Download citation
Download citation
link to html
In the title compound, (C3H5N2)2[Zn2(C5HN2O4)2(H2O)4], two 3,5-pyrazole­dicarboxyl­ate trianions and two water mol­ecules are coordinated to the Zn atom and the geometry is octa­hedral. Each pair of ZnII ions is bridged by two 3,5-pyrazole­dicarboxyl­ate trianions, forming a centrosymmetric binuclear complex dianion. In the crystal structure, the cations and anions are linked by O—H...O and N—H...O hydrogen bonds to form a network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805041437/su6256sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805041437/su6256Isup2.hkl
Contains datablock I

CCDC reference: 296680

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.027
  • wR factor = 0.071
  • Data-to-parameter ratio = 11.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Zn1 - O4_a .. 12.93 su
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Zn1 - O2 .. 9.89 su
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The design and synthesis of supramolecular inorganic architectures exhibiting novel properties is providing exciting new opportunities in many fields of research (Swiegers & Malefetse, 2002; Johnson & Raymond, 2001; Hof et al., 2002). In the synthesis of supramolecular inorganic architectures by design, the assembly of molecular units in predefined arrangements is a key goal (Desiraju, 1995, 1997; Braga et al., 1998). Directional intermolecular interactions are the primary tools in achieving this goal and hydrogen bonding is currently the best tool amongst them (Zaworotko, 1997; Braga & Grepioni, 2000). We report here on the structure of the title compound, (I), which consists of two imidazolium cations and a centrosymmetric [Zn(C5HO4N2)(H2O)2]22− dianion.

The molecular structure of compound (I) is shown in Fig. 1, and selected bond distances and angles are given in Table 1. The geometry around each Zn atom is octahedral, arising from coordination by two 3,5-pyrazoledicarboxylate trianions and two water molecules. A carboxylate O atom and an N atom, of one of the 3,5-pyrazoledicarboxylate trianions, are chelated to a Zn atom. Each pair of ZnII ions is bridged by two 3,5-pyrazoledicarboxylate trianions, forming a centrosymmetric binuclear complex anion, as shown in Fig. 1.

In the crystal structure the cations and anions interact through O—H···O and N—H···O hydrogen bonds (Table 2) to generate a three-dimensional network structure (Fig. 2).

Experimental top

The title compound was synthesized by the hydrothermal method from a mixture of zinc nitrate hexahydrate (0.06 g, 0.2 mmol), pyrazole-3,5-dicarboxylic acid (0.08 g, 0.4 mmol), 1,1'-carbonyl diimidazole (0.03 g, 0.2 mmol) and water (8.0 ml) in a 15.0 ml telfon-lined stainless steel reactor. The solution was heated at 423 K for two days. After reaction, the vessel was slowly cooled to room temperature to give colorless crystals. Prism-like crystals were collected, washed with distilled water and dried in air. As shown by the present crystal structure analysis, the 1,1'-carbonyldiimidazole had decomposed into two imidazoles, and a proton had been added to an imidazole, so formming an imidazole cation to balance the charges.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms with distances of O—H = 0.82 Å, C—H = 0.93 Å and N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(parent O, C or N-atom).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2002); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of compound (I), showing the atom numbering and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A perspective view along the a axis of the crystal packing of compound (I), with the hydrogen bonds shown as dashed lines.
Bis(imidazolium) di-µ-pyrazole-3,5-dicarboxylato(3-)-bis[diaquazinc(II)] top
Crystal data top
(C3H5N2)2[Zn2(C5HN2O4)2(H2O)4]Z = 1
Mr = 647.18F(000) = 328
Triclinic, P1Dx = 1.892 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3068 (6) ÅCell parameters from 328 reflections
b = 9.2879 (7) Åθ = 2.3–25.1°
c = 9.7233 (8) ŵ = 2.19 mm1
α = 94.621 (1)°T = 298 K
β = 110.496 (1)°Prism, colorless
γ = 109.477 (1)°0.34 × 0.20 × 0.10 mm
V = 568.00 (8) Å3
Data collection top
Bruker APEX area-detector
diffractometer
2000 independent reflections
Radiation source: fine-focus sealed tube1945 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ϕ and ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 58
Tmin = 0.60, Tmax = 0.80k = 1111
3010 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0312P)2 + 0.6561P]
where P = (Fo2 + 2Fc2)/3
2000 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
(C3H5N2)2[Zn2(C5HN2O4)2(H2O)4]γ = 109.477 (1)°
Mr = 647.18V = 568.00 (8) Å3
Triclinic, P1Z = 1
a = 7.3068 (6) ÅMo Kα radiation
b = 9.2879 (7) ŵ = 2.19 mm1
c = 9.7233 (8) ÅT = 298 K
α = 94.621 (1)°0.34 × 0.20 × 0.10 mm
β = 110.496 (1)°
Data collection top
Bruker APEX area-detector
diffractometer
2000 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1945 reflections with I > 2σ(I)
Tmin = 0.60, Tmax = 0.80Rint = 0.012
3010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.06Δρmax = 0.36 e Å3
2000 reflectionsΔρmin = 0.36 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.7296 (3)0.1786 (2)0.5571 (3)0.0503 (6)
H5A0.75620.10790.52330.076*
H5B0.63910.18700.58490.076*
O61.2673 (3)0.5181 (2)0.8414 (2)0.0305 (4)
H6A1.37180.50950.83400.046*
H6B1.25670.49530.91880.046*
Zn10.99994 (4)0.37397 (3)0.65831 (3)0.02091 (12)
O10.6613 (3)0.5293 (2)0.8800 (2)0.0326 (4)
O20.8408 (3)0.3972 (2)0.8244 (2)0.0269 (4)
O30.6304 (3)0.8950 (2)0.3948 (2)0.0321 (4)
O40.8379 (3)0.8161 (2)0.3126 (2)0.0359 (5)
N10.8712 (3)0.5371 (2)0.6020 (2)0.0204 (4)
N20.8706 (3)0.6225 (2)0.4969 (2)0.0213 (4)
C10.7516 (4)0.4934 (3)0.8024 (3)0.0218 (5)
C20.7615 (4)0.5722 (3)0.6763 (3)0.0196 (5)
C30.6856 (4)0.6819 (3)0.6175 (3)0.0219 (5)
H3A0.60450.72610.64700.026*
C40.7585 (4)0.7104 (3)0.5047 (3)0.0203 (5)
C50.7401 (4)0.8158 (3)0.3966 (3)0.0236 (5)
N40.7717 (4)0.1548 (3)0.0354 (3)0.0382 (6)
H40.78070.24150.06340.046*
C70.7393 (5)0.0190 (4)0.1234 (4)0.0441 (8)
H70.72420.00380.22310.053*
C60.7332 (5)0.0884 (4)0.0393 (4)0.0414 (7)
H60.71210.19220.06950.050*
N30.7637 (4)0.0165 (3)0.0986 (3)0.0373 (6)
H3B0.76740.05990.17380.045*
C80.7869 (5)0.1315 (4)0.0989 (4)0.0378 (7)
H80.81000.20550.17990.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0339 (11)0.0302 (11)0.0842 (18)0.0041 (9)0.0341 (12)0.0129 (11)
O60.0271 (9)0.0491 (12)0.0227 (9)0.0193 (9)0.0132 (8)0.0126 (8)
Zn10.02608 (18)0.02330 (18)0.02174 (17)0.01282 (13)0.01484 (13)0.01018 (12)
O10.0347 (10)0.0564 (13)0.0243 (9)0.0263 (10)0.0210 (8)0.0204 (9)
O20.0336 (10)0.0270 (9)0.0294 (10)0.0158 (8)0.0173 (8)0.0155 (8)
O30.0343 (10)0.0269 (10)0.0415 (11)0.0186 (8)0.0147 (9)0.0136 (8)
O40.0425 (11)0.0472 (12)0.0375 (11)0.0251 (10)0.0270 (9)0.0277 (10)
N10.0266 (11)0.0243 (11)0.0185 (10)0.0140 (9)0.0131 (8)0.0099 (8)
N20.0279 (11)0.0254 (11)0.0216 (10)0.0153 (9)0.0162 (9)0.0117 (9)
C10.0187 (12)0.0266 (13)0.0190 (12)0.0068 (10)0.0079 (10)0.0074 (10)
C20.0203 (11)0.0227 (12)0.0189 (11)0.0093 (10)0.0102 (9)0.0062 (9)
C30.0246 (12)0.0265 (13)0.0223 (12)0.0145 (10)0.0135 (10)0.0066 (10)
C40.0224 (12)0.0220 (12)0.0215 (12)0.0122 (10)0.0105 (10)0.0072 (10)
C50.0255 (12)0.0224 (12)0.0236 (13)0.0092 (10)0.0098 (10)0.0091 (10)
N40.0413 (14)0.0329 (13)0.0475 (15)0.0169 (11)0.0198 (12)0.0257 (12)
C70.056 (2)0.0475 (19)0.0365 (17)0.0252 (16)0.0203 (15)0.0192 (14)
C60.0504 (19)0.0343 (16)0.0414 (17)0.0176 (14)0.0179 (15)0.0153 (13)
N30.0394 (14)0.0366 (14)0.0355 (13)0.0107 (11)0.0151 (11)0.0230 (11)
C80.0373 (16)0.0328 (15)0.0412 (17)0.0092 (13)0.0167 (13)0.0124 (13)
Geometric parameters (Å, º) top
O5—Zn12.031 (2)N2—C41.350 (3)
O5—H5A0.8200N2—Zn1i2.040 (2)
O5—H5B0.8201C1—C21.488 (3)
O6—Zn12.0528 (18)C2—C31.386 (3)
O6—H6A0.8200C3—C41.385 (3)
O6—H6B0.8204C3—H3A0.9300
Zn1—N2i2.040 (2)C4—C51.495 (3)
Zn1—N12.050 (2)N4—C81.313 (4)
Zn1—O22.3303 (18)N4—C71.366 (4)
Zn1—O4i2.417 (2)N4—H40.8600
O1—C11.254 (3)C7—C61.339 (4)
O2—C11.261 (3)C7—H70.9300
O3—C51.253 (3)C6—N31.356 (4)
O4—C51.259 (3)C6—H60.9300
O4—Zn1i2.417 (2)N3—C81.327 (4)
N1—N21.343 (3)N3—H3B0.8600
N1—C21.346 (3)C8—H80.9300
Zn1—O5—H5A109.5O1—C1—C2118.5 (2)
Zn1—O5—H5B109.4O2—C1—C2116.3 (2)
H5A—O5—H5B137.6N1—C2—C3109.8 (2)
Zn1—O6—H6A109.5N1—C2—C1116.4 (2)
Zn1—O6—H6B109.4C3—C2—C1133.8 (2)
H6A—O6—H6B111.3C4—C3—C2104.0 (2)
O5—Zn1—N2i100.92 (9)C4—C3—H3A128.0
O5—Zn1—N198.09 (9)C2—C3—H3A128.0
N2i—Zn1—N198.40 (8)N2—C4—C3109.8 (2)
O5—Zn1—O6152.74 (10)N2—C4—C5116.4 (2)
N2i—Zn1—O698.75 (8)C3—C4—C5133.7 (2)
N1—Zn1—O697.50 (8)O3—C5—O4125.1 (2)
O5—Zn1—O281.20 (8)O3—C5—C4119.0 (2)
N2i—Zn1—O2172.42 (7)O4—C5—C4115.9 (2)
N1—Zn1—O274.05 (7)C8—N4—C7108.9 (3)
O6—Zn1—O281.77 (7)C8—N4—H4125.6
O5—Zn1—O4i82.47 (8)C7—N4—H4125.6
N2i—Zn1—O4i72.32 (7)C6—C7—N4107.2 (3)
N1—Zn1—O4i170.59 (7)C6—C7—H7126.4
O6—Zn1—O4i85.75 (7)N4—C7—H7126.4
O2—Zn1—O4i115.24 (6)C7—C6—N3106.8 (3)
C1—O2—Zn1113.43 (15)C7—C6—H6126.6
C5—O4—Zn1i112.83 (16)N3—C6—H6126.6
N2—N1—C2108.36 (19)C8—N3—C6109.2 (3)
N2—N1—Zn1131.92 (15)C8—N3—H3B125.4
C2—N1—Zn1119.72 (16)C6—N3—H3B125.4
N1—N2—C4108.03 (19)N4—C8—N3107.9 (3)
N1—N2—Zn1i129.68 (15)N4—C8—H8126.0
C4—N2—Zn1i122.26 (16)N3—C8—H8126.0
O1—C1—O2125.2 (2)
O5—Zn1—O2—C1100.34 (18)O2—C1—C2—N12.3 (3)
N1—Zn1—O2—C10.75 (16)O1—C1—C2—C31.6 (4)
O6—Zn1—O2—C1101.03 (17)O2—C1—C2—C3180.0 (3)
O4i—Zn1—O2—C1177.65 (16)N1—C2—C3—C40.5 (3)
O5—Zn1—N1—N2102.7 (2)C1—C2—C3—C4177.3 (3)
N2i—Zn1—N1—N20.4 (3)N1—N2—C4—C30.2 (3)
O6—Zn1—N1—N299.7 (2)Zn1i—N2—C4—C3178.54 (16)
O2—Zn1—N1—N2178.9 (2)N1—N2—C4—C5179.6 (2)
O5—Zn1—N1—C276.30 (19)Zn1i—N2—C4—C52.1 (3)
N2i—Zn1—N1—C2178.68 (18)C2—C3—C4—N20.1 (3)
O6—Zn1—N1—C281.27 (19)C2—C3—C4—C5179.1 (3)
O2—Zn1—N1—C22.09 (17)Zn1i—O4—C5—O3174.6 (2)
C2—N1—N2—C40.5 (3)Zn1i—O4—C5—C44.9 (3)
Zn1—N1—N2—C4178.62 (17)N2—C4—C5—O3177.0 (2)
C2—N1—N2—Zn1i178.66 (17)C3—C4—C5—O33.8 (4)
Zn1—N1—N2—Zn1i0.5 (3)N2—C4—C5—O42.5 (3)
Zn1—O2—C1—O1177.7 (2)C3—C4—C5—O4176.7 (3)
Zn1—O2—C1—C20.5 (3)C8—N4—C7—C60.6 (4)
N2—N1—C2—C30.6 (3)N4—C7—C6—N30.5 (4)
Zn1—N1—C2—C3178.64 (16)C7—C6—N3—C80.3 (4)
N2—N1—C2—C1177.6 (2)C7—N4—C8—N30.4 (4)
Zn1—N1—C2—C13.1 (3)C6—N3—C8—N40.0 (4)
O1—C1—C2—N1176.0 (2)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3ii0.821.982.685 (3)145
O5—H5B···O3iii0.821.952.706 (3)153
O6—H6A···O1iv0.821.942.734 (3)162
O6—H6B···O1v0.821.892.676 (2)159
N4—H4···O2vi0.861.912.721 (3)157
N3—H3B···O4ii0.861.892.709 (3)159
Symmetry codes: (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x+2, y+1, z+2; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula(C3H5N2)2[Zn2(C5HN2O4)2(H2O)4]
Mr647.18
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.3068 (6), 9.2879 (7), 9.7233 (8)
α, β, γ (°)94.621 (1), 110.496 (1), 109.477 (1)
V3)568.00 (8)
Z1
Radiation typeMo Kα
µ (mm1)2.19
Crystal size (mm)0.34 × 0.20 × 0.10
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.60, 0.80
No. of measured, independent and
observed [I > 2σ(I)] reflections
3010, 2000, 1945
Rint0.012
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.06
No. of reflections2000
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.36

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Bruker, 2002), SHELXL97.

Selected geometric parameters (Å, º) top
O5—Zn12.031 (2)Zn1—N12.050 (2)
O6—Zn12.0528 (18)Zn1—O22.3303 (18)
Zn1—N2i2.040 (2)Zn1—O4i2.417 (2)
O5—Zn1—N2i100.92 (9)O6—Zn1—O281.77 (7)
O5—Zn1—N198.09 (9)O5—Zn1—O4i82.47 (8)
N2i—Zn1—N198.40 (8)N2i—Zn1—O4i72.32 (7)
O5—Zn1—O6152.74 (10)N1—Zn1—O4i170.59 (7)
N2i—Zn1—O698.75 (8)O6—Zn1—O4i85.75 (7)
N1—Zn1—O697.50 (8)O2—Zn1—O4i115.24 (6)
O5—Zn1—O281.20 (8)N2—N1—Zn1131.92 (15)
N2i—Zn1—O2172.42 (7)N1—N2—Zn1i129.68 (15)
N1—Zn1—O274.05 (7)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3ii0.821.982.685 (3)145
O5—H5B···O3iii0.821.952.706 (3)153
O6—H6A···O1iv0.821.942.734 (3)162
O6—H6B···O1v0.821.892.676 (2)159
N4—H4···O2vi0.861.912.721 (3)157
N3—H3B···O4ii0.861.892.709 (3)159
Symmetry codes: (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x+2, y+1, z+2; (vi) x, y, z1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds