Download citation
Download citation
link to html
The cadmium(II) coordination polymer poly[[­(pyrazino[2,3-f][1,10]phenanthroline-[kappa]2N8,N9)cadmium(II)]-[mu]3-naphthalene-1,4-­dicarboxylato-[kappa]5O1:O1,O1':O4,O4'], [Cd(C12H6O4)(C14H8N4)]n, contains two CdII cations, two pyrazino[2,3-f][1,10]phenanthroline (L) ligands and two naphthalene-1,4-­dicarboxylate (1,4-ndc) anions in the asymmetric unit. Both CdII ions are in a distorted CdO5N2 monocapped octa­hedral coordination geometry. Both unique 1,4-ndc ligands are bonded to three CdII ions. In these modes, tetra­nuclear clusters are formed in which four CdII ions are bridged by the carboxyl­ate groups of the 1,4-ndc ligands to form discrete rods. The tetra­nuclear cadmium carboxyl­ate clusters act as rod-shaped secondary building units (SBUs) within the structure. The SBUs are connected together by the aromatic backbone of the dicarboxyl­ate ligands, connecting the clusters into a three-dimensional [alpha]-polonium net. The title compound represents the first [alpha]-polonium net constructed from rod-like clusters in coordination polymers. The result indicates that an appropriate combination of dicarboxyl­ate and aromatic chelating ligands is critical to the formation of high-dimensional structures based on metal clusters in these systems.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108028539/sq3163sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108028539/sq3163Isup2.hkl
Contains datablock I

CCDC reference: 707198

Comment top

Recently, coordination polymers constructed of polynuclear metal clusters and polycarboxylates have attracted intense interest due to their interesting molecular topologies and potential applications as functional materials (Eddaoudi et al., 2001). Polynuclear metal clusters can be very versatile in terms of coordination properties and rigidity, as well as displaying intriguing physical properties in comparison with mononuclear species (Hagrman et al., 1999; Noveron et al., 2002). Recent reviews of the framework topologies and other geometric characteristics of network solids reflect that it remains a challenge to achieve a true advance without understanding the structural aspects of such materials at a molecular or an atomic resolution (Eddaoudi et al., 2001). In this regard, the skilful combination of bridging carboxylates, 2,2'-bipyridyl(bpy)-like chelating ligands and metal ions has generated many interesting coordination architectures. Unfortunately, owing to the termination effect of chelating bpy-like ligands, such coordination polymers containing both polycarboxylates and bpy-like ligands are usually only one- or two-dimensional coordination polymers (Hu et al., 2006). As far as we know, high-dimensional complexes based on dicarboxylate and bpy-like ligands have rarely been reported. The utilization of polynuclear metal clusters as building blocks to construct high-dimensional frameworks has proved to be a feasible route (Wang et al., 2005). One common approach to the synthesis of high-nuclearity clusters is to control the hydrolysis of metal salts with the aid of carboxylate ligands, where the carboxylate group may induce core aggregation, and it should be feasible to link discrete clusters into an extended network via the linear bridging ability of the carboxylate. In this work, we chose 1,4-naphthalenedicarboxylic acid (1,4-H2ndc) as the carboxylate-containing ligand and pyrazino[2,3-f]-1,10-phenanthroline (L) as the chelating ligand, yielding an unusual three-dimensional coordination polymer, [Cd2(L)2(1,4-ndc)2], (I), based on tetranuclear CdII clusters.

The asymmetric unit of (I) consists of two crystallographically independent CdII atoms, two unique L chelating ligands and two unique bridging 1,4-ndc ligands (Fig. 1). Both CdII atoms are in a distorted seven-coordinate [CdO5N2] monocapped octahedral coordination geometry. Atom Cd1 bonds to a µ2-O atom [O4i; symmetry code: (i) x-1, y, z] from a carboxylate ligand chelated to the adjoining Cd2 atom, four O atoms [O1, O2, O7iii and O8iii; symmetry code: (iii) x-1, 1/2-y, 1/2+z] from three different 1,4-ndc ligands and two N atoms (N1 and N2) from one chelating L ligand. The coordination environment of atom Cd2 is completed by two N atoms (N5 and N6) from a chelating L ligand, four O atoms (O3, O4, O5 and O6) from two different 1,4-ndc ligands and a µ2-O atom [O6ii; symmetry code: (ii) 1-x, 1-y, -z] from a carboxylate ligand chelated to the adjoining Cd2 [Cd1 ?] atom. Thus, both unique 1,4-ndc ligands are bonded to three CdII atoms.

Tetranuclear clusters are formed in which four Cd atoms are bridged by the carboxylate groups of the 1,4-ndc ligands to form discrete rods (Fig. 2). The distance between the Cd atoms at either end of these rods is about 10.92 (2) Å. Each cluster lies across an inversion centre, with the Cd2 atoms in the middle and the Cd1 atoms on the ends of the rod. This rod-like tetranuclear Cd cluster including the bpy-like chelating ligand L has not been reported so far to the best of our knowledge, although other non-coplanar tetranuclear Cd clusters including bpy-like chelating ligands have been reported (Wei et al., 2005).

The tetranuclear cadmium carboxylate clusters act as rod-shaped secondary building units (SBUs) within the structure of (I). The SBUs are connected together by the aromatic backbone of the dicarboxylate ligands, connecting the clusters into a three-dimensional network (Fig. 3). Each SBU has eight 1,4-ndc ligands radiating outwards. However, these only connect to six adjacent clusters (four by single bridges) to give (4,4) sheets parallel to the yz plane, and two by double bridges in the z direction, to give the three-dimensional net. Each SBU therefore acts as a six-connecting node, and the overall network topology is that of α-polonium (Batten & Robson, 1998; Yang et al., 2008). Recently, several 6-connected nets, such as 44.611, LB-1 (446108), pcu (41263), roa (446108), and rob (48668) have been observed in coordination polymers (Zhang et al., 2007). It is noteworthy that the α-polonium net presented here is clearly different from the 6-connected three-dimensional nets mentioned above. To the best of our knowledge, (I) is the first α-polonium net constructed from rod-like clusters in coordination polymers. The result indicates that an appropriate combination of the dicarboxylate and aromatic chelating ligands is critical to the formation of high-dimensional structures based on metal clusters.

Related literature top

For related literature, see: Batten & Robson (1998); Eddaoudi et al. (2001); Hagrman et al. (1999); Hu et al. (2006); Noveron et al. (2002); Wang et al. (2005); Wei et al. (2005); Yang et al. (2008); Zhang et al. (2007).

Experimental top

A mixture of CdCl2.2.5H2O (0.114 g, 0.5 mmol), 1,4-H2ndc (0.110 g, 0.5 mmol) and L (0.123 g, 0.5 mmol) was dissolved in distilled water (12 ml), followed by addition of triethylamine until the pH of the system was about 5.7. The resulting solution was stirred for about 1 h at room temperature, sealed in a 23 ml Teflon-lined stainless steel autoclave and heated at 458 K for 2 d under autogenous pressure. Afterwards, the reaction system was cooled slowly to room temperature. Pale-yellow block crystals of (I) suitable for single-crystal X-ray diffraction analysis were collected from the final reaction system by filtration, washed several times with distilled water and dried in air at ambient temperature (yield 33% based on CdII).

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the CdII cations in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) x - 1, y, z; (ii) 1 - x, 1 - y, -z; (iii) x - 1, 1/2 - y, 1/2 + z.]
[Figure 2] Fig. 2. A view of the linkage of the tetranuclear core.
[Figure 3] Fig. 3. A view of the linkage of the tetranuclear core with six adjacent cores (H atoms and part of the aromatic rings have been omitted for clarity).
bis(pyrazino[2,3-f]-1,10-phenanthroline-κ2N,N')- bis(1,4-naphthalenedicarboxylato-κ5O,O':O'',O''':O')dicadmium(II) top
Crystal data top
[Cd2(C14H8N4)2(C12H6O4)2]F(000) = 2224
Mr = 1117.62Dx = 1.678 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 32808 reflections
a = 10.162 (2) Åθ = 3.0–27.5°
b = 18.040 (4) ŵ = 1.03 mm1
c = 24.160 (5) ÅT = 293 K
β = 92.78 (3)°Block, pale yellow
V = 4423.9 (15) Å30.31 × 0.29 × 0.24 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
10059 independent reflections
Radiation source: rotating anode7470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1313
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2323
Tmin = 0.721, Tmax = 0.784l = 3128
41917 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0387P)2 + 1.5094P]
where P = (Fo2 + 2Fc2)/3
10059 reflections(Δ/σ)max = 0.001
631 parametersΔρmax = 0.55 e Å3
42 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cd2(C14H8N4)2(C12H6O4)2]V = 4423.9 (15) Å3
Mr = 1117.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.162 (2) ŵ = 1.03 mm1
b = 18.040 (4) ÅT = 293 K
c = 24.160 (5) Å0.31 × 0.29 × 0.24 mm
β = 92.78 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
10059 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
7470 reflections with I > 2σ(I)
Tmin = 0.721, Tmax = 0.784Rint = 0.044
41917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03842 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.05Δρmax = 0.55 e Å3
10059 reflectionsΔρmin = 0.42 e Å3
631 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1817 (3)0.2785 (2)0.10967 (12)0.0445 (8)
C20.0414 (3)0.30369 (17)0.10833 (12)0.0398 (7)
C30.0363 (3)0.27313 (19)0.06958 (14)0.0484 (8)
H30.00180.23660.04590.058*
C40.1674 (3)0.2963 (2)0.06519 (13)0.0471 (8)
H40.21920.27420.03910.057*
C50.2201 (3)0.35097 (18)0.09874 (12)0.0414 (7)
C60.3547 (3)0.3810 (2)0.08698 (12)0.0460 (8)
C70.1453 (3)0.38070 (18)0.14205 (12)0.0410 (7)
C80.1990 (3)0.4308 (2)0.18224 (15)0.0547 (9)
H80.28380.44900.17880.066*
C90.1284 (4)0.4527 (2)0.22584 (16)0.0656 (11)
H90.16650.48450.25230.079*
C100.0011 (4)0.4278 (2)0.23128 (16)0.0601 (10)
H100.04810.44280.26140.072*
C110.0577 (3)0.38162 (19)0.19249 (13)0.0479 (8)
H110.14430.36630.19610.058*
C120.0123 (3)0.35635 (17)0.14671 (12)0.0391 (7)
C130.3092 (4)0.2129 (3)0.01395 (16)0.0700 (11)
H130.25170.24900.00020.084*
C140.2883 (6)0.1845 (3)0.06573 (19)0.0922 (16)
H140.21830.20130.08570.111*
C150.3710 (6)0.1317 (3)0.08722 (19)0.0941 (17)
H150.35790.11180.12210.113*
C160.4757 (5)0.1074 (2)0.05670 (17)0.0745 (13)
C170.4900 (4)0.1399 (2)0.00375 (15)0.0576 (9)
C180.6015 (4)0.1187 (2)0.02941 (16)0.0594 (9)
C190.7109 (4)0.1349 (3)0.11008 (18)0.0728 (12)
H190.71770.15740.14440.087*
C200.8077 (5)0.0843 (3)0.0918 (2)0.0939 (16)
H200.87710.07300.11400.113*
C210.8000 (6)0.0519 (3)0.0412 (2)0.0998 (18)
H210.86490.01870.02870.120*
C220.6958 (5)0.0681 (2)0.0083 (2)0.0756 (13)
C230.6763 (6)0.0345 (2)0.0464 (2)0.0881 (16)
C240.5695 (6)0.0536 (3)0.0767 (2)0.0886 (16)
C250.6398 (9)0.0267 (4)0.1436 (3)0.136 (3)
H250.62930.04960.17760.163*
C370.5715 (3)0.39238 (19)0.05089 (12)0.0446 (8)
C270.5540 (3)0.35972 (18)0.10812 (12)0.0410 (7)
C280.6395 (3)0.3818 (2)0.14703 (13)0.0499 (8)
H280.70860.41380.13720.060*
C290.6224 (3)0.3559 (2)0.20185 (13)0.0517 (9)
H290.67860.37330.22820.062*
C300.5264 (3)0.30628 (19)0.21783 (12)0.0442 (7)
C310.4382 (3)0.27968 (18)0.17752 (13)0.0445 (7)
C320.4512 (3)0.30909 (17)0.12241 (12)0.0397 (7)
C330.3619 (3)0.28391 (19)0.08297 (14)0.0494 (8)
H330.36910.30240.04700.059*
C340.2665 (4)0.2336 (2)0.09643 (16)0.0592 (9)
H340.20920.21810.06990.071*
C350.2542 (4)0.2049 (2)0.15068 (17)0.0674 (11)
H350.18880.17030.15970.081*
C360.3372 (4)0.2273 (2)0.19022 (15)0.0580 (9)
H360.32730.20810.22590.070*
C510.8524 (3)0.5368 (2)0.02255 (17)0.0620 (10)
H510.83070.51810.01260.074*
C520.9583 (4)0.5867 (3)0.0293 (2)0.0751 (12)
H521.00710.59970.00080.090*
C390.9884 (4)0.6155 (2)0.0800 (2)0.0741 (12)
H391.05910.64800.08510.089*
C400.9125 (3)0.5962 (2)0.12481 (18)0.0603 (10)
C410.8104 (3)0.54562 (18)0.11505 (15)0.0487 (8)
C420.7306 (3)0.52209 (18)0.16042 (13)0.0460 (8)
C430.5710 (4)0.4436 (2)0.19117 (14)0.0560 (9)
H430.50940.40630.18370.067*
C440.5895 (4)0.4687 (3)0.24498 (15)0.0713 (12)
H440.54120.44860.27310.086*
C450.6790 (5)0.5229 (3)0.25628 (16)0.0748 (12)
H450.69030.54170.29200.090*
C460.7542 (4)0.5505 (2)0.21401 (16)0.0606 (10)
C470.8596 (4)0.6035 (2)0.22339 (19)0.0721 (12)
C480.9361 (4)0.6261 (2)0.1809 (2)0.0717 (12)
C491.0560 (6)0.6983 (4)0.2412 (3)0.133 (3)
H491.12500.73070.25020.159*
C500.9796 (7)0.6756 (4)0.2822 (3)0.139 (3)
H500.99730.69490.31750.166*
C260.7458 (9)0.0447 (3)0.1141 (3)0.135 (3)
H260.80390.07990.12920.162*
C380.5209 (4)0.2833 (2)0.27837 (14)0.0550 (9)
N10.4071 (3)0.19142 (18)0.01702 (11)0.0566 (8)
N20.6093 (3)0.15162 (17)0.07961 (12)0.0572 (8)
N30.5537 (6)0.0211 (3)0.12589 (18)0.1127 (16)
N40.7733 (6)0.0151 (3)0.0640 (2)0.1245 (18)
N50.7827 (3)0.51551 (16)0.06439 (11)0.0493 (7)
N60.6371 (3)0.47031 (16)0.14962 (11)0.0475 (6)
N71.0374 (4)0.6763 (2)0.1874 (2)0.1060 (15)
N80.8831 (4)0.6286 (3)0.27568 (18)0.1051 (15)
O10.2026 (2)0.21104 (15)0.11367 (13)0.0757 (8)
O20.2733 (2)0.32490 (14)0.10492 (10)0.0542 (6)
O30.3700 (2)0.44930 (15)0.08679 (10)0.0592 (7)
O40.4440 (2)0.33603 (14)0.07412 (9)0.0541 (6)
O50.6779 (2)0.38371 (15)0.02369 (9)0.0590 (6)
O60.4775 (2)0.42831 (13)0.03190 (9)0.0499 (6)
O70.4653 (4)0.2287 (2)0.29578 (13)0.1165 (14)
O80.5719 (4)0.3244 (2)0.31033 (11)0.1151 (14)
Cd10.44274 (2)0.236071 (14)0.109183 (9)0.04296 (8)
Cd20.59398 (2)0.441582 (15)0.056187 (9)0.04714 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0371 (17)0.059 (2)0.0370 (16)0.0046 (15)0.0003 (13)0.0083 (15)
C20.0334 (15)0.0430 (18)0.0428 (16)0.0021 (13)0.0007 (13)0.0079 (14)
C30.0432 (18)0.054 (2)0.0477 (18)0.0060 (15)0.0002 (15)0.0037 (16)
C40.0385 (17)0.061 (2)0.0426 (17)0.0009 (15)0.0093 (14)0.0037 (16)
C50.0312 (15)0.054 (2)0.0390 (16)0.0021 (13)0.0022 (13)0.0073 (14)
C60.0321 (16)0.075 (3)0.0304 (15)0.0060 (16)0.0003 (12)0.0044 (15)
C70.0333 (15)0.0464 (18)0.0431 (16)0.0006 (13)0.0018 (13)0.0045 (14)
C80.0412 (18)0.064 (2)0.058 (2)0.0062 (16)0.0019 (16)0.0098 (18)
C90.058 (2)0.077 (3)0.062 (2)0.001 (2)0.0012 (19)0.021 (2)
C100.052 (2)0.074 (3)0.055 (2)0.0129 (19)0.0085 (18)0.0076 (19)
C110.0372 (16)0.058 (2)0.0486 (18)0.0056 (15)0.0031 (14)0.0030 (16)
C120.0355 (15)0.0424 (18)0.0392 (15)0.0026 (13)0.0011 (13)0.0076 (13)
C130.065 (3)0.091 (3)0.054 (2)0.008 (2)0.007 (2)0.003 (2)
C140.096 (4)0.121 (5)0.060 (3)0.015 (3)0.015 (3)0.009 (3)
C150.117 (4)0.114 (4)0.052 (2)0.042 (4)0.011 (3)0.007 (3)
C160.099 (3)0.065 (3)0.057 (2)0.029 (2)0.025 (2)0.011 (2)
C170.068 (2)0.055 (2)0.0483 (19)0.0132 (19)0.0153 (18)0.0039 (17)
C180.068 (2)0.050 (2)0.057 (2)0.0029 (18)0.0254 (19)0.0090 (17)
C190.061 (2)0.086 (3)0.071 (3)0.020 (2)0.005 (2)0.020 (2)
C200.072 (3)0.107 (4)0.102 (4)0.037 (3)0.009 (3)0.037 (3)
C210.112 (4)0.080 (4)0.102 (4)0.042 (3)0.052 (3)0.022 (3)
C220.085 (3)0.055 (3)0.083 (3)0.012 (2)0.032 (3)0.020 (2)
C230.129 (4)0.044 (2)0.085 (3)0.000 (3)0.058 (3)0.001 (2)
C240.132 (5)0.062 (3)0.068 (3)0.026 (3)0.033 (3)0.009 (2)
C250.192 (7)0.092 (5)0.117 (5)0.024 (5)0.055 (5)0.026 (4)
C370.054 (2)0.049 (2)0.0310 (15)0.0104 (15)0.0018 (15)0.0018 (14)
C270.0449 (17)0.0470 (19)0.0311 (14)0.0069 (14)0.0013 (13)0.0033 (13)
C280.0512 (19)0.057 (2)0.0414 (17)0.0062 (16)0.0026 (15)0.0079 (15)
C290.055 (2)0.066 (2)0.0353 (16)0.0031 (18)0.0117 (15)0.0066 (16)
C300.0530 (19)0.048 (2)0.0310 (15)0.0097 (15)0.0005 (14)0.0055 (14)
C310.0486 (18)0.0437 (19)0.0407 (16)0.0088 (14)0.0034 (14)0.0048 (14)
C320.0433 (17)0.0411 (18)0.0344 (15)0.0066 (13)0.0002 (13)0.0031 (13)
C330.054 (2)0.051 (2)0.0428 (17)0.0013 (16)0.0047 (16)0.0018 (15)
C340.061 (2)0.061 (2)0.057 (2)0.0100 (19)0.0071 (18)0.0013 (18)
C350.067 (3)0.059 (2)0.075 (3)0.015 (2)0.006 (2)0.007 (2)
C360.065 (2)0.057 (2)0.051 (2)0.0052 (18)0.0059 (18)0.0150 (17)
C510.0455 (19)0.078 (3)0.062 (2)0.0051 (18)0.0009 (17)0.010 (2)
C520.052 (2)0.078 (3)0.095 (3)0.006 (2)0.001 (2)0.022 (3)
C390.047 (2)0.055 (3)0.119 (4)0.0069 (18)0.012 (2)0.002 (2)
C400.0409 (19)0.050 (2)0.088 (3)0.0020 (16)0.0132 (19)0.007 (2)
C410.0400 (17)0.0422 (19)0.062 (2)0.0024 (14)0.0117 (16)0.0065 (16)
C420.0435 (17)0.0437 (19)0.0492 (18)0.0118 (15)0.0135 (15)0.0100 (15)
C430.055 (2)0.069 (2)0.0431 (18)0.0020 (18)0.0015 (16)0.0034 (17)
C440.075 (3)0.098 (3)0.0413 (19)0.004 (3)0.0014 (19)0.005 (2)
C450.085 (3)0.097 (3)0.041 (2)0.014 (3)0.010 (2)0.022 (2)
C460.060 (2)0.058 (2)0.062 (2)0.0125 (18)0.0204 (19)0.0219 (19)
C470.063 (2)0.064 (3)0.087 (3)0.010 (2)0.019 (2)0.038 (2)
C480.049 (2)0.052 (2)0.111 (3)0.0065 (18)0.026 (2)0.033 (2)
C490.072 (4)0.121 (5)0.201 (8)0.008 (3)0.032 (4)0.106 (6)
C500.105 (5)0.149 (6)0.159 (6)0.014 (5)0.021 (4)0.102 (5)
C260.228 (9)0.046 (3)0.121 (5)0.009 (4)0.088 (6)0.021 (3)
C380.063 (2)0.066 (3)0.0362 (17)0.0125 (19)0.0031 (17)0.0149 (17)
N10.0557 (18)0.070 (2)0.0437 (15)0.0025 (16)0.0037 (14)0.0003 (15)
N20.0562 (18)0.060 (2)0.0542 (17)0.0088 (15)0.0060 (14)0.0111 (15)
N30.167 (4)0.084 (3)0.082 (3)0.036 (3)0.045 (3)0.033 (2)
N40.170 (5)0.070 (3)0.127 (4)0.018 (3)0.069 (3)0.004 (3)
N50.0393 (14)0.0575 (18)0.0503 (16)0.0036 (13)0.0046 (12)0.0021 (14)
N60.0469 (15)0.0522 (17)0.0426 (14)0.0013 (13)0.0047 (12)0.0086 (13)
N70.060 (2)0.087 (3)0.169 (4)0.008 (2)0.020 (2)0.062 (3)
N80.094 (3)0.113 (3)0.106 (3)0.000 (3)0.026 (2)0.067 (3)
O10.0499 (15)0.0560 (17)0.119 (2)0.0124 (13)0.0162 (15)0.0243 (16)
O20.0339 (12)0.0611 (16)0.0675 (15)0.0025 (11)0.0015 (11)0.0031 (12)
O30.0568 (15)0.0641 (17)0.0574 (15)0.0205 (12)0.0101 (12)0.0056 (12)
O40.0349 (12)0.0788 (17)0.0488 (13)0.0077 (11)0.0056 (10)0.0202 (12)
O50.0551 (15)0.0814 (19)0.0398 (12)0.0068 (13)0.0068 (11)0.0041 (12)
O60.0620 (14)0.0525 (14)0.0362 (11)0.0039 (11)0.0131 (11)0.0078 (10)
O70.175 (4)0.116 (3)0.0603 (19)0.043 (3)0.021 (2)0.0422 (19)
O80.188 (4)0.121 (3)0.0386 (15)0.047 (3)0.025 (2)0.0161 (17)
Cd10.03732 (12)0.05805 (16)0.03338 (12)0.00738 (10)0.00029 (9)0.00770 (10)
Cd20.03955 (13)0.06988 (18)0.03222 (12)0.01781 (11)0.00419 (9)0.01023 (11)
Geometric parameters (Å, º) top
C1—O11.239 (4)C30—C311.437 (4)
C1—O21.253 (4)C30—C381.519 (4)
C1—C21.499 (4)C31—C361.418 (5)
C2—C31.369 (4)C31—C321.433 (4)
C2—C121.418 (4)C32—C331.422 (4)
C3—C41.406 (4)C33—C341.356 (5)
C3—H30.9300C33—H330.9300
C4—C51.369 (4)C34—C351.409 (5)
C4—H40.9300C34—H340.9300
C5—C71.428 (4)C35—C361.366 (5)
C5—C61.510 (4)C35—H350.9300
C6—O31.241 (4)C36—H360.9300
C6—O41.268 (4)C51—N51.319 (4)
C7—C81.416 (5)C51—C521.407 (5)
C7—C121.431 (4)C51—H510.9300
C8—C91.361 (5)C52—C391.352 (6)
C8—H80.9300C52—H520.9300
C9—C101.403 (5)C39—C401.404 (6)
C9—H90.9300C39—H390.9300
C10—C111.361 (5)C40—C411.393 (5)
C10—H100.9300C40—C481.468 (6)
C11—C121.419 (4)C41—N51.356 (4)
C11—H110.9300C41—C421.458 (5)
C13—N11.331 (5)C42—N61.349 (4)
C13—C141.378 (6)C42—C461.402 (5)
C13—H130.9300C43—N61.326 (4)
C14—C151.357 (7)C43—C441.381 (5)
C14—H140.9300C43—H430.9300
C15—C161.394 (7)C44—C451.355 (6)
C15—H150.9300C44—H440.9300
C16—C171.421 (5)C45—C461.396 (6)
C16—C241.429 (7)C45—H450.9300
C17—N11.336 (5)C46—C471.446 (6)
C17—C181.469 (5)C47—N81.352 (5)
C18—N21.356 (5)C47—C481.379 (6)
C18—C221.402 (5)C48—N71.374 (5)
C19—N21.332 (5)C49—C501.352 (9)
C19—C201.397 (6)C49—N71.365 (7)
C19—H190.9300C49—H490.9300
C20—C211.360 (7)C50—N81.300 (7)
C20—H200.9300C50—H500.9300
C21—C221.387 (7)C26—N41.365 (8)
C21—H210.9300C26—H260.9300
C22—C231.475 (7)C38—O71.200 (5)
C23—N41.383 (6)C38—O81.206 (5)
C23—C241.383 (8)Cd1—N12.412 (3)
C24—N31.341 (6)Cd1—N22.362 (3)
C25—N31.287 (9)Cd2—N52.336 (3)
C25—C261.359 (10)Cd2—N62.337 (3)
C25—H250.9300Cd1—O12.479 (3)
C37—O51.248 (4)Cd1—O22.358 (2)
C37—O61.259 (4)Cd2—O32.431 (2)
C37—C271.506 (4)Cd2—O42.490 (2)
C37—Cd22.734 (3)Cd2—O52.388 (2)
C27—C281.370 (4)Cd2—O62.396 (2)
C27—C321.418 (4)Cd1—O8i2.228 (3)
C28—C291.407 (4)Cd1—O4ii2.280 (2)
C28—H280.9300Cd1—O7i2.599 (3)
C29—C301.366 (5)Cd2—O6iii2.518 (2)
C29—H290.9300
O1—C1—O2122.3 (3)C52—C51—H51118.9
O1—C1—C2117.8 (3)C39—C52—C51119.3 (4)
O2—C1—C2119.9 (3)C39—C52—H52120.3
O1—C1—Cd163.94 (18)C51—C52—H52120.3
O2—C1—Cd158.38 (16)C52—C39—C40119.6 (4)
C2—C1—Cd1177.8 (2)C52—C39—H39120.2
C3—C2—C12120.1 (3)C40—C39—H39120.2
C3—C2—C1118.2 (3)C41—C40—C39117.7 (4)
C12—C2—C1121.7 (3)C41—C40—C48119.0 (4)
C2—C3—C4120.8 (3)C39—C40—C48123.3 (4)
C2—C3—H3119.6N5—C41—C40122.4 (3)
C4—C3—H3119.6N5—C41—C42117.6 (3)
C5—C4—C3121.0 (3)C40—C41—C42120.0 (3)
C5—C4—H4119.5N6—C42—C46121.2 (3)
C3—C4—H4119.5N6—C42—C41117.9 (3)
C4—C5—C7119.8 (3)C46—C42—C41120.8 (3)
C4—C5—C6118.6 (3)N6—C43—C44122.9 (4)
C7—C5—C6121.5 (3)N6—C43—H43118.6
O3—C6—O4122.8 (3)C44—C43—H43118.6
O3—C6—C5118.2 (3)C45—C44—C43119.1 (4)
O4—C6—C5118.8 (3)C45—C44—H44120.5
C8—C7—C5122.7 (3)C43—C44—H44120.5
C8—C7—C12118.4 (3)C44—C45—C46119.7 (3)
C5—C7—C12118.8 (3)C44—C45—H45120.1
C9—C8—C7121.0 (3)C46—C45—H45120.1
C9—C8—H8119.5C45—C46—C42118.1 (4)
C7—C8—H8119.5C45—C46—C47123.3 (4)
C8—C9—C10120.8 (4)C42—C46—C47118.6 (4)
C8—C9—H9119.6N8—C47—C48121.1 (4)
C10—C9—H9119.6N8—C47—C46117.6 (5)
C11—C10—C9119.9 (3)C48—C47—C46121.3 (4)
C11—C10—H10120.0N7—C48—C47123.8 (4)
C9—C10—H10120.0N7—C48—C40115.8 (5)
C10—C11—C12121.5 (3)C47—C48—C40120.4 (4)
C10—C11—H11119.3C50—C49—N7123.5 (5)
C12—C11—H11119.3C50—C49—H49118.2
C2—C12—C11122.3 (3)N7—C49—H49118.2
C2—C12—C7119.3 (3)N8—C50—C49124.4 (6)
C11—C12—C7118.3 (3)N8—C50—H50117.8
N1—C13—C14123.7 (5)C49—C50—H50117.8
N1—C13—H13118.1C25—C26—N4125.0 (7)
C14—C13—H13118.1C25—C26—H26117.5
C15—C14—C13119.2 (5)N4—C26—H26117.5
C15—C14—H14120.4O7—C38—O8119.3 (4)
C13—C14—H14120.4O7—C38—C30123.8 (4)
C14—C15—C16119.5 (4)O8—C38—C30116.8 (4)
C14—C15—H15120.2C13—N1—C17117.8 (3)
C16—C15—H15120.2C13—N1—Cd1124.9 (3)
C15—C16—C17117.4 (4)C17—N1—Cd1117.3 (2)
C15—C16—C24123.2 (5)C19—N2—C18118.4 (3)
C17—C16—C24119.3 (5)C19—N2—Cd1122.9 (3)
N1—C17—C16122.3 (4)C18—N2—Cd1118.7 (2)
N1—C17—C18117.7 (3)C25—N3—C24118.6 (7)
C16—C17—C18119.9 (4)C26—N4—C23110.7 (6)
N2—C18—C22122.9 (4)C51—N5—C41118.7 (3)
N2—C18—C17117.0 (3)C51—N5—Cd2124.7 (2)
C22—C18—C17120.1 (4)C41—N5—Cd2116.0 (2)
N2—C19—C20121.7 (4)C43—N6—C42118.9 (3)
N2—C19—H19119.1C43—N6—Cd2124.9 (2)
C20—C19—H19119.1C42—N6—Cd2116.0 (2)
C21—C20—C19119.7 (5)C49—N7—C48111.6 (5)
C21—C20—H20120.2C50—N8—C47115.5 (6)
C19—C20—H20120.2C1—O1—Cd189.4 (2)
C20—C21—C22120.2 (4)C1—O2—Cd194.7 (2)
C20—C21—H21119.9C6—O3—Cd293.7 (2)
C22—C21—H21119.9C6—O4—Cd1iv140.3 (2)
C21—C22—C18117.1 (4)C6—O4—Cd290.3 (2)
C21—C22—C23124.5 (5)Cd1iv—O4—Cd2111.56 (9)
C18—C22—C23118.4 (5)C37—O5—Cd292.09 (19)
N4—C23—C24124.3 (5)C37—O6—Cd291.39 (19)
N4—C23—C22114.6 (6)C37—O6—Cd2iii127.61 (19)
C24—C23—C22121.0 (4)Cd2—O6—Cd2iii103.78 (8)
N3—C24—C23119.4 (6)C38—O7—Cd1v85.8 (2)
N3—C24—C16119.4 (6)C38—O8—Cd1v104.2 (3)
C23—C24—C16121.2 (4)O8i—Cd1—O4ii136.26 (11)
N3—C25—C26121.9 (7)O8i—Cd1—O2110.67 (14)
N3—C25—H25119.1O4ii—Cd1—O278.62 (8)
C26—C25—H25119.1O8i—Cd1—N287.97 (14)
O5—C37—O6121.7 (3)O4ii—Cd1—N293.24 (10)
O5—C37—C27119.7 (3)O2—Cd1—N2159.91 (9)
O6—C37—C27118.6 (3)O8i—Cd1—N1129.46 (12)
O5—C37—Cd260.77 (16)O4ii—Cd1—N190.96 (9)
O6—C37—Cd261.20 (16)O2—Cd1—N192.53 (10)
C27—C37—Cd2175.4 (2)N2—Cd1—N169.07 (11)
C28—C27—C32120.3 (3)O8i—Cd1—O181.31 (13)
C28—C27—C37117.8 (3)O4ii—Cd1—O1129.66 (8)
C32—C27—C37121.9 (3)O2—Cd1—O153.58 (8)
C27—C28—C29119.7 (3)N2—Cd1—O1125.82 (10)
C27—C28—H28120.1N1—Cd1—O177.76 (11)
C29—C28—H28120.1O8i—Cd1—O7i50.23 (11)
C30—C29—C28122.5 (3)O4ii—Cd1—O7i86.47 (10)
C30—C29—H29118.7O2—Cd1—O7i99.61 (12)
C28—C29—H29118.7N2—Cd1—O7i98.16 (13)
C29—C30—C31119.2 (3)N1—Cd1—O7i166.83 (13)
C29—C30—C38116.4 (3)O1—Cd1—O7i113.64 (13)
C31—C30—C38124.5 (3)N5—Cd2—N671.14 (10)
C36—C31—C32118.7 (3)N5—Cd2—O589.68 (9)
C36—C31—C30123.0 (3)N6—Cd2—O5145.10 (9)
C32—C31—C30118.3 (3)N5—Cd2—O6120.03 (9)
C27—C32—C33122.0 (3)N6—Cd2—O6160.30 (9)
C27—C32—C31119.9 (3)O5—Cd2—O654.47 (8)
C33—C32—C31118.1 (3)N5—Cd2—O3135.91 (9)
C34—C33—C32121.7 (3)N6—Cd2—O380.09 (9)
C34—C33—H33119.2O5—Cd2—O3130.33 (9)
C32—C33—H33119.2O6—Cd2—O381.17 (8)
C33—C34—C35120.0 (3)N5—Cd2—O4158.20 (9)
C33—C34—H34120.0N6—Cd2—O495.11 (9)
C35—C34—H34120.0O5—Cd2—O492.97 (8)
C36—C35—C34120.8 (4)O6—Cd2—O478.35 (8)
C36—C35—H35119.6O3—Cd2—O453.20 (8)
C34—C35—H35119.6N5—Cd2—O6iii73.38 (9)
C35—C36—C31120.8 (3)N6—Cd2—O6iii93.26 (9)
C35—C36—H36119.6O5—Cd2—O6iii109.24 (8)
C31—C36—H36119.6O6—Cd2—O6iii76.22 (8)
N5—C51—C52122.2 (4)O3—Cd2—O6iii75.75 (8)
N5—C51—H51118.9O4—Cd2—O6iii125.55 (8)
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cd2(C14H8N4)2(C12H6O4)2]
Mr1117.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.162 (2), 18.040 (4), 24.160 (5)
β (°) 92.78 (3)
V3)4423.9 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.31 × 0.29 × 0.24
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.721, 0.784
No. of measured, independent and
observed [I > 2σ(I)] reflections
41917, 10059, 7470
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.086, 1.05
No. of reflections10059
No. of parameters631
No. of restraints42
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.42

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—N12.412 (3)Cd2—O42.490 (2)
Cd1—N22.362 (3)Cd2—O52.388 (2)
Cd2—N52.336 (3)Cd2—O62.396 (2)
Cd2—N62.337 (3)Cd1—O8i2.228 (3)
Cd1—O12.479 (3)Cd1—O4ii2.280 (2)
Cd1—O22.358 (2)Cd1—O7i2.599 (3)
Cd2—O32.431 (2)Cd2—O6iii2.518 (2)
Symmetry codes: (i) x1, y+1/2, z+1/2; (ii) x1, y, z; (iii) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds