Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768103009005/sn0032sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108768103009005/sn0032Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108768103009005/sn0032IIsup3.hkl |
For both compounds, program(s) used to refine structure: (Jana2000; Petricek and Dusek, 2000); software used to prepare material for publication: (Jana2000; Petricek and Dusek, 2000).
Ta30 | Z = 1 |
Mr = 5428.4 | F(000) = 2190 |
Tetragonal, P421m | Dx = 16.316 (3) Mg m−3 |
a = 10.201 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
c = 5.3075 (5) Å | µ = 147.75 mm−1 |
V = 552.30 (9) Å3 |
Oxford Instruments CCD diffractometer | Rint = 0.094 |
Absorption correction: for a sphere (Jana2000; Petricek and Dusek, 2000) | θmax = 28.1°, θmin = 3.8° |
Tmin = 0.028, Tmax = 0.050 | h = −13→13 |
5271 measured reflections | k = −11→13 |
683 independent reflections | l = −6→6 |
474 reflections with I > 3σ(I) |
Refinement on F | Weighting scheme based on measured s.u.'s w = 1/σ2(F) |
R[F2 > 2σ(F2)] = 0.058 | (Δ/σ)max = 0.001 |
wR(F2) = 0.040 | Δρmax = 24.22 e Å−3 |
S = 3.93 | Δρmin = −11.35 e Å−3 |
474 reflections | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
24 parameters | Extinction coefficient: 0.000648 |
x | y | z | Uiso*/Ueq | ||
Ta1 | 0.5 | 0 | 0.247 | 0.0050 (15) | |
Ta2 | 0.7611 (3) | 0.0674 (3) | 0.2463 | 0.005 | |
Ta3 | 0.0343 (3) | 0.1286 (3) | 0.2415 | 0.0041 (9) | |
Ta4 | 0.1043 (3) | −0.6043 (3) | 0.245 | 0.0046 (10) | |
Ta5 | 0.81862 (16) | 0.31863 (16) | 0 | 0.0058 (5) | |
Ta6 | 0.81862 (16) | 0.31863 (16) | 0.5 | 0.0058 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ta1 | 0.0069 (19) | 0.0069 (19) | 0.001 (4) | 0.001 (2) | 0 | 0 |
Ta2 | 0.005588 | 0.007159 | 0.002218 | 0.000216 | −0.00034 | −0.003739 |
Ta3 | 0.0078 (14) | 0.0037 (15) | 0.0007 (17) | −0.0015 (10) | 0.000 (5) | −0.001 (5) |
Ta4 | 0.0066 (14) | 0.0066 (14) | 0.001 (2) | −0.0002 (17) | 0.001 (6) | −0.001 (6) |
Ta5 | 0.0076 (6) | 0.0076 (6) | 0.0022 (11) | 0.0022 (14) | 0 | 0 |
Ta6 | 0.0076 (6) | 0.0076 (6) | 0.0022 (11) | 0.0022 (14) | 0 | 0 |
Ta1—Ta1i | 5.3075 | Ta2—Ta4viii | 5.646 (5) |
Ta1—Ta1ii | 5.3075 | Ta2—Ta5 | 2.936 (3) |
Ta1—Ta2i | 5.9813 (15) | Ta2—Ta5ii | 4.786 (2) |
Ta1—Ta2 | 2.751 (3) | Ta2—Ta5iii | 4.841 (3) |
Ta1—Ta2ii | 5.9747 (15) | Ta2—Ta5xxxviii | 5.950 (4) |
Ta1—Ta2iii | 5.680 (3) | Ta2—Ta5xl | 5.967 (4) |
Ta1—Ta2iv | 5.713 (3) | Ta2—Ta5xiii | 2.969 (3) |
Ta1—Ta2v | 5.680 (3) | Ta2—Ta5xiv | 4.807 (2) |
Ta1—Ta2vi | 5.713 (3) | Ta2—Ta6i | 4.754 (2) |
Ta1—Ta2vii | 5.9813 (15) | Ta2—Ta6 | 2.953 (3) |
Ta1—Ta2viii | 2.751 (3) | Ta2—Ta6iv | 4.851 (3) |
Ta1—Ta2ix | 5.9747 (15) | Ta2—Ta6xxxix | 5.959 (4) |
Ta1—Ta2x | 5.9813 (15) | Ta2—Ta6xl | 5.975 (4) |
Ta1—Ta2xi | 2.751 (3) | Ta2—Ta6xiii | 4.774 (2) |
Ta1—Ta2xii | 5.9747 (15) | Ta2—Ta6xiv | 2.986 (3) |
Ta1—Ta2xiii | 5.680 (3) | Ta3—Ta3i | 5.3075 |
Ta1—Ta2xiv | 5.713 (3) | Ta3—Ta3ii | 5.3075 |
Ta1—Ta2xv | 5.680 (3) | Ta3—Ta3xxi | 3.203 (3) |
Ta1—Ta2xvi | 5.713 (3) | Ta3—Ta3xxii | 3.349 (3) |
Ta1—Ta2xvii | 5.9813 (15) | Ta3—Ta3xliv | 5.962 (2) |
Ta1—Ta2xviii | 2.751 (3) | Ta3—Ta3xxv | 2.716 (5) |
Ta1—Ta2xix | 5.9747 (15) | Ta3—Ta3xlv | 5.962 (2) |
Ta1—Ta3 | 4.929 (3) | Ta3—Ta3xi | 4.863 (5) |
Ta1—Ta3xx | 5.606 (3) | Ta3—Ta3xlvi | 3.203 (3) |
Ta1—Ta3xxi | 4.604 (3) | Ta3—Ta3xlvii | 3.349 (3) |
Ta1—Ta3xxii | 4.674 (3) | Ta3—Ta3xlviii | 5.852 (5) |
Ta1—Ta3xxiii | 4.604 (3) | Ta3—Ta4xlix | 5.992 (2) |
Ta1—Ta3xxiv | 4.674 (3) | Ta3—Ta4xxxii | 2.816 (5) |
Ta1—Ta3xxv | 5.606 (3) | Ta3—Ta4xxxiii | 5.090 (4) |
Ta1—Ta3viii | 4.929 (3) | Ta3—Ta4xxxiv | 5.164 (4) |
Ta1—Ta3xxvi | 5.606 (3) | Ta3—Ta4l | 5.096 (4) |
Ta1—Ta3xi | 4.929 (3) | Ta3—Ta4li | 5.170 (4) |
Ta1—Ta3xxvii | 4.604 (3) | Ta3—Ta4lii | 5.532 (5) |
Ta1—Ta3xxviii | 4.674 (3) | Ta3—Ta4xxv | 5.054 (5) |
Ta1—Ta3xxix | 4.604 (3) | Ta3—Ta5liii | 3.200 (3) |
Ta1—Ta3xxx | 4.674 (3) | Ta3—Ta5liv | 4.980 (2) |
Ta1—Ta3xviii | 4.929 (3) | Ta3—Ta5iii | 3.216 (3) |
Ta1—Ta3xxxi | 5.606 (3) | Ta3—Ta5iv | 4.991 (2) |
Ta1—Ta4xxxii | 5.708 (3) | Ta3—Ta5viii | 4.971 (4) |
Ta1—Ta4xxxiii | 3.0141 (16) | Ta3—Ta5lv | 5.974 (4) |
Ta1—Ta4xxxiv | 3.0875 (16) | Ta3—Ta5lvi | 4.960 (4) |
Ta1—Ta4xxxv | 3.0141 (16) | Ta3—Ta6lvii | 4.908 (2) |
Ta1—Ta4xxxvi | 3.0875 (16) | Ta3—Ta6liii | 3.237 (3) |
Ta1—Ta4xxxvii | 5.708 (3) | Ta3—Ta6iii | 4.918 (2) |
Ta1—Ta5 | 4.7799 (15) | Ta3—Ta6iv | 3.253 (3) |
Ta1—Ta5iii | 2.9267 (14) | Ta3—Ta6viii | 4.995 (4) |
Ta1—Ta5iv | 4.7768 (9) | Ta3—Ta6lv | 5.994 (4) |
Ta1—Ta5viii | 4.7799 (15) | Ta3—Ta6lviii | 4.984 (4) |
Ta1—Ta5xiii | 2.9267 (14) | Ta4—Ta4i | 5.3075 |
Ta1—Ta5xiv | 4.7768 (9) | Ta4—Ta4ii | 5.3075 |
Ta1—Ta6 | 4.7887 (15) | Ta4—Ta4lii | 3.010 (5) |
Ta1—Ta6iii | 4.7504 (9) | Ta4—Ta5lix | 3.287 (3) |
Ta1—Ta6iv | 2.9409 (14) | Ta4—Ta5lx | 5.017 (2) |
Ta1—Ta6viii | 4.7887 (15) | Ta4—Ta5xxi | 3.354 (3) |
Ta1—Ta6xiii | 4.7504 (9) | Ta4—Ta5xxii | 5.061 (2) |
Ta1—Ta6xiv | 2.9409 (14) | Ta4—Ta5viii | 3.287 (3) |
Ta2—Ta2i | 5.3075 | Ta4—Ta5ix | 5.017 (2) |
Ta2—Ta2ii | 5.3075 | Ta4—Ta6lxi | 4.975 (2) |
Ta2—Ta2xxxviii | 4.434 (4) | Ta4—Ta6lix | 3.308 (3) |
Ta2—Ta2xxxix | 4.481 (4) | Ta4—Ta6xxi | 5.019 (2) |
Ta2—Ta2viii | 5.502 (5) | Ta4—Ta6xxii | 3.375 (3) |
Ta2—Ta2xl | 5.065 (5) | Ta4—Ta6vii | 4.975 (2) |
Ta2—Ta2xi | 4.740 (5) | Ta4—Ta6viii | 3.308 (3) |
Ta2—Ta2xiii | 4.434 (4) | Ta5—Ta5i | 5.3075 |
Ta2—Ta2xiv | 4.481 (4) | Ta5—Ta5ii | 5.3075 |
Ta2—Ta2xv | 5.736 (4) | Ta5—Ta5iii | 5.289 (2) |
Ta2—Ta2xvi | 5.772 (4) | Ta5—Ta5xxxviii | 5.289 (2) |
Ta2—Ta2xli | 5.736 (4) | Ta5—Ta5lxii | 5.233 (2) |
Ta2—Ta2xlii | 5.772 (4) | Ta5—Ta5xiii | 5.289 (2) |
Ta2—Ta2xvii | 5.998 (2) | Ta5—Ta5xxvii | 5.289 (2) |
Ta2—Ta2xviii | 2.794 (5) | Ta5—Ta6i | 2.6537 |
Ta2—Ta2xix | 5.998 (2) | Ta5—Ta6 | 2.6537 |
Ta2—Ta3xx | 2.856 (5) | Ta5—Ta6iii | 5.918 (2) |
Ta2—Ta3xxxiii | 4.673 (4) | Ta5—Ta6iv | 5.918 (2) |
Ta2—Ta3xxxiv | 4.746 (4) | Ta5—Ta6xxxviii | 5.918 (2) |
Ta2—Ta3xxiii | 4.655 (4) | Ta5—Ta6xxxix | 5.918 (2) |
Ta2—Ta3xxiv | 4.728 (4) | Ta5—Ta6lxiii | 5.868 (2) |
Ta2—Ta3viii | 2.891 (5) | Ta5—Ta6lxii | 5.868 (2) |
Ta2—Ta3xi | 5.684 (5) | Ta5—Ta6xiii | 5.918 (2) |
Ta2—Ta3xxvii | 2.8433 (19) | Ta5—Ta6xiv | 5.918 (2) |
Ta2—Ta3xxviii | 2.9612 (19) | Ta5—Ta6xxvii | 5.918 (2) |
Ta2—Ta3xxix | 5.985 (4) | Ta5—Ta6xxviii | 5.918 (2) |
Ta2—Ta3xviii | 5.604 (5) | Ta6—Ta6i | 5.3075 |
Ta2—Ta3xxxi | 4.951 (5) | Ta6—Ta6ii | 5.3075 |
Ta2—Ta4xliii | 4.845 (5) | Ta6—Ta6iv | 5.289 (2) |
Ta2—Ta4xxxiii | 4.875 (4) | Ta6—Ta6xxxix | 5.289 (2) |
Ta2—Ta4xxxiv | 4.925 (4) | Ta6—Ta6lxii | 5.233 (2) |
Ta2—Ta4xxxv | 3.082 (2) | Ta6—Ta6xiv | 5.289 (2) |
Ta2—Ta4xxxvi | 3.160 (2) | Ta6—Ta6xxviii | 5.289 (2) |
Ta2—Ta4xxxvii | 4.920 (5) |
Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1; (iii) y, −x+1, −z; (iv) y, −x+1, −z+1; (v) x−1/2, −y+1/2, −z; (vi) x−1/2, −y+1/2, −z+1; (vii) −x+1, −y, z−1; (viii) −x+1, −y, z; (ix) −x+1, −y, z+1; (x) −y+1/2, −x+1/2, z−1; (xi) −y+1/2, −x+1/2, z; (xii) −y+1/2, −x+1/2, z+1; (xiii) −y+1, x−1, −z; (xiv) −y+1, x−1, −z+1; (xv) −x+3/2, y−1/2, −z; (xvi) −x+3/2, y−1/2, −z+1; (xvii) y+1/2, x−1/2, z−1; (xviii) y+1/2, x−1/2, z; (xix) y+1/2, x−1/2, z+1; (xx) x+1, y, z; (xxi) y, −x, −z; (xxii) y, −x, −z+1; (xxiii) x+1/2, −y+1/2, −z; (xxiv) x+1/2, −y+1/2, −z+1; (xxv) −x, −y, z; (xxvi) −y+1/2, −x−1/2, z; (xxvii) −y+1, x, −z; (xxviii) −y+1, x, −z+1; (xxix) −x+1/2, y−1/2, −z; (xxx) −x+1/2, y−1/2, −z+1; (xxxi) y+1/2, x+1/2, z; (xxxii) x, y+1, z; (xxxiii) y+1, −x, −z; (xxxiv) y+1, −x, −z+1; (xxxv) x+1/2, −y−1/2, −z; (xxxvi) x+1/2, −y−1/2, −z+1; (xxxvii) −x+1, −y−1, z; (xxxviii) y+1, −x+1, −z; (xxxix) y+1, −x+1, −z+1; (xl) −x+2, −y, z; (xli) −x+3/2, y+1/2, −z; (xlii) −x+3/2, y+1/2, −z+1; (xliii) x+1, y+1, z; (xliv) −x, −y, z−1; (xlv) −x, −y, z+1; (xlvi) −y, x, −z; (xlvii) −y, x, −z+1; (xlviii) y−1/2, x+1/2, z; (xlix) x, y+1, z−1; (l) x−1/2, −y−1/2, −z; (li) x−1/2, −y−1/2, −z+1; (lii) −x, −y−1, z; (liii) x−1, y, z; (liv) x−1, y, z+1; (lv) −x+1, −y+1, z; (lvi) −y, x−1, −z; (lvii) x−1, y, z−1; (lviii) −y, x−1, −z+1; (lix) x−1, y−1, z; (lx) x−1, y−1, z+1; (lxi) x−1, y−1, z−1; (lxii) −x+2, −y+1, z; (lxiii) −x+2, −y+1, z−1. |
30.0Ta | Dx = 16.417 (1) Mg m−3 |
Mr = 5428.4 | Synchrotron radiation, λ = 0.70013 Å |
Tetragonal, P4 | Cell parameters from 8379 reflections |
a = 10.1815 (5) Å | θ = 3.8–30.5° |
c = 5.2950 (1) Å | µ = 148.66 mm−1 |
V = 548.90 (4) Å3 | T = 120 K |
Z = 1 | Isometric irregular, silver |
F(000) = 2190 | 0.02 × 0.02 × 0.02 × 0.02 (radius) mm |
MAR345 diffractometer | 1708 independent reflections |
Radiation source: bending magnet 1 at ESRF | 1530 reflections with I > 3σ(I) |
Si(111) double crystal monochromator with bent second crystal for sagital focusing | Rint = 0.082 |
Detector resolution: 6.667 pixels mm-1 | θmax = 30.5°, θmin = 3.8° |
φ–scans | h = −14→14 |
Absorption correction: for a sphere | k = −14→14 |
Tmin = 0.024, Tmax = 0.049 | l = −7→7 |
8379 measured reflections |
Refinement on F | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
R[F2 > 2σ(F2)] = 0.036 | (Δ/σ)max = 0.001 |
wR(F2) = 0.050 | Δρmax = 11.04 e Å−3 |
S = 1.74 | Δρmin = −9.89 e Å−3 |
1530 reflections | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
72 parameters | Extinction coefficient: 0.0009 (3) |
Experimental. The wavelength was calibrated with a standard Si powder pattern. All reflections were involved in a global scaling procedure to correct for beam decay (the measurements were performed on a synchrotron) and inhomogeneities (in beam, sample mount absorption etc.). No assumptions were made about the sample symmetry were made in the scaling procedure, i.e. only repeated measurements were considered equivalent and Friedel's law was not assumed valid. Cell parameters were determined in a refinement of cell parameters, setting angles and mosaicity after scaling (Otwinowski & Minor, 1997). |
x | y | z | Uiso*/Ueq | ||
Ta1 | 0.5 | 0 | 0.2548 (5) | 0.0054 (3) | |
Ta2a | 0.75963 (10) | 0.06646 (7) | 0.2493 (4) | 0.0055 (3) | |
Ta2b | 0.43251 (8) | −0.26252 (9) | 0.2521 (5) | 0.0056 (3) | |
Ta3a | 0.03408 (9) | 0.12735 (10) | 0.2519 (5) | 0.0054 (3) | |
Ta3b | 0.37007 (9) | −0.53527 (9) | 0.2488 (5) | 0.0057 (3) | |
Ta4 | 0.10620 (9) | −0.60509 (9) | 0.2513 (4) | 0.0056 (3) | |
Ta5 | 0.81809 (3) | 0.31809 (3) | 0 | 0.00567 (15) | |
Ta6 | 0.81809 (3) | 0.3181 | 0.5 | 0.00567 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ta1 | 0.0035 (7) | 0.0071 (7) | 0.0056 (3) | −0.0009 (2) | 0 | 0 |
Ta2a | 0.0066 (5) | 0.0057 (6) | 0.0040 (6) | −0.0048 (3) | 0.0013 (9) | −0.0010 (9) |
Ta2b | 0.0054 (5) | 0.0039 (5) | 0.0075 (6) | 0.0040 (3) | 0.0012 (9) | 0.0006 (8) |
Ta3a | 0.0064 (4) | 0.0062 (5) | 0.0036 (5) | −0.0008 (3) | −0.0010 (8) | −0.0010 (9) |
Ta3b | 0.0035 (5) | 0.0052 (4) | 0.0083 (7) | 0.0006 (3) | −0.0036 (8) | 0.0006 (9) |
Ta4 | 0.0068 (5) | 0.0041 (5) | 0.0059 (3) | −0.00047 (16) | −0.0002 (10) | 0.0009 (10) |
Ta5 | 0.0056 (3) | 0.0062 (3) | 0.0052 (3) | 0.00029 (9) | 0 | 0 |
Ta6 | 0.0056 (3) | 0.0062 (3) | 0.0052 (3) | 0.00029 (9) | 0 | 0 |
Ta1—Ta2a | 2.7289 (10) | Ta2b—Ta6i | 2.9245 (13) |
Ta1—Ta2ai | 2.7289 (10) | Ta2b—Ta6ix | 2.9739 (13) |
Ta1—Ta2b | 2.7598 (9) | Ta3a—Ta3axiv | 3.274 (3) |
Ta1—Ta2bi | 2.7598 (9) | Ta3a—Ta3axv | 3.242 (3) |
Ta1—Ta4ii | 3.081 (3) | Ta3a—Ta3axvi | 2.6844 (14) |
Ta1—Ta4iii | 3.026 (3) | Ta3a—Ta3aiv | 3.274 (3) |
Ta1—Ta4iv | 3.081 (3) | Ta3a—Ta3av | 3.242 (3) |
Ta1—Ta4v | 3.026 (3) | Ta3a—Ta4xvii | 2.8214 (14) |
Ta1—Ta5vi | 2.9462 (12) | Ta3a—Ta5xviii | 3.2227 (13) |
Ta1—Ta5vii | 2.9462 (12) | Ta3a—Ta5vi | 3.2325 (13) |
Ta1—Ta6viii | 2.9235 (11) | Ta3a—Ta6xviii | 3.2146 (13) |
Ta1—Ta6ix | 2.9235 (11) | Ta3a—Ta6viii | 3.2244 (13) |
Ta2a—Ta2bi | 2.7950 (12) | Ta3b—Ta3bii | 3.271 (3) |
Ta2a—Ta3ax | 2.8622 (14) | Ta3b—Ta3biii | 3.291 (3) |
Ta2a—Ta3ai | 2.8819 (13) | Ta3b—Ta3bxiii | 2.7414 (13) |
Ta2a—Ta3axi | 2.911 (3) | Ta3b—Ta3bxix | 3.271 (3) |
Ta2a—Ta3axii | 2.900 (3) | Ta3b—Ta3bxx | 3.291 (3) |
Ta2a—Ta4iv | 3.109 (3) | Ta3b—Ta4 | 2.7791 (13) |
Ta2a—Ta4v | 3.103 (3) | Ta3b—Ta5xiv | 3.2106 (14) |
Ta2a—Ta5 | 2.9430 (12) | Ta3b—Ta5i | 3.2087 (14) |
Ta2a—Ta5vii | 2.9604 (12) | Ta3b—Ta6xv | 3.2157 (14) |
Ta2a—Ta6 | 2.9461 (12) | Ta3b—Ta6i | 3.2138 (14) |
Ta2a—Ta6ix | 2.9635 (12) | Ta4—Ta4xxi | 3.0424 (13) |
Ta2b—Ta3b | 2.8489 (13) | Ta4—Ta5xxii | 3.3146 (12) |
Ta2b—Ta3bii | 2.888 (3) | Ta4—Ta5xiv | 3.3358 (12) |
Ta2b—Ta3biii | 2.879 (3) | Ta4—Ta5i | 3.3019 (12) |
Ta2b—Ta3bxiii | 2.8773 (13) | Ta4—Ta6xxii | 3.3092 (12) |
Ta2b—Ta4ii | 3.128 (3) | Ta4—Ta6xv | 3.3304 (12) |
Ta2b—Ta4iii | 3.097 (3) | Ta4—Ta6i | 3.2965 (12) |
Ta2b—Ta5i | 2.9347 (13) | Ta5—Ta6xxiii | 2.6475 |
Ta2b—Ta5vii | 2.9839 (13) | Ta5—Ta6 | 2.6475 |
Symmetry codes: (i) −x+1, −y, z; (ii) y+1, −x, −z; (iii) y+1, −x, −z+1; (iv) −y, x, −z; (v) −y, x, −z+1; (vi) y, −x+1, −z; (vii) −y+1, x−1, −z; (viii) y, −x+1, −z+1; (ix) −y+1, x−1, −z+1; (x) x+1, y, z; (xi) −y+1, x, −z; (xii) −y+1, x, −z+1; (xiii) −x+1, −y−1, z; (xiv) y, −x, −z; (xv) y, −x, −z+1; (xvi) −x, −y, z; (xvii) x, y+1, z; (xviii) x−1, y, z; (xix) −y, x−1, −z; (xx) −y, x−1, −z+1; (xxi) −x, −y−1, z; (xxii) x−1, y−1, z; (xxiii) x, y, z−1. |