0.9800
C167—H17C0.9800C267—H27C0.9800
C17A—S11—C1288.62 (6)C27A—S21—C2288.44 (7)
N13—C12—C121122.15 (13)N23—C22—C221121.98 (13)
N13—C12—S11116.10 (10)N23—C22—S21116.53 (11)
C121—C12—S11121.75 (11)C221—C22—S21121.49 (12)
C12—N13—N14108.29 (11)C22—N23—N24107.87 (12)
C17A—N14—C15107.58 (11)C27A—N24—C25107.60 (11)
C17A—N14—N13118.81 (11)C27A—N24—N23118.89 (12)
C15—N14—N13133.59 (12)C25—N24—N23133.45 (12)
N14—C15—C16104.50 (12)N24—C25—C26104.29 (12)
N14—C15—H15127.8N24—C25—H25127.9
C16—C15—H15127.8C26—C25—H25127.9
C15—C16—N17111.51 (12)C25—C26—N27111.80 (12)
C15—C16—C161126.78 (13)C25—C26—C261126.64 (13)
N17—C16—C161121.70 (12)N27—C26—C261121.56 (12)
C17A—N17—C16103.55 (11)C27A—N27—C26103.30 (11)
N17—C17A—N14112.86 (12)N27—C27A—N24113.01 (13)
N17—C17A—S11138.95 (11)N27—C27A—S21138.68 (11)
N14—C17A—S11108.17 (10)N24—C27A—S21108.27 (10)
C12—C121—H12A109.5C22—C221—H22A109.5
C12—C121—H12B109.5C22—C221—H22B109.5
H12A—C121—H12B109.5H22A—C221—H22B109.5
C12—C121—H12C109.5C22—C221—H22C109.5
H12A—C121—H12C109.5H22A—C221—H22C109.5
H12B—C121—H12C109.5H22B—C221—H22C109.5
C166—C161—C162119.56 (13)C266—C261—C262119.44 (12)
C166—C161—C16120.82 (13)C266—C261—C26120.87 (12)
C162—C161—C16119.62 (12)C262—C261—C26119.68 (13)
C163—C162—C161120.69 (13)C263—C262—C261120.61 (13)
C163—C162—H162119.7C263—C262—H262119.7
C161—C162—H162119.7C261—C262—H262119.7
O163—C163—C162125.54 (13)O263—C263—C262125.73 (13)
O163—C163—C164116.19 (12)O263—C263—C264116.04 (12)
C162—C163—C164118.26 (13)C262—C263—C264118.22 (13)
F164—C164—C165119.47 (13)F264—C264—C265119.48 (13)
F164—C164—C163118.54 (13)F264—C264—C263118.02 (13)
C165—C164—C163121.99 (13)C265—C264—C263122.50 (13)
C164—C165—C166119.37 (14)C264—C265—C266118.80 (14)
C164—C165—H165120.3C264—C265—H265120.6
C166—C165—H165120.3C266—C265—H265120.6
C165—C166—C161120.12 (14)C265—C266—C261120.40 (13)
C165—C166—H166119.9C265—C266—H266119.8
C161—C166—H166119.9C261—C266—H266119.8
C163—O163—C167116.49 (11)C263—O263—C267116.68 (11)
O163—C167—H17A109.5O263—C267—H27A109.5
O163—C167—H17B109.5O263—C267—H27B109.5
H17A—C167—H17B109.5H27A—C267—H27B109.5
O163—C167—H17C109.5O263—C267—H27C109.5
H17A—C167—H17C109.5H27A—C267—H27C109.5
H17B—C167—H17C109.5H27B—C267—H27C109.5
C17A—S11—C12—N130.34 (12)C27A—S21—C22—N230.59 (13)
C17A—S11—C12—C121179.48 (12)C27A—S21—C22—C221179.60 (13)
C121—C12—N13—N14179.47 (12)C221—C22—N23—N24179.25 (13)
S11—C12—N13—N140.35 (15)S21—C22—N23—N240.94 (16)
C12—N13—N14—C17A0.18 (17)C22—N23—N24—C27A0.95 (18)
C12—N13—N14—C15178.44 (14)C22—N23—N24—C25177.64 (15)
C17A—N14—C15—C160.19 (15)C27A—N24—C25—C260.17 (15)
N13—N14—C15—C16178.59 (14)N23—N24—C25—C26177.13 (14)
N14—C15—C16—N170.42 (16)N24—C25—C26—N270.27 (16)
N14—C15—C16—C161179.80 (13)N24—C25—C26—C261178.99 (13)
C15—C16—N17—C17A0.47 (16)C25—C26—N27—C27A0.27 (16)
C161—C16—N17—C17A179.89 (12)C261—C26—N27—C27A179.04 (12)
C16—N17—C17A—N140.34 (15)C26—N27—C27A—N240.15 (16)
C16—N17—C17A—S11178.18 (13)C26—N27—C27A—S21177.30 (14)
C15—N14—C17A—N170.10 (16)C25—N24—C27A—N270.01 (17)
N13—N14—C17A—N17178.58 (11)N23—N24—C27A—N27177.49 (12)
C15—N14—C17A—S11178.61 (9)C25—N24—C27A—S21178.01 (9)
N13—N14—C17A—S110.07 (15)N23—N24—C27A—S210.53 (16)
C12—S11—C17A—N17178.12 (17)C22—S21—C27A—N27177.26 (17)
C12—S11—C17A—N140.21 (10)C22—S21—C27A—N240.02 (11)
C15—C16—C161—C1661.3 (2)C25—C26—C261—C2668.0 (2)
N17—C16—C161—C166179.42 (13)N27—C26—C261—C266172.79 (12)
C15—C16—C161—C162178.65 (13)C25—C26—C261—C262172.64 (13)
N17—C16—C161—C1620.7 (2)N27—C26—C261—C2626.6 (2)
C166—C161—C162—C1630.3 (2)C266—C261—C262—C2630.9 (2)
C16—C161—C162—C163179.58 (12)C26—C261—C262—C263179.71 (12)
C161—C162—C163—O163179.52 (13)C261—C262—C263—O263179.49 (13)
C161—C162—C163—C1640.4 (2)C261—C262—C263—C2640.4 (2)
O163—C163—C164—F1640.3 (2)O263—C263—C264—F2640.2 (2)
C162—C163—C164—F164178.97 (12)C262—C263—C264—F264179.35 (12)
O163—C163—C164—C165179.67 (14)O263—C263—C264—C265179.62 (13)
C162—C163—C164—C1650.4 (2)C262—C263—C264—C2651.2 (2)
F164—C164—C165—C166178.95 (13)F264—C264—C265—C266179.91 (13)
C163—C164—C165—C1660.4 (2)C263—C264—C265—C2660.6 (2)
C164—C165—C166—C1610.4 (2)C264—C265—C266—C2610.7 (2)
C162—C161—C166—C1650.3 (2)C262—C261—C266—C2651.5 (2)
C16—C161—C166—C165179.57 (13)C26—C261—C266—C265179.16 (13)
C162—C163—O163—C1673.5 (2)C262—C263—O263—C26710.5 (2)
C164—C163—O163—C167177.32 (13)C264—C263—O263—C267170.39 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N13i0.952.613.551 (2)169
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC10H6ClN3SC11H8ClN3SC10H5Cl2N3SC12H10FN3OS
Mr235.69249.71270.13263.29
Crystal system, space groupTriclinic, P1Orthorhombic, PbcaTriclinic, P1Triclinic, P1
Temperature (K)200200200200
a, b, c (Å)7.5805 (4), 9.7942 (5), 13.6175 (6)7.5567 (3), 11.4589 (5), 24.9006 (11)5.5186 (2), 7.5194 (3), 12.8406 (5)8.6766 (3), 11.7888 (4), 12.5227 (4)
α, β, γ (°)97.712 (2), 96.549 (2), 99.416 (2)90, 90, 90102.027 (2), 91.293 (2), 98.430 (2)103.039 (2), 95.189 (2), 110.365 (2)
V3)978.77 (8)2156.18 (16)514.74 (3)1149.69 (7)
Z4824
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.570.520.800.29
Crystal size (mm)0.39 × 0.37 × 0.290.59 × 0.47 × 0.270.39 × 0.38 × 0.300.51 × 0.49 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Bruker APEXII CCD
diffractometer
Bruker APEXII CCD
diffractometer
Bruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.779, 0.8510.773, 0.8700.747, 0.7940.761, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
16930, 4729, 4168 15450, 2666, 2356 12326, 2453, 2254 19758, 5695, 4829
Rint0.0260.0150.0170.019
(sin θ/λ)max1)0.6680.6670.6670.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.094, 1.03 0.032, 0.086, 1.06 0.027, 0.071, 1.12 0.036, 0.105, 1.05
No. of reflections4729266624535695
No. of parameters271146145329
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.320.31, 0.420.36, 0.330.38, 0.24

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2014) and PLATON (Spek, 2009), SHELXL2014 (Sheldrick, 2014 and PLATON (Spek, 2009), SHELXL2014 (Sheldrick, 2014) and PLATON(Spek, 2009.

Selected geometric parameters (Å, °) for compounds (I)–(IV) top
Parameter(I), molecule 1(I), molecule 2(II)(III)(IV) molecule 1(IV), molecule 2
n =l2nilnil12
Sx1—Cx21.7441 (16)1.7504 (16)1.7491 (15)1.7419 (16)1.7605 (14)1.7531 (15)
Cx2—Nx31.288 (2)1.290 (2)1.2937 (19)1.288 (2)1.2970 (18)1.3004 (19)
Nx3—Nx41.3703 (17)1.3717 (17)1.3731 (16)1.3730 (16)1.3717 (15)1.3708 (15)
Nx4—Cx51.3693 (19)1.3742 (18)1.3686 (17)1.3706 (18)1.3687 (17)1.3693 (18)
Cx5—Cx61.379 (2)1.378 (2)1.3777 (19)1.3787 (18)1.3740 (19)1.3759 (18)
Cx6—Nx71.3997 (18)1.4018 (17)1.3957 (17)1.3918 (17)1.3978 (17)1.3940 (18)
Nx7—Cx7A1.3093 (18)1.3087 (19)1.3082 (17)1.3105 (17)1.3075 (18)1.3111 (17)
Cx7A—Sx11.7287 (15)1.7333 (14)1.7283 (14)1.7310 (14)1.7297 (14)1.7307 (15)
Nx4—Cx7A1.3594 (18)1.3575 (18)1.3583 (17)1.3683 (18)1.3678 (18)1.3651 (18)
Cx63—Ox63—Cx67116.49 (11)116.68 (11)
Cx62—Cx63—Ox63125.54 (13)125.73 (13)
Cx64—Cx63—Ox63116.19 (12)116.04 (12)
Cx62—Cx63—Ox63—Cx67-3.5 (2)-10.5 (2)
Aryl/imidazole1.51 (8)7.28 (8)9,65 (7)10.44 (8)1.05 (8)7.21 (8)
Hydrogen bonds and short intramolecular contacts (Å, °) for compounds (I)–(IV) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C12—H12···N270.952.333.280 (2)178
C25—H25···N23i0.952.613.480 (2)153
C263—H263···N13ii0.952.513.456 (2)179
(II)C64—H64···Cg1iii0.952.903.6297 (16)135
(IV)C15—H15···N13ii0.952.613.551 (2)169
Cg1 represents the centroid of the C61–C66 ring.

Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x-1/2, y, -z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds