Download citation
Download citation
link to html
The title compounds, [Mo(C2H4NO2)2(NO)2], (I), and [Mo(C2H6NS)2(NO)2]·CH3CN, (II), contain distorted octa­hedral complexes in which the monoanionic N,S- and N,O-bidentate ligands coordinate the molybdenum centres in different modes. The anionic O atoms of the glycinate ligands in (I) are coordinated trans to the nitrosyl ligands and the amine N atoms are located trans to each other, whereas in (II) the anionic S atoms are coordinated trans to each other and the amine N atoms are located trans to the nitrosyl ligands. Each compound has a single complete complex in the asymmetric unit on a general position. Six N-H...O contacts with N...O distances of less than 3.2 Å are observed in (I) between the amine groups and the nitrosyl and carboxyl­ate O atoms. In the 1:1 solvate (II), the acetonitrile mol­ecule forms short N-H...N contacts (N...N < 3.2 Å) between the solvent N atoms and one of the amine H atoms. In addition, three weak inter­molecular N-H...S inter­actions (N...S > 3.3 Å) contribute to the stabilization of the structure of (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107065584/sq3117sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107065584/sq3117Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107065584/sq3117IIsup3.hkl
Contains datablock II

CCDC references: 681526; 681527

Comment top

With the aim of preparing water-soluble dinitrosyl–molybdenum complexes to study their ability to release NO in aqueous solution, the title compounds, Mo(NO)2(H2NCH2COO)2, (I), and Mo(NO)2(H2NCH2CH2S)2·CH3CN, (II), resulting from the reactions of the [Mo(NO)2]2+ cation with bidentate monoanionic (N,X)-donor ligands (X = O and S), were prepared.

In compounds (I) and (II), the Mo atoms present distorted octahedral coordinations with nearly linear Mo—N—O bond angles and normal Mo—NO bond distances (Fig. 1 and 2). The amine N atoms of the glycinate ligand in (I) are bound to molybdenum in trans positions, showing a significantly closed N3—Mo1—N4 bond angle, whereas the anionic O atoms are located cis to each other and trans to the nitrosyl ligands, with nearly linear O—Mn—N angles (Table 1). The crystal structure of (II) reveals a different coordination mode in comparison with (I), since the monoanionic bidentate ligands coordinate to the metal center with the anionic S atoms in trans positions to each other with a significantly closed S1—Mo1—S2 bond angle and the amine N atoms located trans to the nitrosyl ligands with relatively undistorted N—Mn—N angles (Table 2). The known molybdenum dinitrosyl complexes of 2-picolinate and 2-pyrimidinethiolate, Mo(NO)2(2-picolinate)2 (Perpiñán et al., 1987) and Mo(NO)2(2-pyrimidinethiolate)2 (Yonemura et al., 2001) show the same systematic trend at least in the coordination manner of the N,S- and N,O-bidentate ligands.

In order to trace the electronic causes for this phenomenon on the molecular orbital level, simple density functional theory (DFT) calculations were carried out using the TURBOMOLE program package (Von Arnim & Ahlrichs, 1998; Treutler & Ahlrichs, 1995; Ahlrichs et al., 1989). Two different coordination geometries have been optimized for each complex, one with the amine N atoms trans to the nitrosyl ligands (a) and the other with the anionic chalcogen atoms [oxygen in (I), sulfur in (II)] trans to the nitrosyl ligands (b). The computed total energies confirm the solid-state structures of (I) and (II) as the global energetic minima. Indeed, the thermodynamically most favourable geometries show the amine N atoms [(Ib), 8.7 kcal mol-1 below I(a)] and the anionic D atoms [(IIa), 5.1 kcal mol-1 below (IIb)] trans to each other, respectively. From basic considerations, the van der Waals radius of the S atom is significantly larger than those of the O and N atoms (1.815 Å versus 1.060 and 1.050 Å, respectively), and consequently the trans-S,S geometry should be preferred over the cis-S,S one. The computed highest occupied molecular orbitals (HOMOs) of (I) and (II) indicate that the electron population of the sulfur lone pairs is expectedly larger than in the oxygen lone pairs, leading to a strong antibonding interaction between the in-plane sulfur lone pairs in the energetically high-lying HOMO of the trans-N,N geometry of (II). In the case of the trans-N,N geometry of (I), the HOMO exhibits a π-type antibonding character between the oxygen lone pairs and a d orbital of the metal, but with a less destabilizing effect than in (II).

Six N—H···O contacts (D < 3.2 Å) between the amine groups and the nitrosyl and carboxylate O atoms are observed in (I) (Fig. 3 and Table 1). Not surprisingly, the shortest and most linear of these interactions are with the non-coordinating carboxylate O atoms. Solvent molecules of acetonitrile cocrystallized with compound (II), forming short N—H···N contacts (D < 3.2 Å) between the solvent N atoms and one of the amine H atoms (Fig. 4 and Table 2). Three other weak N—H···S intermolecular interactions (D > 3.3 Å) contribute to the stabilization of the structure of (II).

Related literature top

For related literature, see: Ahlrichs et al. (1989); Becke (1988); Perdew (1986, 1986); Perpiñán, Ballester, Santos, Monge, Ruiz-Valero & Puebla (1987); Treutler & Ahlrichs (1995); Von Arnim & Ahlrichs (1998); Vosko et al. (1980); Yonemura et al. (2001).

Experimental top

For the preparation of (I), a solution of H2NCH2COOLi (154 mg, 1.90 mmol) in methanol (5 ml) was added to a solution of the bromide polymer [Mo(NO)2(Br)2]n (300 mg, 0.95 mmol) in the same solvent (5 ml), and the reaction mixture was stirred for 2 h. During that time, a colour change from green to dark green was observed. The reaction solution was filtered over Celite to remove insoluble materials, and the solvent was removed under vacuum leaving the product and LiBr. Adding some tetrahydrofuran and stirring the mixture for 10 min resulted in dissolution of LiBr. The green solid was filtered off over a frit, washed with cold tetrahydrofuran (243 K) and dried under vacuum. The obtained powder was redissolved in methanol, and green crystals of (I) were formed on slow evaporation at room temperature in a low yield of about 20%. Analysis calculated for C4H8MoN4O6 (304.06): C 15.80, H 2.65, N 18.42%; found: C 16.02, H 2.48, N 18.14%.

For the preparation of (II), a solution of H2NCH2CH2SLi (130 mg, 0.156 mmol) in acetonitrile (4 ml) was added to a green solution of the bromide polymer [Mo(NO)2(Br)2]n (247 mg, 0.78 mmol) in the same solvent (4 ml). During the course of addition, the colour of the solution changed from green to red-brown. After the addition was completed, the reaction mixture was stirred for 2 h and then filtered over Celite. Slow evaporation of acetonitrile at room temperature gave, after a few days, 90 mg of (II) as red–brown microcrystals. Analysis calculated for C4H12MoN4O2S2 (308.24): C 15.59, H 3.92, N 18.18%; found: C 15.87, H 3.92, N 17.99% (the elemental analysis was carried out after desolvation of the crystals).

DFT calculations were performed with the TURBOMOLE program package (Version 5.5; Von Arnim & Ahlrichs, 1998; Treutler & Ahlrichs, 1995; Ahlrichs et al., 1989). The Vosko–Wilk–Nusair (Vosko et al., 1980) local density approximation (LDA) and the generalized gradient approximation (GGA) with corrections for exchange and correlation according to Becke (1988) and Perdew (1986a,b) (BP86) were used for all calculations. The TURBOMOLE approach to DFT GGA calculations is based on the use of Gaussian-type orbitals as basis functions. Geometries were optimized using accurate triple-ζ valence basis sets augmented by one polarization function TZV(P) (Schäfer et al., 1992, 1994) for all elements.

Refinement top

All H-atom positions were calculated after each cycle of refinement with SHELXL97 using a riding model in both structures with C—H distances in the range 0.97–0.99 Å and N—H distances in the range 0.90–0.92 Å. Uiso(H) values were set equal to 1.3Ueq of the parent C or N atoms in (I), and 1.2Ueq(C,N) in (II) [1.5Ueq(C) for the methyl H atoms]. Please check; text changed in accordance with data in CIF.

Computing details top

For both compounds, data collection: IPDS Software (Stoe & Cie, 1999); cell refinement: IPDS Software (Stoe & Cie, 1999); data reduction: X-RED (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), showing the atomic labelling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the molecular structure of (II), showing the atomic labelling scheme and 30% probability displacement ellipsoids.
[Figure 3] Fig. 3. A projection of the structure of (I) normal to (010), showing the shortest hydrogen-bonding interactions, H3B···O5 and H4B···O6 (dashed lines), in the crystal structure.
[Figure 4] Fig. 4. A projection of the structure of (II) normal to (010), showing the short intermolecular interactions between (II) and the acetonitrile solvent molecules (dashed lines).
(I) Dinitrosylbis(glycinato-κ2N,O)molybdenum(IV) top
Crystal data top
[Mo(C2H4NO2)2(NO)2]F(000) = 600
Mr = 304.08Dx = 2.18 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8000 reflections
a = 12.9088 (15) Åθ = 3.1–30.3°
b = 7.5727 (6) ŵ = 1.44 mm1
c = 9.6922 (11) ÅT = 183 K
β = 102.051 (13)°Large block, dark green
V = 926.58 (17) Å30.43 × 0.41 × 0.39 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
2265 reflections with I > 2σ(I)
ϕ rotation scanRint = 0.045
Absorption correction: numerical
(Coppens et al., 1965)
θmax = 30.3°, θmin = 3.1°
Tmin = 0.56, Tmax = 0.669h = 1817
17540 measured reflectionsk = 010
2745 independent reflectionsl = 013
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0362P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max = 0.001
S = 0.93Δρmax = 0.38 e Å3
2745 reflectionsΔρmin = 0.68 e Å3
136 parameters
Crystal data top
[Mo(C2H4NO2)2(NO)2]V = 926.58 (17) Å3
Mr = 304.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.9088 (15) ŵ = 1.44 mm1
b = 7.5727 (6) ÅT = 183 K
c = 9.6922 (11) Å0.43 × 0.41 × 0.39 mm
β = 102.051 (13)°
Data collection top
Stoe IPDS
diffractometer
2745 independent reflections
Absorption correction: numerical
(Coppens et al., 1965)
2265 reflections with I > 2σ(I)
Tmin = 0.56, Tmax = 0.669Rint = 0.045
17540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 0.93Δρmax = 0.38 e Å3
2745 reflectionsΔρmin = 0.68 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.743377 (9)0.010475 (17)0.739870 (12)0.01311 (5)
N10.65454 (11)0.11528 (19)0.59101 (15)0.0171 (3)
O10.59989 (11)0.18088 (19)0.49203 (13)0.0267 (3)
N20.77398 (11)0.23186 (19)0.81326 (14)0.0164 (3)
O20.78870 (10)0.37614 (18)0.85722 (14)0.0250 (3)
N30.88320 (10)0.02513 (19)0.64756 (14)0.0150 (2)
H3A0.87140.11270.58340.02*
H3B0.89590.07470.60350.02*
N40.62795 (11)0.0701 (2)0.86340 (15)0.0174 (3)
H4A0.65880.06950.95570.023*
H4B0.57410.00770.84990.023*
O30.84757 (10)0.12713 (17)0.89868 (12)0.0183 (2)
O40.70123 (10)0.24220 (17)0.65952 (13)0.0194 (2)
O51.00834 (10)0.24170 (18)0.97058 (13)0.0221 (3)
O60.59528 (10)0.47367 (17)0.65815 (14)0.0234 (3)
C10.97608 (13)0.0690 (2)0.76000 (17)0.0172 (3)
H1A1.01550.0380.79050.022*
H1B1.02230.14850.72240.022*
C20.94366 (13)0.1552 (2)0.88601 (16)0.0148 (3)
C30.58652 (17)0.2466 (3)0.8232 (2)0.0289 (4)
H3C0.510.23950.79410.038*
H3D0.60270.32270.90540.038*
C40.62994 (13)0.3302 (2)0.70586 (16)0.0160 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01210 (7)0.01532 (7)0.01280 (7)0.00059 (5)0.00464 (4)0.00046 (5)
N10.0168 (6)0.0181 (6)0.0170 (6)0.0014 (5)0.0049 (5)0.0005 (5)
O10.0263 (7)0.0324 (7)0.0198 (6)0.0092 (5)0.0012 (5)0.0039 (5)
N20.0141 (6)0.0193 (7)0.0155 (6)0.0012 (5)0.0029 (5)0.0007 (5)
O20.0244 (6)0.0205 (6)0.0278 (6)0.0007 (5)0.0005 (5)0.0056 (5)
N30.0154 (6)0.0170 (6)0.0136 (5)0.0000 (5)0.0053 (5)0.0019 (5)
N40.0164 (6)0.0223 (7)0.0153 (6)0.0003 (5)0.0075 (5)0.0009 (5)
O30.0163 (5)0.0236 (6)0.0165 (5)0.0031 (5)0.0070 (4)0.0053 (5)
O40.0211 (6)0.0197 (6)0.0205 (6)0.0039 (5)0.0112 (5)0.0041 (4)
O50.0240 (6)0.0249 (6)0.0173 (6)0.0091 (5)0.0040 (5)0.0037 (5)
O60.0237 (6)0.0226 (6)0.0246 (6)0.0068 (5)0.0064 (5)0.0046 (5)
C10.0155 (7)0.0203 (8)0.0167 (7)0.0013 (6)0.0055 (6)0.0027 (6)
C20.0179 (7)0.0132 (7)0.0139 (6)0.0008 (5)0.0044 (5)0.0022 (5)
C30.0391 (11)0.0253 (9)0.0285 (9)0.0104 (8)0.0214 (8)0.0050 (7)
C40.0147 (7)0.0189 (7)0.0140 (7)0.0008 (6)0.0018 (5)0.0025 (5)
Geometric parameters (Å, º) top
Mo1—N11.8264 (15)N4—H4A0.9
Mo1—N21.8318 (15)N4—H4B0.9
Mo1—O42.0945 (12)O3—C21.289 (2)
Mo1—O32.0976 (12)O4—C41.290 (2)
Mo1—N42.1843 (14)O5—C21.230 (2)
Mo1—N32.1921 (14)O6—C41.228 (2)
N1—O11.1756 (19)C1—C21.519 (2)
N2—O21.1737 (19)C1—H1A0.97
N3—C11.480 (2)C1—H1B0.97
N3—H3A0.9C3—C41.508 (2)
N3—H3B0.9C3—H3C0.97
N4—C31.462 (2)C3—H3D0.97
N1—Mo1—N287.59 (6)Mo1—N4—H4A109.4
N1—Mo1—O491.82 (6)C3—N4—H4B109.4
N2—Mo1—O4177.12 (5)Mo1—N4—H4B109.4
N1—Mo1—O3175.03 (5)H4A—N4—H4B108
N2—Mo1—O396.69 (6)C2—O3—Mo1119.62 (10)
O4—Mo1—O384.03 (5)C4—O4—Mo1119.40 (10)
N1—Mo1—N499.60 (6)N3—C1—C2111.83 (13)
N2—Mo1—N499.17 (6)N3—C1—H1A109.2
O4—Mo1—N478.14 (5)C2—C1—H1A109.2
O3—Mo1—N482.25 (5)N3—C1—H1B109.2
N1—Mo1—N399.54 (6)C2—C1—H1B109.2
N2—Mo1—N398.16 (6)H1A—C1—H1B107.9
O4—Mo1—N384.72 (5)O5—C2—O3123.86 (15)
O3—Mo1—N377.40 (5)O5—C2—C1120.15 (15)
N4—Mo1—N3154.60 (6)O3—C2—C1115.96 (14)
O1—N1—Mo1177.50 (13)N4—C3—C4114.31 (15)
O2—N2—Mo1176.75 (13)N4—C3—H3C108.7
C1—N3—Mo1109.67 (9)C4—C3—H3C108.7
C1—N3—H3A109.7N4—C3—H3D108.7
Mo1—N3—H3A109.7C4—C3—H3D108.7
C1—N3—H3B109.7H3C—C3—H3D107.6
Mo1—N3—H3B109.7O6—C4—O4123.77 (16)
H3A—N3—H3B108.2O6—C4—C3119.45 (15)
C3—N4—Mo1111.27 (11)O4—C4—C3116.77 (15)
C3—N4—H4A109.4
N1—Mo1—N3—C1166.27 (11)N1—Mo1—O4—C497.12 (13)
N2—Mo1—N3—C177.35 (11)O3—Mo1—O4—C485.62 (12)
O4—Mo1—N3—C1102.77 (11)N4—Mo1—O4—C42.31 (12)
O3—Mo1—N3—C117.73 (10)N3—Mo1—O4—C4163.47 (13)
N4—Mo1—N3—C155.28 (17)Mo1—N3—C1—C225.47 (16)
N1—Mo1—N4—C389.48 (13)Mo1—O3—C2—O5176.42 (13)
N2—Mo1—N4—C3178.57 (13)Mo1—O3—C2—C15.52 (18)
O4—Mo1—N4—C30.37 (12)N3—C1—C2—O5160.50 (15)
O3—Mo1—N4—C385.86 (13)N3—C1—C2—O321.4 (2)
N3—Mo1—N4—C348.96 (18)Mo1—N4—C3—C41.2 (2)
N2—Mo1—O3—C289.78 (12)Mo1—O4—C4—O6174.89 (12)
O4—Mo1—O3—C293.03 (12)Mo1—O4—C4—C33.7 (2)
N4—Mo1—O3—C2171.82 (13)N4—C3—C4—O6175.46 (16)
N3—Mo1—O3—C27.12 (12)N4—C3—C4—O43.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.902.643.5357 (18)177
N3—H3A···O5i0.902.523.1347 (19)126
N3—H3B···O5ii0.902.082.9237 (19)155
N3—H3B···O2iii0.902.523.0408 (19)117
N4—H4A···O4iv0.902.413.1651 (19)142
N4—H4A···O6iv0.902.302.9920 (19)133
N4—H4B···O6v0.902.182.9377 (19)142
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+2, y+1/2, z+3/2; (iii) x, y+1/2, z1/2; (iv) x, y1/2, z+1/2; (v) x+1, y+1/2, z+3/2.
(II) bis(2-aminoethanethiolato-κ2N,S)dinitrosylmolybdenum(IV) acetonitrile monosolvate top
Crystal data top
[Mo(C2H6NS)2(NO)2]·C2H3NF(000) = 704
Mr = 349.29Dx = 1.73 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7998 reflections
a = 8.8660 (7) Åθ = 2.9–30.3°
b = 8.5980 (7) ŵ = 1.28 mm1
c = 18.0218 (16) ÅT = 183 K
β = 102.487 (10)°Block, dark-red
V = 1341.30 (19) Å30.41 × 0.4 × 0.19 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
3459 reflections with I > 2σ(I)
ϕ rotation scanRint = 0.087
Absorption correction: numerical
(Coppens et al., 1965)
θmax = 30.3°, θmin = 3.4°
Tmin = 0.621, Tmax = 0.793h = 1212
17511 measured reflectionsk = 1212
3976 independent reflectionsl = 025
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ^2^(Fo^2^) + (0.1076P)^2^]
where P = (Fo^2^ + 2Fc^2^)/3
wR(F2) = 0.145(Δ/σ)max = 0.001
S = 1.06Δρmax = 1.45 e Å3
3976 reflectionsΔρmin = 1.35 e Å3
146 parameters
Crystal data top
[Mo(C2H6NS)2(NO)2]·C2H3NV = 1341.30 (19) Å3
Mr = 349.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8660 (7) ŵ = 1.28 mm1
b = 8.5980 (7) ÅT = 183 K
c = 18.0218 (16) Å0.41 × 0.4 × 0.19 mm
β = 102.487 (10)°
Data collection top
Stoe IPDS
diffractometer
3976 independent reflections
Absorption correction: numerical
(Coppens et al., 1965)
3459 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.793Rint = 0.087
17511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.06Δρmax = 1.45 e Å3
3976 reflectionsΔρmin = 1.35 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.10625 (2)0.76357 (3)0.399378 (12)0.01589 (11)
S10.05030 (8)0.67138 (8)0.27570 (4)0.02511 (17)
S20.24934 (8)0.94452 (8)0.49479 (4)0.02137 (16)
N10.0030 (3)0.6919 (3)0.46758 (15)0.0247 (5)
O10.0620 (4)0.6569 (3)0.51757 (18)0.0492 (8)
N20.2376 (3)0.5962 (3)0.41855 (13)0.0215 (4)
O20.3207 (3)0.4886 (3)0.43120 (15)0.0359 (5)
C10.1838 (3)0.8338 (4)0.24984 (16)0.0262 (6)
H1A0.14140.90770.21750.031*
H1B0.28380.79470.22020.031*
C20.2096 (3)0.9175 (3)0.32035 (16)0.0245 (5)
H2A0.27391.01130.30530.029*
H2B0.26500.84830.34940.029*
N30.0583 (3)0.9632 (3)0.36852 (12)0.0183 (4)
H3A0.07471.00810.41240.022*
H3B0.01361.03690.34310.022*
C30.3243 (3)1.0742 (3)0.43135 (16)0.0235 (5)
H3C0.24171.14580.40590.028*
H3D0.40971.13750.46100.028*
C40.3822 (3)0.9802 (4)0.37256 (16)0.0233 (5)
H4A0.41951.05100.33710.028*
H4B0.46990.91430.39790.028*
N40.2561 (3)0.8803 (3)0.32944 (12)0.0192 (4)
H4C0.29960.80450.30470.023*
H4D0.19390.94030.29290.023*
N50.4991 (4)0.6320 (4)0.30213 (18)0.0383 (6)
C50.5742 (4)0.5346 (4)0.33329 (19)0.0337 (7)
C60.6686 (6)0.4097 (6)0.3723 (3)0.0584 (12)
H6A0.77650.44360.38610.088*
H6B0.66030.31890.33870.088*
H6C0.63290.38190.41830.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01591 (17)0.01506 (15)0.01653 (16)0.00061 (6)0.00312 (10)0.00077 (6)
S10.0244 (3)0.0228 (3)0.0257 (3)0.0011 (2)0.0001 (2)0.0093 (2)
S20.0199 (3)0.0274 (3)0.0163 (3)0.0025 (2)0.0029 (2)0.0030 (2)
N10.0251 (11)0.0202 (11)0.0319 (12)0.0004 (9)0.0127 (9)0.0064 (9)
O10.0651 (18)0.0372 (14)0.0600 (17)0.0085 (13)0.0463 (15)0.0170 (13)
N20.0226 (10)0.0210 (10)0.0215 (10)0.0025 (8)0.0064 (8)0.0029 (8)
O20.0355 (12)0.0309 (11)0.0435 (13)0.0150 (10)0.0138 (10)0.0122 (10)
C10.0261 (13)0.0240 (13)0.0240 (12)0.0000 (10)0.0041 (10)0.0030 (10)
C20.0187 (11)0.0234 (12)0.0287 (13)0.0015 (9)0.0007 (9)0.0038 (10)
N30.0188 (10)0.0177 (9)0.0177 (9)0.0001 (8)0.0026 (7)0.0029 (7)
C30.0227 (12)0.0222 (12)0.0251 (12)0.0029 (10)0.0036 (9)0.0022 (10)
C40.0176 (11)0.0284 (13)0.0240 (11)0.0029 (10)0.0049 (9)0.0003 (10)
N40.0191 (9)0.0218 (10)0.0173 (9)0.0005 (8)0.0053 (7)0.0004 (8)
N50.0350 (14)0.0398 (16)0.0412 (15)0.0020 (13)0.0107 (12)0.0038 (13)
C50.0366 (16)0.0362 (17)0.0298 (14)0.0074 (13)0.0102 (12)0.0060 (13)
C60.063 (3)0.061 (3)0.048 (2)0.010 (2)0.005 (2)0.019 (2)
Geometric parameters (Å, º) top
Mo1—N11.828 (2)N3—H3A0.9200
Mo1—N21.837 (2)N3—H3B0.9200
Mo1—N32.243 (2)C3—C41.508 (4)
Mo1—N42.255 (2)C3—H3C0.9900
Mo1—S22.4584 (7)C3—H3D0.9900
Mo1—S12.4870 (7)C4—N41.489 (4)
S1—C11.825 (3)C4—H4A0.9900
S2—C31.823 (3)C4—H4B0.9900
N1—O11.175 (3)N4—H4C0.9200
N2—O21.173 (3)N4—H4D0.9200
C1—C21.520 (4)N5—C51.139 (5)
C1—H1A0.9900C5—C61.447 (6)
C1—H1B0.9900C6—H6A0.9800
C2—N31.485 (3)C6—H6B0.9800
C2—H2A0.9900C6—H6C0.9800
C2—H2B0.9900
N1—Mo1—N290.91 (11)C2—N3—Mo1113.56 (16)
N1—Mo1—N390.80 (10)C2—N3—H3A108.9
N2—Mo1—N3176.49 (9)Mo1—N3—H3A108.9
N1—Mo1—N4170.91 (10)C2—N3—H3B108.9
N2—Mo1—N491.59 (9)Mo1—N3—H3B108.9
N3—Mo1—N487.20 (8)H3A—N3—H3B107.7
N1—Mo1—S290.65 (9)C4—C3—S2109.8 (2)
N2—Mo1—S298.86 (8)C4—C3—H3C109.7
N3—Mo1—S284.19 (6)S2—C3—H3C109.7
N4—Mo1—S280.33 (6)C4—C3—H3D109.7
N1—Mo1—S1102.77 (9)S2—C3—H3D109.7
N2—Mo1—S197.30 (8)H3C—C3—H3D108.2
N3—Mo1—S179.32 (6)N4—C4—C3110.2 (2)
N4—Mo1—S185.58 (6)N4—C4—H4A109.6
S2—Mo1—S1158.78 (3)C3—C4—H4A109.6
C1—S1—Mo1100.97 (9)N4—C4—H4B109.6
C3—S2—Mo198.72 (9)C3—C4—H4B109.6
O1—N1—Mo1172.1 (3)H4A—C4—H4B108.1
O2—N2—Mo1179.4 (2)C4—N4—Mo1115.58 (16)
C2—C1—S1110.83 (19)C4—N4—H4C108.4
C2—C1—H1A109.5Mo1—N4—H4C108.4
S1—C1—H1A109.5C4—N4—H4D108.4
C2—C1—H1B109.5Mo1—N4—H4D108.4
S1—C1—H1B109.5H4C—N4—H4D107.4
H1A—C1—H1B108.1N5—C5—C6179.4 (4)
N3—C2—C1109.5 (2)C5—C6—H6A109.5
N3—C2—H2A109.8C5—C6—H6B109.5
C1—C2—H2A109.8H6A—C6—H6B109.5
N3—C2—H2B109.8C5—C6—H6C109.5
C1—C2—H2B109.8H6A—C6—H6C109.5
H2A—C2—H2B108.2H6B—C6—H6C109.5
N1—Mo1—S1—C188.74 (14)C1—C2—N3—Mo155.0 (3)
N2—Mo1—S1—C1178.66 (13)N1—Mo1—N3—C274.5 (2)
N3—Mo1—S1—C10.36 (12)N4—Mo1—N3—C2114.35 (19)
N4—Mo1—S1—C187.62 (13)S2—Mo1—N3—C2165.09 (18)
S2—Mo1—S1—C139.26 (14)S1—Mo1—N3—C228.32 (17)
N1—Mo1—S2—C3162.82 (13)Mo1—S2—C3—C443.09 (19)
N2—Mo1—S2—C3106.16 (12)S2—C3—C4—N457.3 (3)
N3—Mo1—S2—C372.09 (11)C3—C4—N4—Mo141.5 (3)
N4—Mo1—S2—C316.05 (11)N2—Mo1—N4—C487.97 (19)
S1—Mo1—S2—C333.05 (13)N3—Mo1—N4—C495.33 (19)
Mo1—S1—C1—C227.8 (2)S2—Mo1—N4—C410.75 (17)
S1—C1—C2—N353.8 (3)S1—Mo1—N4—C4174.83 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···S2i0.922.553.372 (2)150
N3—H3B···S1ii0.922.603.459 (2)155
N4—H4C···N50.922.323.146 (4)150
N4—H4D···S1ii0.922.533.419 (2)162
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Mo(C2H4NO2)2(NO)2][Mo(C2H6NS)2(NO)2]·C2H3N
Mr304.08349.29
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)183183
a, b, c (Å)12.9088 (15), 7.5727 (6), 9.6922 (11)8.8660 (7), 8.5980 (7), 18.0218 (16)
β (°) 102.051 (13) 102.487 (10)
V3)926.58 (17)1341.30 (19)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.441.28
Crystal size (mm)0.43 × 0.41 × 0.390.41 × 0.4 × 0.19
Data collection
DiffractometerStoe IPDS
diffractometer
Stoe IPDS
diffractometer
Absorption correctionNumerical
(Coppens et al., 1965)
Numerical
(Coppens et al., 1965)
Tmin, Tmax0.56, 0.6690.621, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
17540, 2745, 2265 17511, 3976, 3459
Rint0.0450.087
(sin θ/λ)max1)0.7100.710
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 0.93 0.049, 0.145, 1.06
No. of reflections27453976
No. of parameters136146
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.681.45, 1.35

Computer programs: IPDS Software (Stoe & Cie, 1999), X-RED (Stoe & Cie, 1999), SHELXS97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and SHELXL97 (Sheldrick, 1997).

Selected geometric parameters (Å, º) for (I) top
Mo1—N11.8264 (15)N1—O11.1756 (19)
Mo1—N21.8318 (15)N2—O21.1737 (19)
Mo1—O42.0945 (12)O3—C21.289 (2)
Mo1—O32.0976 (12)O4—C41.290 (2)
Mo1—N42.1843 (14)O5—C21.230 (2)
Mo1—N32.1921 (14)O6—C41.228 (2)
N1—Mo1—N287.59 (6)O4—Mo1—N478.14 (5)
N2—Mo1—O4177.12 (5)O3—Mo1—N377.40 (5)
N1—Mo1—O3175.03 (5)N4—Mo1—N3154.60 (6)
O4—Mo1—O384.03 (5)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O3i0.902.643.5357 (18)177.0
N3—H3A···O5i0.902.523.1347 (19)126.1
N3—H3B···O5ii0.902.082.9237 (19)154.6
N3—H3B···O2iii0.902.523.0408 (19)117.0
N4—H4A···O4iv0.902.413.1651 (19)142.2
N4—H4A···O6iv0.902.302.9920 (19)133.2
N4—H4B···O6v0.902.182.9377 (19)141.9
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+2, y+1/2, z+3/2; (iii) x, y+1/2, z1/2; (iv) x, y1/2, z+1/2; (v) x+1, y+1/2, z+3/2.
Selected geometric parameters (Å, º) for (II) top
Mo1—N11.828 (2)Mo1—S12.4870 (7)
Mo1—N21.837 (2)S1—C11.825 (3)
Mo1—N32.243 (2)S2—C31.823 (3)
Mo1—N42.255 (2)N1—O11.175 (3)
Mo1—S22.4584 (7)N2—O21.173 (3)
N1—Mo1—N290.91 (11)N4—Mo1—S280.33 (6)
N2—Mo1—N3176.49 (9)N3—Mo1—S179.32 (6)
N1—Mo1—N4170.91 (10)S2—Mo1—S1158.78 (3)
N3—Mo1—N487.20 (8)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···S2i0.922.553.372 (2)149.8
N3—H3B···S1ii0.922.603.459 (2)155.4
N4—H4C···N50.922.323.146 (4)149.9
N4—H4D···S1ii0.922.533.419 (2)161.7
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds