Download citation
Download citation
link to html
The title compound, (3Z)-5-(1,2-di­hydroxy­ethyl)­furan-2,3,4(3H,5H)-trione 3-[(2-methoxy­phenyl)­hydrazone], C13H14N2O6, is produced when de­hydro-L-ascorbic acid reacts with 2-methoxy­phenyl­hydrazine. A two-dimensional structure is generated by extensive hydrogen-bonding interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803016660/tk6128sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803016660/tk6128Isup2.hkl
Contains datablock I

CCDC reference: 222841

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.013 Å
  • R factor = 0.073
  • wR factor = 0.221
  • Data-to-parameter ratio = 8.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT340_ALERT_3_B Low Bond Precision on C-C bonds (x 1000) Ang.. 13
Alert level C PLAT155_ALERT_4_C The Triclinic Unitcell is NOT Reduced ........ ? PLAT156_ALERT_4_C Axial System Input Cell not Standard ......... ?
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.50 From the CIF: _reflns_number_total 1575 Count of symmetry unique reflns 1577 Completeness (_total/calc) 99.87% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Vegetables and fruit may turn red–brown when they are kept under aerobic conditions for a long time. A mechanism proposed to account for this indicated that reactions of dehydroascorbic acid with amino acids play an important role in the process of oxidation of L-ascorbic acid to 2,2'-nitrilo-di-2(2')-deoxy-L-ascorbic acid monoammonium salt, which is red–brown (Kurata et al., 1973a,b).

In the course of structural studies of the red–brown pigment, the hydrazones were prepared by reaction of dehydroascorbic acid with hydrazines. Among eight hydrazones synthesized, the crystal structures of 2-methoxyphenylhydrazone dehydroascorbic acid, (I), was determined by single-crystal X-ray diffraction methods (Fig. 1 and Table 1).

The molecular structure of (I) comprises an ethylene glycol open chain linked to the hydrazone group via a lactone ring. The 15 non-H atoms of the phenylhydrazone and lactone ring are effectively coplanar, with the maximum deviation from the least-squares plane through these atoms being 0.066 (9) Å for C8. The bond lengths and angles in (I) are quite similar to those reported for the closely related structure of p-bromophenylhydrazone dehydroascorbic acid (Hvoslef & Nordenson, 1976).

The hydrogen-bonding distances and angles are listed in Table 2. An intramolecular N2—H···O2 hydrogen bond is observed. Both of the OH groups of the ethylene glycol residue participate in hydrogen bonds. The terminal OH group (O5) is connected to the carbonyl atom O3. These interactions link the molecules into ribbons that are aligned along the a axis, as shown in Fig. 2. The ribbons are stacked along [011] and are connected by hydrogen bonds formed between two OH groups (O3—H···O5). The stacking distance between ribbons is approximately 3.4 Å. The intermolecular hydrogen bonds described above combine to generate a two-dimensional layer structure.

Experimental top

The title compound was prepared according to a literature procedure (Hvoslef & Nordenson (1976). Plate-like yellow crystals were obtained from recrystallization from an ethanol solution of the compound.

Refinement top

All H atoms were included in the riding-model approximation, with Uiso(methyl-H, hydroxy-H) = 1.5Ueq(parent atom) and Uiso(H) = 1.2Ueq(parent atom). Friedel pairs were merged and Δf'' term was set to zero. Thus, the calculated absolute structure parameter of 0(10) (Flack, 1983) is meaningless in this analysis.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Speck, 2003) and Mercury (CCDC, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid drawing at the 50% probability level showing the atom-labelling scheme.
[Figure 2] Fig. 2. A perspective packing diagram. Dotted lines indicate the intermolecular hydrogen-bonding interactions.
(3Z)-5-(1,2-dihydroxyethyl) −2,3,4(5H)-furantrione 3-[(2-methoxyphenyl)hydrazone] top
Crystal data top
C13H14N2O6Z = 1
Mr = 294.26F(000) = 154
Triclinic, P1Dx = 1.418 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.194 (2) ÅCell parameters from 25 reflections
b = 8.308 (2) Åθ = 28.0–30.0°
c = 5.463 (3) ŵ = 0.11 mm1
α = 106.12 (3)°T = 295 K
β = 101.98 (3)°Plate, clear pale yellow
γ = 95.69 (2)°0.30 × 0.15 × 0.05 mm
V = 344.6 (2) Å3
Data collection top
Rigaku AFC-7S
diffractometer
961 reflections with I > 2σ(I)'
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.5°, θmin = 2.6°
q–2θ scansh = 010
Absorption correction: psi scan
(North et al., 1968)
k = 1010
Tmin = 0.960, Tmax = 0.998l = 76
1680 measured reflections3 standard reflections every 150 reflections
1575 independent reflections intensity decay: 0.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0983P)2 + 0.4777P]
where P = (Fo2 + 2Fc2)/3
1575 reflections(Δ/σ)max < 0.001
193 parametersΔρmax = 0.31 e Å3
3 restraintsΔρmin = 0.30 e Å3
Crystal data top
C13H14N2O6γ = 95.69 (2)°
Mr = 294.26V = 344.6 (2) Å3
Triclinic, P1Z = 1
a = 8.194 (2) ÅMo Kα radiation
b = 8.308 (2) ŵ = 0.11 mm1
c = 5.463 (3) ÅT = 295 K
α = 106.12 (3)°0.30 × 0.15 × 0.05 mm
β = 101.98 (3)°
Data collection top
Rigaku AFC-7S
diffractometer
961 reflections with I > 2σ(I)'
Absorption correction: psi scan
(North et al., 1968)
Rint = 0.030
Tmin = 0.960, Tmax = 0.9983 standard reflections every 150 reflections
1680 measured reflections intensity decay: 0.8%
1575 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0733 restraints
wR(F2) = 0.221H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
1575 reflectionsΔρmin = 0.30 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4426 (10)0.5773 (9)0.3686 (16)0.050 (2)
C20.6015 (11)0.5223 (10)0.3550 (17)0.054 (2)
O10.5632 (7)0.7339 (7)0.1498 (10)0.0518 (15)
C30.6861 (10)0.6288 (11)0.2206 (16)0.0476 (19)
H30.71230.55670.06320.057*
C40.4256 (11)0.7107 (10)0.2478 (15)0.051 (2)
O20.6631 (8)0.4145 (8)0.4432 (14)0.0678 (19)
O30.3158 (7)0.7941 (8)0.2163 (14)0.0679 (19)
C50.8457 (9)0.7414 (10)0.4088 (15)0.0467 (19)
H50.92690.66990.45760.056*
O40.7992 (8)0.8347 (8)0.6371 (11)0.0624 (17)
H40.85350.81490.76640.094*
C60.9284 (10)0.8667 (12)0.2985 (17)0.055 (2)
H6A0.85040.94140.25710.066*
H6B1.02810.93590.42850.066*
O50.9750 (8)0.7782 (10)0.0684 (13)0.070 (2)
H5A1.07610.77290.10470.105*
N10.3299 (8)0.5304 (8)0.4909 (13)0.0486 (17)
N20.3639 (9)0.4106 (8)0.5937 (13)0.0497 (17)
H20.45590.37090.58180.060*
C70.2568 (11)0.3431 (10)0.7237 (16)0.052 (2)
C80.1011 (13)0.3893 (12)0.7335 (19)0.065 (3)
H80.06120.46610.64970.078*
C90.0057 (13)0.3198 (13)0.870 (2)0.070 (3)
H90.09820.35240.88360.085*
C100.0631 (13)0.2033 (12)0.984 (2)0.066 (3)
H100.00420.15571.07250.080*
C110.2164 (13)0.1544 (10)0.9740 (17)0.058 (2)
H110.25460.07641.05670.070*
C120.3128 (11)0.2230 (10)0.8386 (18)0.055 (2)
O130.4690 (8)0.1896 (8)0.8125 (14)0.0701 (19)
C140.5285 (15)0.0537 (14)0.901 (2)0.079 (3)
H14A0.54510.08301.08790.118*
H14B0.63370.03530.85530.118*
H14C0.44640.04810.81770.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (5)0.035 (4)0.060 (5)0.005 (3)0.010 (4)0.021 (4)
C20.054 (5)0.039 (4)0.061 (5)0.013 (4)0.005 (4)0.014 (4)
O10.040 (3)0.067 (4)0.056 (3)0.008 (3)0.000 (2)0.038 (3)
C30.042 (4)0.057 (5)0.046 (4)0.009 (4)0.004 (3)0.024 (4)
C40.053 (5)0.051 (5)0.047 (5)0.002 (4)0.004 (4)0.027 (4)
O20.056 (4)0.057 (4)0.100 (5)0.020 (3)0.007 (3)0.044 (4)
O30.040 (3)0.074 (4)0.108 (5)0.020 (3)0.010 (3)0.060 (4)
C50.041 (4)0.051 (4)0.048 (5)0.016 (3)0.001 (3)0.022 (4)
O40.058 (4)0.073 (4)0.050 (3)0.011 (3)0.000 (3)0.019 (3)
C60.044 (4)0.069 (6)0.049 (5)0.000 (4)0.002 (4)0.026 (4)
O50.043 (3)0.112 (6)0.066 (4)0.011 (3)0.006 (3)0.048 (4)
N10.054 (4)0.041 (3)0.050 (4)0.003 (3)0.003 (3)0.027 (3)
N20.048 (4)0.047 (4)0.057 (4)0.006 (3)0.000 (3)0.029 (3)
C70.061 (5)0.037 (4)0.051 (5)0.005 (4)0.007 (4)0.018 (4)
C80.070 (6)0.054 (5)0.071 (7)0.011 (5)0.002 (5)0.031 (5)
C90.061 (6)0.067 (6)0.087 (7)0.013 (5)0.011 (5)0.035 (6)
C100.069 (6)0.054 (5)0.078 (7)0.001 (5)0.010 (5)0.033 (5)
C110.084 (7)0.036 (4)0.050 (5)0.002 (4)0.000 (4)0.020 (4)
C120.054 (5)0.033 (4)0.065 (5)0.005 (4)0.012 (4)0.013 (4)
O130.063 (4)0.066 (4)0.091 (5)0.018 (3)0.008 (3)0.047 (4)
C140.082 (7)0.062 (6)0.104 (8)0.039 (6)0.014 (6)0.041 (6)
Geometric parameters (Å, º) top
C1—N11.334 (11)N1—N21.298 (8)
C1—C21.431 (12)N2—C71.404 (11)
C1—C41.443 (10)N2—H20.8600
C2—O21.232 (9)C7—C81.375 (13)
C2—C31.501 (12)C7—C121.386 (11)
O1—C41.363 (10)C8—C91.374 (14)
O1—C31.458 (10)C8—H80.9300
C3—C51.519 (11)C9—C101.362 (13)
C3—H30.9800C9—H90.9300
C4—O31.202 (10)C10—C111.366 (14)
C5—O41.421 (10)C10—H100.9300
C5—C61.511 (11)C11—C121.372 (13)
C5—H50.9800C11—H110.9300
O4—H40.8200C12—O131.364 (11)
C6—O51.417 (11)O13—C141.434 (10)
C6—H6A0.9700C14—H14A0.9600
C6—H6B0.9700C14—H14B0.9600
O5—H5A0.8200C14—H14C0.9600
N1—C1—C2128.3 (7)N2—N1—C1115.3 (7)
N1—C1—C4122.4 (7)N1—N2—C7122.8 (7)
C2—C1—C4109.0 (8)N1—N2—H2118.6
O2—C2—C1128.2 (9)C7—N2—H2118.6
O2—C2—C3125.4 (8)C8—C7—C12120.6 (9)
C1—C2—C3106.4 (7)C8—C7—N2122.4 (7)
C4—O1—C3110.9 (6)C12—C7—N2117.0 (8)
O1—C3—C2104.9 (6)C9—C8—C7118.7 (8)
O1—C3—C5109.7 (6)C9—C8—H8120.7
C2—C3—C5110.3 (6)C7—C8—H8120.7
O1—C3—H3110.6C10—C9—C8120.1 (10)
C2—C3—H3110.6C10—C9—H9119.9
C5—C3—H3110.6C8—C9—H9119.9
O3—C4—O1119.1 (7)C9—C10—C11122.0 (9)
O3—C4—C1132.2 (8)C9—C10—H10119.0
O1—C4—C1108.6 (7)C11—C10—H10119.0
O4—C5—C6108.1 (7)C10—C11—C12118.4 (8)
O4—C5—C3107.3 (6)C10—C11—H11120.8
C6—C5—C3113.7 (6)C12—C11—H11120.8
O4—C5—H5109.2O13—C12—C11125.8 (8)
C6—C5—H5109.2O13—C12—C7114.0 (8)
C3—C5—H5109.2C11—C12—C7120.2 (9)
C5—O4—H4109.5C12—O13—C14117.5 (8)
O5—C6—C5109.8 (7)O13—C14—H14A109.5
O5—C6—H6A109.7O13—C14—H14B109.5
C5—C6—H6A109.7H14A—C14—H14B109.5
O5—C6—H6B109.7O13—C14—H14C109.5
C5—C6—H6B109.7H14A—C14—H14C109.5
H6A—C6—H6B108.2H14B—C14—H14C109.5
C6—O5—H5A109.5
N1—C1—C2—O23.7 (14)O4—C5—C6—O5179.4 (6)
C4—C1—C2—O2177.8 (9)C3—C5—C6—O560.3 (8)
N1—C1—C2—C3173.6 (8)C2—C1—N1—N25.5 (11)
C4—C1—C2—C30.4 (9)C4—C1—N1—N2178.8 (7)
C4—O1—C3—C25.3 (8)C1—N1—N2—C7178.4 (7)
C4—O1—C3—C5113.1 (7)N1—N2—C7—C85.3 (12)
O2—C2—C3—O1179.2 (8)N1—N2—C7—C12176.2 (7)
C1—C2—C3—O13.3 (8)C12—C7—C8—C92.9 (13)
O2—C2—C3—C562.7 (12)N2—C7—C8—C9178.6 (9)
C1—C2—C3—C5114.7 (7)C7—C8—C9—C102.2 (15)
C3—O1—C4—O3176.7 (8)C8—C9—C10—C111.4 (16)
C3—O1—C4—C15.2 (8)C9—C10—C11—C121.4 (15)
N1—C1—C4—O34.9 (14)C10—C11—C12—O13179.0 (9)
C2—C1—C4—O3179.4 (9)C10—C11—C12—C72.1 (12)
N1—C1—C4—O1177.4 (7)C8—C7—C12—O13179.8 (8)
C2—C1—C4—O12.9 (8)N2—C7—C12—O131.3 (10)
O1—C3—C5—O460.9 (7)C8—C7—C12—C112.9 (12)
C2—C3—C5—O454.1 (8)N2—C7—C12—C11178.5 (8)
O1—C3—C5—C658.6 (9)C11—C12—O13—C149.5 (13)
C2—C3—C5—C6173.7 (7)C7—C12—O13—C14173.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.042.743 (10)139
O4—H4···O5i0.821.862.680 (8)178
O5—H5A···O3ii0.821.912.721 (8)172
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H14N2O6
Mr294.26
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.194 (2), 8.308 (2), 5.463 (3)
α, β, γ (°)106.12 (3), 101.98 (3), 95.69 (2)
V3)344.6 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.15 × 0.05
Data collection
DiffractometerRigaku AFC-7S
diffractometer
Absorption correctionPsi scan
(North et al., 1968)
Tmin, Tmax0.960, 0.998
No. of measured, independent and
observed [I > 2σ(I)'] reflections
1680, 1575, 961
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.221, 1.05
No. of reflections1575
No. of parameters193
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 2000), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Speck, 2003) and Mercury (CCDC, 2003), SHELXL97.

Selected geometric parameters (Å, º) top
C1—N11.334 (11)O1—C41.363 (10)
C1—C21.431 (12)O1—C31.458 (10)
C1—C41.443 (10)N1—N21.298 (8)
C2—O21.232 (9)N2—C71.404 (11)
C2—C31.501 (12)
N1—C1—C2128.3 (7)O1—C3—C5109.7 (6)
N1—C1—C4122.4 (7)C2—C3—C5110.3 (6)
C2—C1—C4109.0 (8)O3—C4—O1119.1 (7)
O2—C2—C1128.2 (9)O3—C4—C1132.2 (8)
O2—C2—C3125.4 (8)O1—C4—C1108.6 (7)
C1—C2—C3106.4 (7)N2—N1—C1115.3 (7)
C4—O1—C3110.9 (6)N1—N2—C7122.8 (7)
O1—C3—C2104.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.042.743 (10)139
O4—H4···O5i0.821.862.680 (8)178
O5—H5A···O3ii0.821.912.721 (8)172
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds