Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803018129/su6041sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536803018129/su6041Isup2.hkl |
CCDC reference: 222819
Colourless crystals of the title compound were obtained from an aqueous solution containing HCl (0.1 M), K4[Nb2(S2)2(C2O4)4] (0.01 g) (Sokolov et al., 2001) and Er(NO3)3 (0.02 g). Yield 70%.
The H atoms of the coordinated water molecules were located geometrically and refined with the O—H distances restrained to 0.98 (1) Å and the H···H distances restrained to 1.60 (3) Å. The isotropic displacement parameters of all the H atoms were fixed at 1.5Ueq of the parent O atom. The four water molecules of crystallization are disordered over five positions and were refined isotropically with equivalent displacement parameters. The largest difference peak is 0.99 Å from the disordered water molecule O4W and the deepest hole is 1.07 Å from the water molecule O1M, coordinated to the Er atom.
Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1998); program(s) used to refine structure: SHELXL97 (Sheldrick, 1998); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXL97.
[Er2(C2O4)3(H2O)6]·4H2O | F(000) = 736 |
Mr = 778.74 | Dx = 2.753 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.9065 (6) Å | Cell parameters from 1006 reflections |
b = 9.5339 (5) Å | θ = 3.1–38.9° |
c = 9.8977 (5) Å | µ = 8.99 mm−1 |
β = 114.125 (1)° | T = 173 K |
V = 939.28 (9) Å3 | Block, colourless |
Z = 2 | 0.26 × 0.18 × 0.11 mm |
Bruker SMART1000 CCD diffractometer | 4504 independent reflections |
Radiation source: fine-focus sealed tube | 4077 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 8.33 pixels mm-1 | θmax = 36.3°, θmin = 3.0° |
CCD scans | h = −18→18 |
Absorption correction: integration (SAINT-Plus; Bruker, 2001) | k = −8→15 |
Tmin = 0.204, Tmax = 0.470 | l = −16→16 |
11931 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0212P)2 + 2.9967P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
4504 reflections | Δρmax = 2.51 e Å−3 |
158 parameters | Δρmin = −1.85 e Å−3 |
10 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0011 (2) |
[Er2(C2O4)3(H2O)6]·4H2O | V = 939.28 (9) Å3 |
Mr = 778.74 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.9065 (6) Å | µ = 8.99 mm−1 |
b = 9.5339 (5) Å | T = 173 K |
c = 9.8977 (5) Å | 0.26 × 0.18 × 0.11 mm |
β = 114.125 (1)° |
Bruker SMART1000 CCD diffractometer | 4504 independent reflections |
Absorption correction: integration (SAINT-Plus; Bruker, 2001) | 4077 reflections with I > 2σ(I) |
Tmin = 0.204, Tmax = 0.470 | Rint = 0.037 |
11931 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 10 restraints |
wR(F2) = 0.070 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 2.51 e Å−3 |
4504 reflections | Δρmin = −1.85 e Å−3 |
158 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Er1 | 0.191404 (11) | 0.456295 (12) | −0.669046 (12) | 0.00793 (4) | |
O1M | 0.2120 (3) | 0.6856 (3) | −0.5707 (3) | 0.0213 (5) | |
H1M1 | 0.269 (4) | 0.756 (4) | −0.587 (6) | 0.032* | |
H1M2 | 0.133 (3) | 0.734 (5) | −0.568 (6) | 0.032* | |
O2M | 0.1667 (3) | 0.2191 (3) | −0.6175 (3) | 0.0247 (6) | |
H2M1 | 0.108 (5) | 0.151 (4) | −0.688 (4) | 0.037* | |
H2M2 | 0.221 (5) | 0.167 (5) | −0.528 (3) | 0.037* | |
O3M | 0.2955 (2) | 0.3191 (3) | −0.7993 (3) | 0.0179 (4) | |
H3M1 | 0.3934 (11) | 0.322 (5) | −0.752 (5) | 0.027* | |
H3M2 | 0.262 (4) | 0.223 (2) | −0.821 (6) | 0.027* | |
O1 | 0.6108 (2) | 0.6089 (2) | −0.5352 (2) | 0.0128 (4) | |
O2 | 0.3906 (2) | 0.5737 (2) | −0.6662 (2) | 0.0122 (4) | |
C12 | 0.5008 (3) | 0.5531 (3) | −0.5580 (3) | 0.0101 (4) | |
O3 | −0.1636 (2) | 0.5629 (3) | −0.5710 (3) | 0.0183 (5) | |
O4 | −0.0260 (2) | 0.5246 (3) | −0.6842 (3) | 0.0136 (4) | |
C34 | −0.0550 (3) | 0.5248 (3) | −0.5732 (3) | 0.0126 (5) | |
O5 | −0.1283 (2) | 0.3960 (2) | −1.1227 (2) | 0.0144 (4) | |
O6 | 0.0141 (2) | 0.3541 (2) | −0.8878 (2) | 0.0119 (3) | |
C56 | −0.0330 (3) | 0.4274 (3) | −1.0035 (3) | 0.0100 (4) | |
O1W | 0.4246 (8) | −0.1872 (9) | −0.7979 (9) | 0.0444 (10)* | 0.577 (4) |
O2W | 0.4431 (10) | −0.2877 (11) | −0.8780 (11) | 0.0444 (10)* | 0.428 (9) |
O3W | 0.3386 (10) | −0.0884 (11) | −0.6556 (11) | 0.0444 (10)* | 0.442 (9) |
O4W | 0.4210 (15) | 0.0125 (16) | −0.5761 (16) | 0.0444 (10)* | 0.298 (9) |
O5W | 0.4183 (17) | −0.1448 (19) | −0.7429 (19) | 0.0444 (10)* | 0.255 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Er1 | 0.00658 (6) | 0.00993 (6) | 0.00659 (6) | 0.00003 (4) | 0.00198 (4) | 0.00012 (3) |
O1M | 0.0176 (10) | 0.0208 (11) | 0.0241 (12) | 0.0035 (9) | 0.0071 (9) | −0.0074 (9) |
O2M | 0.0357 (14) | 0.0168 (11) | 0.0111 (9) | −0.0117 (10) | −0.0011 (9) | 0.0012 (8) |
O3M | 0.0136 (9) | 0.0183 (10) | 0.0206 (10) | −0.0005 (8) | 0.0057 (8) | −0.0082 (9) |
O1 | 0.0087 (8) | 0.0156 (9) | 0.0131 (8) | −0.0007 (7) | 0.0033 (7) | 0.0038 (7) |
O2 | 0.0076 (7) | 0.0154 (9) | 0.0105 (8) | −0.0012 (7) | 0.0004 (7) | 0.0027 (7) |
C12 | 0.0086 (9) | 0.0121 (10) | 0.0090 (10) | 0.0000 (8) | 0.0029 (8) | −0.0008 (8) |
O3 | 0.0146 (9) | 0.0276 (12) | 0.0160 (10) | 0.0099 (9) | 0.0097 (8) | 0.0070 (9) |
O4 | 0.0119 (8) | 0.0181 (10) | 0.0117 (9) | 0.0036 (7) | 0.0058 (7) | 0.0024 (7) |
C34 | 0.0122 (10) | 0.0149 (11) | 0.0123 (11) | 0.0040 (9) | 0.0067 (9) | 0.0041 (9) |
O5 | 0.0131 (9) | 0.0150 (9) | 0.0098 (8) | −0.0049 (7) | −0.0007 (7) | 0.0020 (7) |
O6 | 0.0123 (8) | 0.0132 (9) | 0.0093 (8) | −0.0015 (7) | 0.0037 (7) | 0.0015 (7) |
C56 | 0.0097 (10) | 0.0114 (10) | 0.0079 (9) | −0.0022 (8) | 0.0027 (8) | −0.0001 (8) |
Er1—O1M | 2.366 (3) | O1—C12 | 1.246 (3) |
Er1—O2M | 2.357 (3) | O2—C12 | 1.256 (3) |
Er1—O3M | 2.420 (2) | C12—C12i | 1.536 (6) |
Er1—O1i | 2.359 (2) | O3—C34 | 1.247 (4) |
Er1—O2 | 2.434 (2) | O4—C34 | 1.262 (4) |
Er1—O3ii | 2.522 (2) | C34—C34ii | 1.530 (6) |
Er1—O4 | 2.404 (2) | O5—C56 | 1.249 (3) |
Er1—O5iii | 2.355 (2) | O6—C56 | 1.257 (3) |
Er1—O6 | 2.440 (2) | C56—C56iii | 1.549 (6) |
O1M—H1M1 | 0.97 (5) | O1W—O2W | 1.311 (12) |
O1M—H1M2 | 0.99 (4) | O1W—O5W | 0.704 (17) |
O2M—H2M1 | 0.98 (4) | O3W—O4W | 1.332 (18) |
O2M—H2M2 | 0.98 (4) | O3W—O5W | 1.55 (2) |
O3M—H3M1 | 0.98 (3) | O4W—O4Wiv | 1.78 (3) |
O3M—H3M2 | 0.98 (3) | ||
O1M—Er1—O2M | 142.85 (10) | O5iii—Er1—O3ii | 139.76 (8) |
O1M—Er1—O3M | 137.06 (9) | O5iii—Er1—O4 | 81.68 (8) |
O1M—Er1—O2 | 68.67 (9) | O5iii—Er1—O6 | 67.64 (7) |
O1M—Er1—O3ii | 72.97 (10) | O6—Er1—O3ii | 116.76 (8) |
O1M—Er1—O4 | 72.58 (9) | Er1—O1M—H1M1 | 122 (3) |
O1M—Er1—O6 | 129.89 (8) | Er1—O1M—H1M2 | 121 (3) |
O2M—Er1—O3M | 73.56 (10) | H1M1—O1M—H1M2 | 108 (3) |
O2M—Er1—O1i | 72.96 (9) | Er1—O2M—H2M1 | 126 (3) |
O2M—Er1—O2 | 128.24 (10) | Er1—O2M—H2M2 | 127 (3) |
O2M—Er1—O3ii | 70.00 (9) | H2M1—O2M—H2M2 | 107 (3) |
O2M—Er1—O4 | 94.38 (10) | Er1—O3M—H3M1 | 113 (3) |
O2M—Er1—O6 | 71.95 (8) | Er1—O3M—H3M2 | 114 (3) |
O3M—Er1—O2 | 69.13 (8) | H3M2—O3M—H3M1 | 112 (3) |
O3M—Er1—O3ii | 136.54 (9) | C12—O1—Er1i | 121.21 (18) |
O3M—Er1—O6 | 71.69 (8) | C12—O2—Er1 | 118.43 (19) |
O1i—Er1—O1M | 89.50 (9) | O1—C12—O2 | 127.0 (3) |
O1i—Er1—O3M | 81.39 (8) | O1—C12—C12i | 116.8 (3) |
O1i—Er1—O2 | 67.17 (7) | O2—C12—C12i | 116.2 (3) |
O1i—Er1—O3ii | 66.01 (8) | C34—O3—Er1ii | 118.4 (2) |
O1i—Er1—O4 | 131.17 (8) | C34—O4—Er1 | 122.56 (19) |
O1i—Er1—O6 | 140.44 (8) | O3—C34—O4 | 126.4 (3) |
O2—Er1—O3ii | 118.24 (8) | O3—C34—C34ii | 117.2 (3) |
O2—Er1—O6 | 125.00 (7) | O4—C34—C34ii | 116.4 (3) |
O4—Er1—O3M | 141.15 (8) | C56—O5—Er1iii | 121.12 (19) |
O4—Er1—O2 | 136.82 (8) | C56—O6—Er1 | 117.83 (18) |
O4—Er1—O3ii | 65.35 (8) | O5—C56—O6 | 126.9 (3) |
O4—Er1—O6 | 69.46 (8) | O5—C56—C56iii | 116.6 (3) |
O5iii—Er1—O1M | 75.67 (9) | O6—C56—C56iii | 116.5 (3) |
O5iii—Er1—O2M | 138.12 (8) | O5W—O1W—O2W | 167.4 (19) |
O5iii—Er1—O3M | 83.67 (9) | O4W—O3W—O5W | 100.6 (11) |
O5iii—Er1—O1i | 138.22 (8) | O3W—O4W—O4Wiv | 126.1 (15) |
O5iii—Er1—O2 | 71.06 (7) | O1W—O5W—O3W | 152 (2) |
Symmetry codes: (i) −x+1, −y+1, −z−1; (ii) −x, −y+1, −z−1; (iii) −x, −y+1, −z−2; (iv) −x+1, −y, −z−1. |
Experimental details
Crystal data | |
Chemical formula | [Er2(C2O4)3(H2O)6]·4H2O |
Mr | 778.74 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 10.9065 (6), 9.5339 (5), 9.8977 (5) |
β (°) | 114.125 (1) |
V (Å3) | 939.28 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 8.99 |
Crystal size (mm) | 0.26 × 0.18 × 0.11 |
Data collection | |
Diffractometer | Bruker SMART1000 CCD diffractometer |
Absorption correction | Integration (SAINT-Plus; Bruker, 2001) |
Tmin, Tmax | 0.204, 0.470 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11931, 4504, 4077 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.833 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.070, 1.08 |
No. of reflections | 4504 |
No. of parameters | 158 |
No. of restraints | 10 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 2.51, −1.85 |
Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SAINT-Plus, SHELXS97 (Sheldrick, 1998), SHELXL97 (Sheldrick, 1998), SHELXTL (Bruker, 2001), SHELXL97.
Er1—O1M | 2.366 (3) | O1—C12 | 1.246 (3) |
Er1—O2M | 2.357 (3) | O2—C12 | 1.256 (3) |
Er1—O3M | 2.420 (2) | C12—C12i | 1.536 (6) |
Er1—O1i | 2.359 (2) | O3—C34 | 1.247 (4) |
Er1—O2 | 2.434 (2) | O4—C34 | 1.262 (4) |
Er1—O3ii | 2.522 (2) | C34—C34ii | 1.530 (6) |
Er1—O4 | 2.404 (2) | O5—C56 | 1.249 (3) |
Er1—O5iii | 2.355 (2) | O6—C56 | 1.257 (3) |
Er1—O6 | 2.440 (2) | C56—C56iii | 1.549 (6) |
O1M—Er1—O2M | 142.85 (10) | O4—Er1—O6 | 69.46 (8) |
O1M—Er1—O3M | 137.06 (9) | O5iii—Er1—O1M | 75.67 (9) |
O1M—Er1—O2 | 68.67 (9) | O5iii—Er1—O2M | 138.12 (8) |
O1M—Er1—O3ii | 72.97 (10) | O5iii—Er1—O3M | 83.67 (9) |
O1M—Er1—O4 | 72.58 (9) | O5iii—Er1—O1i | 138.22 (8) |
O1M—Er1—O6 | 129.89 (8) | O5iii—Er1—O2 | 71.06 (7) |
O2M—Er1—O3M | 73.56 (10) | O5iii—Er1—O3ii | 139.76 (8) |
O2M—Er1—O1i | 72.96 (9) | O5iii—Er1—O4 | 81.68 (8) |
O2M—Er1—O2 | 128.24 (10) | O5iii—Er1—O6 | 67.64 (7) |
O2M—Er1—O3ii | 70.00 (9) | O6—Er1—O3ii | 116.76 (8) |
O2M—Er1—O4 | 94.38 (10) | C12—O1—Er1i | 121.21 (18) |
O2M—Er1—O6 | 71.95 (8) | C12—O2—Er1 | 118.43 (19) |
O3M—Er1—O2 | 69.13 (8) | O1—C12—O2 | 127.0 (3) |
O3M—Er1—O3ii | 136.54 (9) | O1—C12—C12i | 116.8 (3) |
O3M—Er1—O6 | 71.69 (8) | O2—C12—C12i | 116.2 (3) |
O1i—Er1—O1M | 89.50 (9) | C34—O3—Er1ii | 118.4 (2) |
O1i—Er1—O3M | 81.39 (8) | C34—O4—Er1 | 122.56 (19) |
O1i—Er1—O2 | 67.17 (7) | O3—C34—O4 | 126.4 (3) |
O1i—Er1—O3ii | 66.01 (8) | O3—C34—C34ii | 117.2 (3) |
O1i—Er1—O4 | 131.17 (8) | O4—C34—C34ii | 116.4 (3) |
O1i—Er1—O6 | 140.44 (8) | C56—O5—Er1iii | 121.12 (19) |
O2—Er1—O3ii | 118.24 (8) | C56—O6—Er1 | 117.83 (18) |
O2—Er1—O6 | 125.00 (7) | O5—C56—O6 | 126.9 (3) |
O4—Er1—O3M | 141.15 (8) | O5—C56—C56iii | 116.6 (3) |
O4—Er1—O2 | 136.82 (8) | O6—C56—C56iii | 116.5 (3) |
O4—Er1—O3ii | 65.35 (8) |
Symmetry codes: (i) −x+1, −y+1, −z−1; (ii) −x, −y+1, −z−1; (iii) −x, −y+1, −z−2. |
The lanthanoid elements all form hydrated oxalates of the composition M2(C2O4)3.nH2O (M = lanthanoid). There are two large isomorphous series of lanthanide oxalates, one with n ~10 (monoclinic) and one with n = 6 (triclinic). In the isomorphous series with n ~10, the n value varies slightly, and it appears to be dependent on the crystallographic radius of the lanthanide ion and the method of preparation. Compounds with M = Y, La–Ho form a series of `decahydrates', while compounds with M = Sc, Tm–Lu form a series of `hexahydrates'. Only erbium oxalate can be synthesized both as a decahydrate and a hexahydrate (Hansson, 1973), and this is of special interest.
Until the present study, no structurally characterized erbium(III) oxalates have been reported; only powder X-ray diffraction data have been measured and indexed (Hansson, 1973; Ollendorff & Weigel, 1969; Watanabe & Nagashima, 1971). We report here the crystal and molecular structure of erbium(III) oxalate decahydrate, (I).
Two crystallographically equivalent Er atoms, three centrosymmetric oxalate groups, and ten water molecules (six aqua ligands and four water molecules of crystallization) account for one structural unit of (I). Each Er atom coordinates six O atoms from three bidentate oxalates, and three aqua ligands (Fig. 1). The coordination polyhedron ErO9 is a distorted three-capped trigonal prism. The Er—O distances are between 2.355 (2) and 2.522 (2) Å (average 2.406 Å), which is in a good agreement with the values found in the Cambridge Structural Database (CSD; Version of October 2002; Allen, 2002) of 2.348–2.450 Å, average 2.408 Å (5 hits, R < 0.1).
The oxalate ligands are planar with C—C distances between 1.530 (6) and 1.549 (6) Å (average 1.538 Å), and C—O distances between 1.246 (3) and 1.262 (4) Å (average 1.253 Å). All these values are in a good agreement with values found in the CSD: 1.426–1.669 Å (average 1.549 Å) and 1.076–1.435 Å (average 1.252 Å) for C—C and C—O distances, respectively (536 hits, R < 0.05).
The structure of (I) is composed of infinite erbium oxalate layers perpendicular to the b axis and situated around y = 0 and y = 1/2. The layers are held together by hydrogen bonds via the water molecules of crystallization situated between the layers. Fig. 2 shows part of the infinite layer around y = 1/2 projected along the b axis. Each oxalate ligand is coordinated to two metal atoms forming two chelates. Adjacent layers are related to each other by c glides. The four water molecules of crystallization, situated between the layers, are disordered over five positions.