Download citation
Download citation
link to html
The title compound, [Cu2Fe3(C5H5)3(C2H3O2)(C6H4O2)3(C3H7NO)2], belongs to the classic dimeric paddle-wheel structure type. It is an unusual example in that it contains two different carboxyl­ate groups, viz. ferrocenecarboxyl­ate and acetate. With three ferrocenecarboxyl­ate groups and only one acetate group bridging the two Cu centres, a noncentrosymmetric mol­ecular arrangement results.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107044952/sq3093sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107044952/sq3093Isup2.hkl
Contains datablock I

CCDC reference: 682794

Comment top

The dimeric copper(II) carboxylates and their adducts, [Cu2(O2CR)2L2], have played a major role in copper(II) carboxylate chemistry (Agterberg et al., 1997; Moulton et al., 2003). The related complexes have received much attention because of their potential use as anti-inflammatory drugs (Demertzi et al., 2004; Weder et al., 2004). In addition, such complexes are good models for the investigation of the exchange interaction between paramagnetic centres in discrete molecules (Costa et al., 1998). The polarizability of the R group on the carboxylate has a vital relationship with the magnitude of the magnetic interaction (Porter & Doedens, 1984; Schlam et al., 2000). While the ferrocenyl unit itself always affects electron interactions in compounds, in this case it may help to probe the influence of the substituent R on the magnetic behaviour. Moreover, compounds containing ferrocenyl units always show some unusual properties and have potential applications in the field of materials science, such as molecular sensors (Beer, 1992), molecular magnets (Miller & Epstein, 1994) and nonlinear optical materials (Long, 1995). Dinuclear copper(II) complexes with two different kinds of carboxylate groups still remain rare, especially ones with bulky carboxylate groups like ferrocenecarboxylate (Churchill et al., 1985), which may be due to the existence of evident steric hindrance. We report here the synthesis and crystal structure of the title dimeric copper(II) carboxylate, (I), with ferrocenecarboxylate and acetate groups.

Only one noncentrosymmetric dimeric copper(II) carboxylate, Cu2{µ-[(CO)9Co33-CCO2)]}3[µ-(CH3CO2)][OC4H8]2 (Banares et al., 1985), has been reported to date, according to the Cambridge Structural Database (CONQUEST, Version 1.3, updated May 2007; Bruno et al., 2002). Thus, complex (I) represents the second example.

In complex (I), the asymmetric unit contains two crystallographically independent CuII ions, three ferrocenecarboxylate groups, one acetate group and two dimethylformamide (DMF) molecules. The two CuII centres are separated by 2.618 (28) Å, and each CuII centre has a square-pyramidal coordination environment, with four O atoms from three ferrocenecarboxylate groups and one acetate group in the basal plane, and an O atom from a DMF molecule in the apical position. As expected, the apical Cu—ODMF distances are notably longer than the basal ones between Cu and the O atoms from the carboxylate groups.

The novel character of (I) lies in its noncentrosymmetric structure type, which is still very rare in this classical kind of complex. In (I), there are three ferrocenecarboxylate groups and only one acetate group. The ferrocene substituents on the carboxylate ligands that are trans to each other are oriented to the same side of the Cu···Cu line, and the less bulky methyl substituent of the acetate ligand is located in the space between the two ferrocene units (Fig. 1). The arrangement of the ferrocenecarboxylate groups is therefore different from that in the centrosymmetric compound tetrakis(ferrocenecarboxylato)bis(tetrahydrofuran)copper(II) reported by Churchill et al. (1985), in which the four ferrocene units are arranged in a clockwise mode.

There is also a noticeable difference between the conformations of the coordination of the CuII and carboxylate O atoms of (I) and the Churchill complex. In the previously reported complex, the two CuII centres and the coordinated O atoms belonging to the same carboxylate group are nearly located in the same plane, with O—Cu—Cu—O torsion angles between them of -1.89 (30) and 0.83 (30)° for the two independent carboxylate groups. By contrast, in (I) the four corresponding torsion angles are distinctly larger: 15.01 (21), 14.43 (21), 14.04 (21) and 15.01 (19)°. The obvious variance may due to the different steric hindrance in the complexes. Perhaps as a result of the smaller steric hindrance, the O—Cu—Cu—O torsion angles of the other noncentrosymmetric dimeric copper(II) carboxylate (Banares et al., 1985) are also distinctly smaller than complex (I), with values ranging from -3.97 (29) to 4.57 (29)°.

Related literature top

For related literature, see: Agterberg et al. (1997); Banares et al. (1985); Beer (1992); Bruno et al. (2002); Churchill et al. (1985); Costa et al. (1998); Demertzi et al. (2004); Long (1995); Miller & Epstein (1994); Moulton et al. (2003); Porter & Doedens (1984); Schlam et al. (2000); Sheldrick (1997); Weder et al. (2004).

Experimental top

For the preparation of (I), ferrocenecarboxylic acid (0.046 g, 0.02 mmol) and NaHCO3 (0.017 g, 0.02 mmol) were dissolved in a mixture of CH3OH (10 ml) and dimethylformamide (DMF; 2 ml). The solution was stirred for 1 h at room temperature. Cu(OAc)2·H2O (0.020 g, 0.01 mmol) was then added and the resulting solution was stirred for 3 h. All the volatiles were removed under vacuum and the residue was dissolved in a mixture of CH2Cl2 and DMF (v/v = 5:2). The resulting solution was allowed to stand at room temperature for about 7 d, after which rhombic crystals of (I) were collected for X-ray analysis.

Refinement top

H atoms bonded to C atoms were refined in idealized positions using the riding-model approximation, with C—H = 0.93 (Cp) and 0.96 Å (methyl), and with Uiso(H) = 1.2Ueq(C). Atoms C29, C30, C31, C32 and C33 of one Cp group were refined with the same anisotropic displacement parameters using the EADP instruction in SHELXL97 (Sheldrick, 1997). The same operation was also carried out on the methyl C atoms of the DMF molecules (C37, C38, C40 and C41).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: RAPID-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1993); software used to prepare material for publication: SHELXL97/2 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme and 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
µ2-Acetato-κ2O:O'-tris(µ2-ferrocenecarboxylato-κ2O:O')bis[(N,N-dimethylformamide-κO)copper(II)] top
Crystal data top
[Cu2Fe3(C5H5)3(C2H3O2)(C6H4O2)3(C3H7NO)2]Z = 2
Mr = 1019.41F(000) = 1040
Triclinic, P1Dx = 1.666 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.948 (2) ÅCell parameters from 14862 reflections
b = 13.548 (3) Åθ = 3.1–27.5°
c = 15.828 (3) ŵ = 2.14 mm1
α = 108.96 (3)°T = 298 K
β = 94.57 (3)°Rhombic, green
γ = 110.33 (3)°0.30 × 0.26 × 0.26 mm
V = 2032.3 (10) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
9106 independent reflections
Radiation source: rotating anode6613 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
oscillation scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1413
Tmin = 0.567, Tmax = 0.607k = 1717
19821 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0962P)2 + 3.4415P]
where P = (Fo2 + 2Fc2)/3
9106 reflections(Δ/σ)max < 0.001
486 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 1.39 e Å3
Crystal data top
[Cu2Fe3(C5H5)3(C2H3O2)(C6H4O2)3(C3H7NO)2]γ = 110.33 (3)°
Mr = 1019.41V = 2032.3 (10) Å3
Triclinic, P1Z = 2
a = 10.948 (2) ÅMo Kα radiation
b = 13.548 (3) ŵ = 2.14 mm1
c = 15.828 (3) ÅT = 298 K
α = 108.96 (3)°0.30 × 0.26 × 0.26 mm
β = 94.57 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
9106 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
6613 reflections with I > 2σ(I)
Tmin = 0.567, Tmax = 0.607Rint = 0.045
19821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.05Δρmax = 0.76 e Å3
9106 reflectionsΔρmin = 1.39 e Å3
486 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.61220 (6)0.29677 (5)0.14850 (4)0.02853 (16)
Cu20.87075 (6)0.35953 (5)0.16691 (4)0.02790 (16)
Fe20.73811 (9)0.15331 (7)0.19309 (5)0.0366 (2)
Fe10.76655 (8)0.22841 (7)0.46343 (5)0.0373 (2)
Fe30.74862 (10)0.73109 (8)0.36609 (7)0.0506 (2)
O30.8335 (4)0.3589 (3)0.0433 (2)0.0351 (8)
O70.8240 (4)0.1930 (3)0.1141 (3)0.0381 (8)
O60.6555 (4)0.4598 (3)0.1752 (3)0.0359 (8)
O40.6113 (4)0.2705 (3)0.0184 (2)0.0380 (8)
O50.8760 (4)0.5149 (3)0.2192 (3)0.0388 (9)
O20.6557 (4)0.3314 (4)0.2820 (2)0.0420 (9)
O10.8682 (4)0.3497 (4)0.2867 (2)0.0402 (9)
O80.6111 (4)0.1451 (3)0.1259 (3)0.0398 (9)
O100.3985 (4)0.2433 (4)0.1349 (3)0.0463 (10)
O91.0815 (4)0.4089 (4)0.1694 (3)0.0442 (9)
N11.2437 (6)0.4268 (6)0.0902 (5)0.0675 (18)
N20.2132 (7)0.2176 (6)0.1945 (6)0.0697 (19)
C10.7695 (6)0.3445 (4)0.3222 (3)0.0343 (11)
C20.7867 (6)0.3563 (5)0.4188 (4)0.0395 (12)
C30.9086 (7)0.3769 (5)0.4743 (4)0.0460 (14)
H30.98860.38470.45550.055*
C40.8882 (8)0.3834 (5)0.5624 (4)0.0548 (17)
H40.95230.39770.61190.066*
C50.7540 (9)0.3645 (6)0.5617 (4)0.0573 (18)
H50.71320.36260.61090.069*
C60.6905 (8)0.3487 (6)0.4738 (4)0.0521 (16)
H60.60150.33570.45550.063*
C70.6141 (8)0.0739 (7)0.4289 (6)0.068 (2)
H70.52520.06070.43040.082*
C80.7128 (10)0.0913 (6)0.5000 (5)0.069 (2)
H80.70040.09210.55770.083*
C90.8316 (9)0.1072 (6)0.4718 (6)0.069 (2)
H90.91230.11960.50600.083*
C100.8074 (9)0.1012 (6)0.3804 (6)0.068 (2)
H100.87040.11000.34430.082*
C110.6745 (8)0.0800 (6)0.3539 (5)0.0597 (18)
H110.63230.07120.29700.072*
C120.7189 (5)0.3073 (4)0.0066 (3)0.0301 (10)
C130.7077 (5)0.2853 (4)0.1057 (3)0.0314 (10)
C140.8150 (6)0.3260 (5)0.1483 (4)0.0387 (12)
H140.90260.37490.11830.046*
C150.7639 (7)0.2787 (5)0.2438 (4)0.0483 (15)
H150.81200.29000.28810.058*
C160.6262 (7)0.2108 (5)0.2599 (4)0.0459 (14)
H160.56850.17010.31700.055*
C170.5908 (6)0.2146 (5)0.1762 (4)0.0403 (12)
H170.50610.17760.16810.048*
C180.6875 (9)0.0107 (6)0.1635 (7)0.068 (2)
H180.61540.01700.13830.082*
C190.6858 (10)0.0179 (7)0.2583 (7)0.077 (3)
H190.61320.06720.30650.092*
C200.8156 (10)0.0431 (7)0.2648 (5)0.070 (2)
H200.84400.04130.31890.084*
C210.8948 (7)0.1067 (6)0.1768 (5)0.0547 (16)
H210.98490.15400.16210.066*
C220.8153 (8)0.0872 (6)0.1148 (5)0.0521 (16)
H220.84310.11980.05140.062*
C230.7722 (5)0.5336 (4)0.2103 (3)0.0316 (10)
C240.7895 (6)0.6546 (5)0.2447 (4)0.0390 (12)
C250.9056 (7)0.7480 (6)0.3031 (5)0.0557 (17)
H250.98560.74440.32310.067*
C260.8796 (7)0.8480 (6)0.3260 (6)0.064 (2)
H260.93890.92110.36360.076*
C270.7461 (8)0.8160 (6)0.2810 (5)0.0613 (18)
H270.70260.86460.28350.074*
C280.6914 (7)0.6974 (6)0.2318 (5)0.0517 (15)
H280.60500.65430.19670.062*
C290.7967 (13)0.7074 (11)0.4817 (7)0.1035 (17)
H290.87650.70390.50220.124*
C300.7749 (13)0.8055 (11)0.5033 (7)0.1035 (17)
H300.83480.87890.53980.124*
C310.6402 (13)0.7706 (11)0.4575 (7)0.1035 (17)
H310.59550.81810.45890.124*
C320.5877 (13)0.6540 (11)0.4106 (7)0.1035 (17)
H320.50190.60940.37490.124*
C330.6860 (13)0.6156 (12)0.4263 (7)0.1035 (17)
H330.67790.54060.40320.124*
C350.6934 (8)0.0006 (5)0.0838 (5)0.0558 (17)
H35A0.74190.00800.13310.084*
H35B0.72730.02320.02980.084*
H35C0.60050.04830.07200.084*
C361.1219 (7)0.3952 (6)0.0992 (6)0.0590 (18)
H361.05690.35710.04520.071*
C371.3472 (11)0.4908 (11)0.1742 (10)0.112 (2)
H37A1.31680.46570.22180.168*
H37B1.36590.57030.19230.168*
H37C1.42680.47840.16380.168*
C381.2905 (11)0.4134 (11)0.0096 (9)0.112 (2)
H38A1.21700.36620.04200.168*
H38B1.35320.37840.00930.168*
H38C1.33360.48650.00600.168*
C340.7101 (6)0.1220 (5)0.1097 (4)0.0373 (12)
C400.1239 (11)0.1510 (11)0.1034 (10)0.112 (2)
H40A0.17000.16900.05790.168*
H40B0.04660.16910.10170.168*
H40C0.09670.07140.09130.168*
C410.1499 (11)0.2274 (10)0.2676 (9)0.112 (2)
H41A0.21510.27530.32370.168*
H41B0.10430.15350.26910.168*
H41C0.08670.26010.26060.168*
C390.3427 (8)0.2540 (7)0.1983 (6)0.062 (2)
H390.39770.29240.25650.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0279 (3)0.0294 (3)0.0301 (3)0.0118 (2)0.0105 (2)0.0119 (2)
Cu20.0276 (3)0.0293 (3)0.0285 (3)0.0122 (3)0.0081 (2)0.0116 (2)
Fe20.0524 (5)0.0332 (4)0.0312 (4)0.0214 (4)0.0126 (3)0.0154 (3)
Fe10.0448 (5)0.0330 (4)0.0328 (4)0.0120 (4)0.0073 (3)0.0149 (3)
Fe30.0512 (5)0.0473 (5)0.0511 (5)0.0241 (4)0.0134 (4)0.0103 (4)
O30.035 (2)0.040 (2)0.0288 (17)0.0120 (17)0.0066 (16)0.0147 (16)
O70.041 (2)0.0286 (18)0.047 (2)0.0154 (17)0.0158 (18)0.0137 (16)
O60.036 (2)0.0304 (18)0.0402 (19)0.0146 (17)0.0078 (17)0.0113 (16)
O40.040 (2)0.043 (2)0.0296 (17)0.0147 (18)0.0102 (16)0.0132 (16)
O50.043 (2)0.0306 (19)0.043 (2)0.0169 (17)0.0132 (18)0.0111 (16)
O20.049 (2)0.050 (2)0.0316 (18)0.021 (2)0.0152 (18)0.0183 (17)
O10.045 (2)0.048 (2)0.0312 (18)0.0200 (19)0.0103 (17)0.0179 (17)
O80.039 (2)0.0298 (19)0.053 (2)0.0129 (17)0.0192 (19)0.0176 (17)
O100.032 (2)0.046 (2)0.066 (3)0.0177 (18)0.020 (2)0.023 (2)
O90.033 (2)0.051 (2)0.052 (2)0.0152 (19)0.0143 (19)0.023 (2)
N10.044 (3)0.069 (4)0.108 (5)0.027 (3)0.039 (4)0.047 (4)
N20.058 (4)0.091 (5)0.111 (6)0.050 (4)0.050 (4)0.073 (5)
C10.045 (3)0.031 (3)0.030 (2)0.016 (2)0.007 (2)0.014 (2)
C20.053 (3)0.039 (3)0.029 (2)0.018 (3)0.009 (2)0.016 (2)
C30.053 (4)0.029 (3)0.046 (3)0.003 (3)0.000 (3)0.019 (2)
C40.075 (5)0.036 (3)0.039 (3)0.012 (3)0.006 (3)0.011 (3)
C50.099 (6)0.057 (4)0.032 (3)0.043 (4)0.020 (3)0.022 (3)
C60.073 (5)0.066 (4)0.041 (3)0.045 (4)0.024 (3)0.028 (3)
C70.054 (4)0.054 (4)0.080 (5)0.003 (4)0.010 (4)0.024 (4)
C80.102 (7)0.045 (4)0.059 (4)0.018 (4)0.015 (4)0.029 (3)
C90.086 (6)0.043 (4)0.078 (5)0.032 (4)0.001 (5)0.019 (4)
C100.077 (5)0.044 (4)0.078 (5)0.022 (4)0.038 (4)0.013 (4)
C110.071 (5)0.043 (4)0.042 (3)0.009 (3)0.001 (3)0.006 (3)
C120.040 (3)0.024 (2)0.031 (2)0.017 (2)0.010 (2)0.0118 (19)
C130.041 (3)0.033 (3)0.028 (2)0.018 (2)0.009 (2)0.016 (2)
C140.051 (3)0.033 (3)0.041 (3)0.017 (3)0.017 (3)0.022 (2)
C150.080 (5)0.048 (3)0.040 (3)0.036 (4)0.029 (3)0.030 (3)
C160.063 (4)0.045 (3)0.032 (3)0.022 (3)0.004 (3)0.017 (2)
C170.044 (3)0.040 (3)0.041 (3)0.018 (3)0.008 (3)0.019 (2)
C180.079 (5)0.048 (4)0.110 (7)0.035 (4)0.041 (5)0.055 (4)
C190.090 (6)0.042 (4)0.088 (6)0.036 (4)0.012 (5)0.009 (4)
C200.123 (8)0.074 (5)0.049 (4)0.071 (6)0.038 (5)0.026 (4)
C210.056 (4)0.053 (4)0.068 (4)0.032 (3)0.017 (3)0.028 (3)
C220.078 (5)0.056 (4)0.051 (3)0.045 (4)0.024 (3)0.034 (3)
C230.040 (3)0.031 (3)0.028 (2)0.017 (2)0.013 (2)0.012 (2)
C240.046 (3)0.027 (3)0.044 (3)0.016 (2)0.015 (3)0.010 (2)
C250.046 (4)0.044 (4)0.075 (5)0.020 (3)0.020 (3)0.016 (3)
C260.055 (4)0.036 (3)0.092 (5)0.013 (3)0.021 (4)0.017 (4)
C270.072 (5)0.045 (4)0.077 (5)0.031 (4)0.019 (4)0.025 (4)
C280.056 (4)0.048 (4)0.053 (4)0.026 (3)0.009 (3)0.017 (3)
C290.129 (4)0.127 (4)0.081 (3)0.069 (4)0.058 (3)0.044 (3)
C300.129 (4)0.127 (4)0.081 (3)0.069 (4)0.058 (3)0.044 (3)
C310.129 (4)0.127 (4)0.081 (3)0.069 (4)0.058 (3)0.044 (3)
C320.129 (4)0.127 (4)0.081 (3)0.069 (4)0.058 (3)0.044 (3)
C330.129 (4)0.127 (4)0.081 (3)0.069 (4)0.058 (3)0.044 (3)
C350.072 (5)0.034 (3)0.072 (4)0.026 (3)0.029 (4)0.024 (3)
C360.046 (4)0.061 (4)0.081 (5)0.025 (3)0.024 (4)0.034 (4)
C370.088 (4)0.122 (5)0.184 (6)0.067 (4)0.074 (4)0.091 (5)
C380.088 (4)0.122 (5)0.184 (6)0.067 (4)0.074 (4)0.091 (5)
C340.052 (3)0.028 (3)0.032 (2)0.014 (2)0.014 (2)0.014 (2)
C400.088 (4)0.122 (5)0.184 (6)0.067 (4)0.074 (4)0.091 (5)
C410.088 (4)0.122 (5)0.184 (6)0.067 (4)0.074 (4)0.091 (5)
C390.067 (4)0.077 (5)0.085 (5)0.047 (4)0.048 (4)0.057 (4)
Geometric parameters (Å, º) top
Cu1—O81.964 (4)C7—C111.416 (11)
Cu1—O41.970 (4)C7—H70.9300
Cu1—O61.978 (4)C8—C91.377 (12)
Cu1—O21.987 (4)C8—H80.9300
Cu1—O102.164 (4)C9—C101.420 (12)
Cu1—Cu22.6183 (11)C9—H90.9300
Cu2—O11.945 (4)C10—C111.381 (11)
Cu2—O31.963 (4)C10—H100.9300
Cu2—O51.973 (4)C11—H110.9300
Cu2—O71.988 (4)C12—C131.485 (7)
Cu2—O92.161 (4)C13—C171.424 (8)
Fe2—C132.025 (5)C13—C141.434 (7)
Fe2—C222.034 (6)C14—C151.413 (8)
Fe2—C142.036 (6)C14—H140.9300
Fe2—C182.036 (7)C15—C161.416 (10)
Fe2—C202.042 (7)C15—H150.9300
Fe2—C212.048 (7)C16—C171.399 (8)
Fe2—C152.049 (6)C16—H160.9300
Fe2—C192.049 (7)C17—H170.9300
Fe2—C162.053 (6)C18—C221.388 (11)
Fe2—C172.054 (6)C18—C191.420 (12)
Fe1—C32.013 (6)C18—H180.9300
Fe1—C102.014 (7)C19—C201.405 (13)
Fe1—C22.025 (6)C19—H190.9300
Fe1—C112.028 (7)C20—C211.394 (11)
Fe1—C82.031 (7)C20—H200.9300
Fe1—C72.037 (8)C21—C221.391 (9)
Fe1—C92.039 (7)C21—H210.9300
Fe1—C62.042 (7)C22—H220.9300
Fe1—C52.046 (6)C23—C241.486 (7)
Fe1—C42.055 (6)C24—C281.416 (9)
Fe3—C312.000 (9)C24—C251.416 (9)
Fe3—C292.018 (12)C25—C261.419 (9)
Fe3—C282.019 (7)C25—H250.9300
Fe3—C322.022 (11)C26—C271.423 (11)
Fe3—C302.023 (10)C26—H260.9300
Fe3—C242.033 (5)C27—C281.411 (9)
Fe3—C252.037 (6)C27—H270.9300
Fe3—C332.038 (12)C28—H280.9300
Fe3—C272.040 (8)C29—C331.364 (16)
Fe3—C262.046 (8)C29—C301.371 (16)
O3—C121.249 (6)C29—H290.9300
O7—C341.264 (7)C30—C311.431 (16)
O6—C231.257 (6)C30—H300.9300
O4—C121.261 (6)C31—C321.384 (16)
O5—C231.255 (6)C31—H310.9300
O2—C11.279 (7)C32—C331.386 (15)
O1—C11.249 (6)C32—H320.9300
O8—C341.250 (7)C33—H330.9300
O10—C391.211 (7)C35—C341.515 (8)
O9—C361.210 (8)C35—H35A0.9600
N1—C361.287 (8)C35—H35B0.9600
N1—C381.393 (12)C35—H35C0.9600
N1—C371.460 (15)C36—H360.9300
N2—C391.319 (9)C37—H37A0.9600
N2—C411.389 (12)C37—H37B0.9600
N2—C401.472 (15)C37—H37C0.9600
C1—C21.474 (7)C38—H38A0.9600
C2—C61.416 (8)C38—H38B0.9600
C2—C31.423 (9)C38—H38C0.9600
C3—C41.408 (9)C40—H40A0.9600
C3—H30.9300C40—H40B0.9600
C4—C51.399 (11)C40—H40C0.9600
C4—H40.9300C41—H41A0.9600
C5—C61.420 (9)C41—H41B0.9600
C5—H50.9300C41—H41C0.9600
C6—H60.9300C39—H390.9300
C7—C81.396 (12)
O8—Cu1—O489.37 (17)C4—C5—H5125.6
O8—Cu1—O6167.62 (15)C6—C5—H5125.6
O4—Cu1—O689.89 (16)Fe1—C5—H5126.1
O8—Cu1—O288.57 (18)C2—C6—C5107.8 (6)
O4—Cu1—O2167.40 (16)C2—C6—Fe169.0 (3)
O6—Cu1—O289.46 (17)C5—C6—Fe169.8 (4)
O8—Cu1—O1095.06 (16)C2—C6—H6126.1
O4—Cu1—O1096.20 (17)C5—C6—H6126.1
O6—Cu1—O1097.31 (16)Fe1—C6—H6126.6
O2—Cu1—O1096.36 (17)C8—C7—C11107.2 (7)
O8—Cu1—Cu284.26 (12)C8—C7—Fe169.7 (4)
O4—Cu1—Cu284.55 (12)C11—C7—Fe169.3 (4)
O6—Cu1—Cu283.36 (11)C8—C7—H7126.4
O2—Cu1—Cu282.87 (12)C11—C7—H7126.4
O10—Cu1—Cu2178.98 (12)Fe1—C7—H7126.2
O1—Cu2—O3168.23 (16)C9—C8—C7109.5 (7)
O1—Cu2—O589.34 (17)C9—C8—Fe170.5 (4)
O3—Cu2—O589.81 (17)C7—C8—Fe170.2 (4)
O1—Cu2—O788.32 (17)C9—C8—H8125.2
O3—Cu2—O790.03 (17)C7—C8—H8125.2
O5—Cu2—O7167.72 (16)Fe1—C8—H8125.6
O1—Cu2—O999.92 (17)C8—C9—C10107.0 (8)
O3—Cu2—O991.85 (16)C8—C9—Fe169.9 (4)
O5—Cu2—O996.55 (17)C10—C9—Fe168.5 (4)
O7—Cu2—O995.72 (16)C8—C9—H9126.5
O1—Cu2—Cu185.06 (12)C10—C9—H9126.5
O3—Cu2—Cu183.17 (11)Fe1—C9—H9126.6
O5—Cu2—Cu184.36 (12)C11—C10—C9108.6 (7)
O7—Cu2—Cu183.44 (12)C11—C10—Fe170.6 (4)
O9—Cu2—Cu1174.93 (11)C9—C10—Fe170.4 (4)
C13—Fe2—C22106.6 (2)C11—C10—H10125.7
C13—Fe2—C1441.3 (2)C9—C10—H10125.7
C22—Fe2—C14115.7 (3)Fe1—C10—H10124.9
C13—Fe2—C18116.4 (3)C10—C11—C7107.8 (7)
C22—Fe2—C1839.9 (3)C10—C11—Fe169.5 (4)
C14—Fe2—C18148.9 (3)C7—C11—Fe170.0 (4)
C13—Fe2—C20166.1 (3)C10—C11—H11126.1
C22—Fe2—C2067.1 (3)C7—C11—H11126.1
C14—Fe2—C20128.8 (3)Fe1—C11—H11126.0
C18—Fe2—C2067.4 (3)O3—C12—O4126.5 (5)
C13—Fe2—C21127.6 (3)O3—C12—C13117.1 (4)
C22—Fe2—C2139.8 (3)O4—C12—C13116.4 (5)
C14—Fe2—C21107.1 (3)C17—C13—C14107.6 (5)
C18—Fe2—C2167.1 (3)C17—C13—C12126.3 (5)
C20—Fe2—C2139.9 (3)C14—C13—C12126.0 (5)
C13—Fe2—C1568.7 (2)C17—C13—Fe270.6 (3)
C22—Fe2—C15149.3 (3)C14—C13—Fe269.7 (3)
C14—Fe2—C1540.5 (2)C12—C13—Fe2122.2 (3)
C18—Fe2—C15169.9 (3)C15—C14—C13107.8 (5)
C20—Fe2—C15109.9 (3)C15—C14—Fe270.2 (3)
C21—Fe2—C15117.7 (3)C13—C14—Fe268.9 (3)
C13—Fe2—C19150.7 (3)C15—C14—H14126.1
C22—Fe2—C1967.7 (3)C13—C14—H14126.1
C14—Fe2—C19167.7 (3)Fe2—C14—H14126.3
C18—Fe2—C1940.7 (4)C14—C15—C16107.6 (5)
C20—Fe2—C1940.2 (4)C14—C15—Fe269.3 (3)
C21—Fe2—C1967.5 (3)C16—C15—Fe270.0 (3)
C15—Fe2—C19131.0 (3)C14—C15—H15126.2
C13—Fe2—C1668.0 (2)C16—C15—H15126.2
C22—Fe2—C16167.9 (3)Fe2—C15—H15126.1
C14—Fe2—C1667.9 (3)C17—C16—C15109.3 (5)
C18—Fe2—C16131.6 (3)C17—C16—Fe270.1 (3)
C20—Fe2—C16120.6 (3)C15—C16—Fe269.6 (4)
C21—Fe2—C16151.9 (3)C17—C16—H16125.3
C15—Fe2—C1640.4 (3)C15—C16—H16125.3
C19—Fe2—C16111.4 (3)Fe2—C16—H16126.5
C13—Fe2—C1740.9 (2)C16—C17—C13107.7 (5)
C22—Fe2—C17129.2 (2)C16—C17—Fe270.1 (3)
C14—Fe2—C1768.7 (2)C13—C17—Fe268.5 (3)
C18—Fe2—C17109.5 (3)C16—C17—H17126.2
C20—Fe2—C17152.5 (3)C13—C17—H17126.2
C21—Fe2—C17166.4 (3)Fe2—C17—H17126.8
C15—Fe2—C1768.1 (2)C22—C18—C19108.3 (7)
C19—Fe2—C17119.2 (3)C22—C18—Fe270.0 (4)
C16—Fe2—C1739.8 (2)C19—C18—Fe270.2 (4)
C3—Fe1—C10108.2 (3)C22—C18—H18125.9
C3—Fe1—C241.3 (2)C19—C18—H18125.9
C10—Fe1—C2114.7 (3)Fe2—C18—H18125.6
C3—Fe1—C11130.4 (3)C20—C19—C18106.4 (8)
C10—Fe1—C1140.0 (3)C20—C19—Fe269.6 (4)
C2—Fe1—C11107.5 (3)C18—C19—Fe269.2 (4)
C3—Fe1—C8148.2 (3)C20—C19—H19126.8
C10—Fe1—C867.6 (3)C18—C19—H19126.8
C2—Fe1—C8170.3 (3)Fe2—C19—H19126.0
C11—Fe1—C867.7 (3)C21—C20—C19108.8 (7)
C3—Fe1—C7169.9 (3)C21—C20—Fe270.3 (4)
C10—Fe1—C767.8 (3)C19—C20—Fe270.2 (4)
C2—Fe1—C7130.9 (3)C21—C20—H20125.6
C11—Fe1—C740.8 (3)C19—C20—H20125.6
C8—Fe1—C740.1 (3)Fe2—C20—H20125.5
C3—Fe1—C9116.1 (3)C22—C21—C20108.0 (7)
C10—Fe1—C941.0 (3)C22—C21—Fe269.5 (4)
C2—Fe1—C9147.8 (3)C20—C21—Fe269.8 (4)
C11—Fe1—C968.0 (3)C22—C21—H21126.0
C8—Fe1—C939.6 (4)C20—C21—H21126.0
C7—Fe1—C967.5 (4)Fe2—C21—H21126.2
C3—Fe1—C668.5 (3)C18—C22—C21108.5 (7)
C10—Fe1—C6147.1 (3)C18—C22—Fe270.2 (4)
C2—Fe1—C640.8 (2)C21—C22—Fe270.6 (4)
C11—Fe1—C6115.9 (3)C18—C22—H22125.7
C8—Fe1—C6132.6 (3)C21—C22—H22125.7
C7—Fe1—C6109.5 (3)Fe2—C22—H22125.1
C9—Fe1—C6170.7 (3)O5—C23—O6126.1 (5)
C3—Fe1—C567.9 (3)O5—C23—C24116.6 (5)
C10—Fe1—C5170.6 (4)O6—C23—C24117.2 (5)
C2—Fe1—C568.5 (2)C28—C24—C25107.3 (5)
C11—Fe1—C5149.0 (3)C28—C24—C23126.9 (5)
C8—Fe1—C5110.9 (3)C25—C24—C23125.6 (5)
C7—Fe1—C5117.5 (3)C28—C24—Fe369.0 (3)
C9—Fe1—C5132.0 (3)C25—C24—Fe369.8 (3)
C6—Fe1—C540.7 (3)C23—C24—Fe3122.7 (4)
C3—Fe1—C440.5 (3)C24—C25—C26108.6 (6)
C10—Fe1—C4131.7 (3)C24—C25—Fe369.5 (3)
C2—Fe1—C468.7 (2)C26—C25—Fe370.0 (4)
C11—Fe1—C4169.5 (3)C24—C25—H25125.7
C8—Fe1—C4117.5 (3)C26—C25—H25125.7
C7—Fe1—C4148.9 (3)Fe3—C25—H25126.4
C9—Fe1—C4109.7 (3)C25—C26—C27107.5 (6)
C6—Fe1—C468.0 (3)C25—C26—Fe369.3 (4)
C5—Fe1—C439.9 (3)C27—C26—Fe369.4 (4)
C31—Fe3—C2967.2 (5)C25—C26—H26126.3
C31—Fe3—C28122.9 (4)C27—C26—H26126.3
C29—Fe3—C28159.9 (4)Fe3—C26—H26126.6
C31—Fe3—C3240.2 (4)C28—C27—C26107.8 (6)
C29—Fe3—C3266.7 (5)C28—C27—Fe368.9 (4)
C28—Fe3—C32108.6 (4)C26—C27—Fe369.9 (4)
C31—Fe3—C3041.7 (4)C28—C27—H27126.1
C29—Fe3—C3039.7 (4)C26—C27—H27126.1
C28—Fe3—C30159.1 (4)Fe3—C27—H27126.7
C32—Fe3—C3068.7 (5)C27—C28—C24108.8 (6)
C31—Fe3—C24158.7 (4)C27—C28—Fe370.4 (4)
C29—Fe3—C24123.7 (4)C24—C28—Fe370.1 (4)
C28—Fe3—C2440.9 (2)C27—C28—H28125.6
C32—Fe3—C24123.1 (4)C24—C28—H28125.6
C30—Fe3—C24158.1 (4)Fe3—C28—H28125.5
C31—Fe3—C25159.4 (4)C33—C29—C30111.1 (13)
C29—Fe3—C25108.3 (4)C33—C29—Fe371.1 (7)
C28—Fe3—C2568.4 (3)C30—C29—Fe370.3 (7)
C32—Fe3—C25158.6 (4)C33—C29—H29124.4
C30—Fe3—C25121.8 (4)C30—C29—H29124.4
C24—Fe3—C2540.7 (3)Fe3—C29—H29125.7
C31—Fe3—C3367.2 (5)C29—C30—C31105.0 (12)
C29—Fe3—C3339.3 (5)C29—C30—Fe370.0 (6)
C28—Fe3—C33124.6 (4)C31—C30—Fe368.3 (6)
C32—Fe3—C3339.9 (4)C29—C30—H30127.5
C30—Fe3—C3367.5 (5)C31—C30—H30127.5
C24—Fe3—C33108.5 (4)Fe3—C30—H30125.8
C25—Fe3—C33123.0 (4)C32—C31—C30108.3 (12)
C31—Fe3—C27107.9 (4)C32—C31—Fe370.7 (6)
C29—Fe3—C27158.3 (4)C30—C31—Fe370.0 (6)
C28—Fe3—C2740.7 (3)C32—C31—H31125.8
C32—Fe3—C27124.1 (4)C30—C31—H31125.8
C30—Fe3—C27122.4 (4)Fe3—C31—H31125.0
C24—Fe3—C2768.7 (3)C31—C32—C33107.7 (13)
C25—Fe3—C2768.4 (3)C31—C32—Fe369.0 (7)
C33—Fe3—C27160.4 (4)C33—C32—Fe370.7 (7)
C31—Fe3—C26123.3 (4)C31—C32—H32126.2
C29—Fe3—C26122.8 (5)C33—C32—H32126.2
C28—Fe3—C2668.6 (3)Fe3—C32—H32125.7
C32—Fe3—C26159.9 (4)C29—C33—C32107.8 (12)
C30—Fe3—C26106.4 (4)C29—C33—Fe369.6 (7)
C24—Fe3—C2668.7 (3)C32—C33—Fe369.4 (7)
C25—Fe3—C2640.7 (3)C29—C33—H33126.1
C33—Fe3—C26158.0 (4)C32—C33—H33126.1
C27—Fe3—C2640.8 (3)Fe3—C33—H33126.5
C12—O3—Cu2121.8 (3)C34—C35—H35A109.5
C34—O7—Cu2121.7 (3)C34—C35—H35B109.5
C23—O6—Cu1121.6 (3)H35A—C35—H35B109.5
C12—O4—Cu1120.3 (3)C34—C35—H35C109.5
C23—O5—Cu2121.2 (4)H35A—C35—H35C109.5
C1—O2—Cu1121.8 (3)H35B—C35—H35C109.5
C1—O1—Cu2122.0 (4)O9—C36—N1128.0 (8)
C34—O8—Cu1122.4 (3)O9—C36—H36116.0
C39—O10—Cu1124.8 (5)N1—C36—H36116.0
C36—O9—Cu2121.0 (5)N1—C37—H37A109.5
C36—N1—C38128.2 (9)N1—C37—H37B109.5
C36—N1—C37116.8 (8)H37A—C37—H37B109.5
C38—N1—C37114.9 (8)N1—C37—H37C109.5
C39—N2—C41127.3 (9)H37A—C37—H37C109.5
C39—N2—C40117.3 (7)H37B—C37—H37C109.5
C41—N2—C40115.2 (8)N1—C38—H38A109.5
O1—C1—O2125.2 (5)N1—C38—H38B109.5
O1—C1—C2117.1 (5)H38A—C38—H38B109.5
O2—C1—C2117.6 (5)N1—C38—H38C109.5
C6—C2—C3107.0 (5)H38A—C38—H38C109.5
C6—C2—C1128.6 (6)H38B—C38—H38C109.5
C3—C2—C1124.4 (5)O8—C34—O7125.3 (5)
C6—C2—Fe170.2 (3)O8—C34—C35117.8 (5)
C3—C2—Fe168.9 (3)O7—C34—C35116.9 (5)
C1—C2—Fe1125.3 (4)N2—C40—H40A109.5
C4—C3—C2108.8 (6)N2—C40—H40B109.5
C4—C3—Fe171.4 (4)H40A—C40—H40B109.5
C2—C3—Fe169.8 (3)N2—C40—H40C109.5
C4—C3—H3125.6H40A—C40—H40C109.5
C2—C3—H3125.6H40B—C40—H40C109.5
Fe1—C3—H3124.8N2—C41—H41A109.5
C5—C4—C3107.6 (6)N2—C41—H41B109.5
C5—C4—Fe169.7 (4)H41A—C41—H41B109.5
C3—C4—Fe168.2 (3)N2—C41—H41C109.5
C5—C4—H4126.2H41A—C41—H41C109.5
C3—C4—H4126.2H41B—C41—H41C109.5
Fe1—C4—H4127.5O10—C39—N2127.7 (9)
C4—C5—C6108.8 (6)O10—C39—H39116.2
C4—C5—Fe170.4 (4)N2—C39—H39116.2
C6—C5—Fe169.5 (4)

Experimental details

Crystal data
Chemical formula[Cu2Fe3(C5H5)3(C2H3O2)(C6H4O2)3(C3H7NO)2]
Mr1019.41
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)10.948 (2), 13.548 (3), 15.828 (3)
α, β, γ (°)108.96 (3), 94.57 (3), 110.33 (3)
V3)2032.3 (10)
Z2
Radiation typeMo Kα
µ (mm1)2.14
Crystal size (mm)0.30 × 0.26 × 0.26
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.567, 0.607
No. of measured, independent and
observed [I > 2σ(I)] reflections
19821, 9106, 6613
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.184, 1.05
No. of reflections9106
No. of parameters486
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 1.39

Computer programs: RAPID-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1993), SHELXL97/2 (Sheldrick, 1997).

Selected geometric parameters (Å, º) top
Cu1—O81.964 (4)Cu2—O11.945 (4)
Cu1—O41.970 (4)Cu2—O31.963 (4)
Cu1—O61.978 (4)Cu2—O51.973 (4)
Cu1—O21.987 (4)Cu2—O71.988 (4)
Cu1—O102.164 (4)Cu2—O92.161 (4)
Cu1—Cu22.6183 (11)
O8—Cu1—O489.37 (17)O1—Cu2—O3168.23 (16)
O4—Cu1—O689.89 (16)O3—Cu2—O589.81 (17)
O8—Cu1—O288.57 (18)O1—Cu2—O788.32 (17)
O6—Cu1—O289.46 (17)O3—Cu2—O790.03 (17)
O8—Cu1—O1095.06 (16)O1—Cu2—O999.92 (17)
O4—Cu1—O1096.20 (17)O3—Cu2—O991.85 (16)
O6—Cu1—O1097.31 (16)O5—Cu2—O996.55 (17)
O2—Cu1—O1096.36 (17)O7—Cu2—O995.72 (16)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds