Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803016660/tk6128sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536803016660/tk6128Isup2.hkl |
CCDC reference: 222841
The title compound was prepared according to a literature procedure (Hvoslef & Nordenson (1976). Plate-like yellow crystals were obtained from recrystallization from an ethanol solution of the compound.
All H atoms were included in the riding-model approximation, with Uiso(methyl-H, hydroxy-H) = 1.5Ueq(parent atom) and Uiso(H) = 1.2Ueq(parent atom). Friedel pairs were merged and Δf'' term was set to zero. Thus, the calculated absolute structure parameter of 0(10) (Flack, 1983) is meaningless in this analysis.
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Speck, 2003) and Mercury (CCDC, 2003); software used to prepare material for publication: SHELXL97.
C13H14N2O6 | Z = 1 |
Mr = 294.26 | F(000) = 154 |
Triclinic, P1 | Dx = 1.418 Mg m−3 |
Hall symbol: P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 8.194 (2) Å | Cell parameters from 25 reflections |
b = 8.308 (2) Å | θ = 28.0–30.0° |
c = 5.463 (3) Å | µ = 0.11 mm−1 |
α = 106.12 (3)° | T = 295 K |
β = 101.98 (3)° | Plate, clear pale yellow |
γ = 95.69 (2)° | 0.30 × 0.15 × 0.05 mm |
V = 344.6 (2) Å3 |
Rigaku AFC-7S diffractometer | 961 reflections with I > 2σ(I)' |
Radiation source: fine-focus sealed tube | Rint = 0.030 |
Graphite monochromator | θmax = 27.5°, θmin = 2.6° |
q–2θ scans | h = 0→10 |
Absorption correction: psi scan (North et al., 1968) | k = −10→10 |
Tmin = 0.960, Tmax = 0.998 | l = −7→6 |
1680 measured reflections | 3 standard reflections every 150 reflections |
1575 independent reflections | intensity decay: 0.8% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.073 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.221 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0983P)2 + 0.4777P] where P = (Fo2 + 2Fc2)/3 |
1575 reflections | (Δ/σ)max < 0.001 |
193 parameters | Δρmax = 0.31 e Å−3 |
3 restraints | Δρmin = −0.30 e Å−3 |
C13H14N2O6 | γ = 95.69 (2)° |
Mr = 294.26 | V = 344.6 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.194 (2) Å | Mo Kα radiation |
b = 8.308 (2) Å | µ = 0.11 mm−1 |
c = 5.463 (3) Å | T = 295 K |
α = 106.12 (3)° | 0.30 × 0.15 × 0.05 mm |
β = 101.98 (3)° |
Rigaku AFC-7S diffractometer | 961 reflections with I > 2σ(I)' |
Absorption correction: psi scan (North et al., 1968) | Rint = 0.030 |
Tmin = 0.960, Tmax = 0.998 | 3 standard reflections every 150 reflections |
1680 measured reflections | intensity decay: 0.8% |
1575 independent reflections |
R[F2 > 2σ(F2)] = 0.073 | 3 restraints |
wR(F2) = 0.221 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.31 e Å−3 |
1575 reflections | Δρmin = −0.30 e Å−3 |
193 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.4426 (10) | 0.5773 (9) | 0.3686 (16) | 0.050 (2) | |
C2 | 0.6015 (11) | 0.5223 (10) | 0.3550 (17) | 0.054 (2) | |
O1 | 0.5632 (7) | 0.7339 (7) | 0.1498 (10) | 0.0518 (15) | |
C3 | 0.6861 (10) | 0.6288 (11) | 0.2206 (16) | 0.0476 (19) | |
H3 | 0.7123 | 0.5567 | 0.0632 | 0.057* | |
C4 | 0.4256 (11) | 0.7107 (10) | 0.2478 (15) | 0.051 (2) | |
O2 | 0.6631 (8) | 0.4145 (8) | 0.4432 (14) | 0.0678 (19) | |
O3 | 0.3158 (7) | 0.7941 (8) | 0.2163 (14) | 0.0679 (19) | |
C5 | 0.8457 (9) | 0.7414 (10) | 0.4088 (15) | 0.0467 (19) | |
H5 | 0.9269 | 0.6699 | 0.4576 | 0.056* | |
O4 | 0.7992 (8) | 0.8347 (8) | 0.6371 (11) | 0.0624 (17) | |
H4 | 0.8535 | 0.8149 | 0.7664 | 0.094* | |
C6 | 0.9284 (10) | 0.8667 (12) | 0.2985 (17) | 0.055 (2) | |
H6A | 0.8504 | 0.9414 | 0.2571 | 0.066* | |
H6B | 1.0281 | 0.9359 | 0.4285 | 0.066* | |
O5 | 0.9750 (8) | 0.7782 (10) | 0.0684 (13) | 0.070 (2) | |
H5A | 1.0761 | 0.7729 | 0.1047 | 0.105* | |
N1 | 0.3299 (8) | 0.5304 (8) | 0.4909 (13) | 0.0486 (17) | |
N2 | 0.3639 (9) | 0.4106 (8) | 0.5937 (13) | 0.0497 (17) | |
H2 | 0.4559 | 0.3709 | 0.5818 | 0.060* | |
C7 | 0.2568 (11) | 0.3431 (10) | 0.7237 (16) | 0.052 (2) | |
C8 | 0.1011 (13) | 0.3893 (12) | 0.7335 (19) | 0.065 (3) | |
H8 | 0.0612 | 0.4661 | 0.6497 | 0.078* | |
C9 | 0.0057 (13) | 0.3198 (13) | 0.870 (2) | 0.070 (3) | |
H9 | −0.0982 | 0.3524 | 0.8836 | 0.085* | |
C10 | 0.0631 (13) | 0.2033 (12) | 0.984 (2) | 0.066 (3) | |
H10 | −0.0042 | 0.1557 | 1.0725 | 0.080* | |
C11 | 0.2164 (13) | 0.1544 (10) | 0.9740 (17) | 0.058 (2) | |
H11 | 0.2546 | 0.0764 | 1.0567 | 0.070* | |
C12 | 0.3128 (11) | 0.2230 (10) | 0.8386 (18) | 0.055 (2) | |
O13 | 0.4690 (8) | 0.1896 (8) | 0.8125 (14) | 0.0701 (19) | |
C14 | 0.5285 (15) | 0.0537 (14) | 0.901 (2) | 0.079 (3) | |
H14A | 0.5451 | 0.0830 | 1.0879 | 0.118* | |
H14B | 0.6337 | 0.0353 | 0.8553 | 0.118* | |
H14C | 0.4464 | −0.0481 | 0.8177 | 0.118* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.046 (5) | 0.035 (4) | 0.060 (5) | 0.005 (3) | −0.010 (4) | 0.021 (4) |
C2 | 0.054 (5) | 0.039 (4) | 0.061 (5) | 0.013 (4) | −0.005 (4) | 0.014 (4) |
O1 | 0.040 (3) | 0.067 (4) | 0.056 (3) | 0.008 (3) | 0.000 (2) | 0.038 (3) |
C3 | 0.042 (4) | 0.057 (5) | 0.046 (4) | 0.009 (4) | 0.004 (3) | 0.024 (4) |
C4 | 0.053 (5) | 0.051 (5) | 0.047 (5) | −0.002 (4) | −0.004 (4) | 0.027 (4) |
O2 | 0.056 (4) | 0.057 (4) | 0.100 (5) | 0.020 (3) | 0.007 (3) | 0.044 (4) |
O3 | 0.040 (3) | 0.074 (4) | 0.108 (5) | 0.020 (3) | 0.010 (3) | 0.060 (4) |
C5 | 0.041 (4) | 0.051 (4) | 0.048 (5) | 0.016 (3) | −0.001 (3) | 0.022 (4) |
O4 | 0.058 (4) | 0.073 (4) | 0.050 (3) | 0.011 (3) | 0.000 (3) | 0.019 (3) |
C6 | 0.044 (4) | 0.069 (6) | 0.049 (5) | 0.000 (4) | −0.002 (4) | 0.026 (4) |
O5 | 0.043 (3) | 0.112 (6) | 0.066 (4) | 0.011 (3) | 0.006 (3) | 0.048 (4) |
N1 | 0.054 (4) | 0.041 (3) | 0.050 (4) | −0.003 (3) | −0.003 (3) | 0.027 (3) |
N2 | 0.048 (4) | 0.047 (4) | 0.057 (4) | 0.006 (3) | 0.000 (3) | 0.029 (3) |
C7 | 0.061 (5) | 0.037 (4) | 0.051 (5) | 0.005 (4) | −0.007 (4) | 0.018 (4) |
C8 | 0.070 (6) | 0.054 (5) | 0.071 (7) | 0.011 (5) | 0.002 (5) | 0.031 (5) |
C9 | 0.061 (6) | 0.067 (6) | 0.087 (7) | 0.013 (5) | 0.011 (5) | 0.035 (6) |
C10 | 0.069 (6) | 0.054 (5) | 0.078 (7) | 0.001 (5) | 0.010 (5) | 0.033 (5) |
C11 | 0.084 (7) | 0.036 (4) | 0.050 (5) | 0.002 (4) | 0.000 (4) | 0.020 (4) |
C12 | 0.054 (5) | 0.033 (4) | 0.065 (5) | 0.005 (4) | −0.012 (4) | 0.013 (4) |
O13 | 0.063 (4) | 0.066 (4) | 0.091 (5) | 0.018 (3) | 0.008 (3) | 0.047 (4) |
C14 | 0.082 (7) | 0.062 (6) | 0.104 (8) | 0.039 (6) | 0.014 (6) | 0.041 (6) |
C1—N1 | 1.334 (11) | N1—N2 | 1.298 (8) |
C1—C2 | 1.431 (12) | N2—C7 | 1.404 (11) |
C1—C4 | 1.443 (10) | N2—H2 | 0.8600 |
C2—O2 | 1.232 (9) | C7—C8 | 1.375 (13) |
C2—C3 | 1.501 (12) | C7—C12 | 1.386 (11) |
O1—C4 | 1.363 (10) | C8—C9 | 1.374 (14) |
O1—C3 | 1.458 (10) | C8—H8 | 0.9300 |
C3—C5 | 1.519 (11) | C9—C10 | 1.362 (13) |
C3—H3 | 0.9800 | C9—H9 | 0.9300 |
C4—O3 | 1.202 (10) | C10—C11 | 1.366 (14) |
C5—O4 | 1.421 (10) | C10—H10 | 0.9300 |
C5—C6 | 1.511 (11) | C11—C12 | 1.372 (13) |
C5—H5 | 0.9800 | C11—H11 | 0.9300 |
O4—H4 | 0.8200 | C12—O13 | 1.364 (11) |
C6—O5 | 1.417 (11) | O13—C14 | 1.434 (10) |
C6—H6A | 0.9700 | C14—H14A | 0.9600 |
C6—H6B | 0.9700 | C14—H14B | 0.9600 |
O5—H5A | 0.8200 | C14—H14C | 0.9600 |
N1—C1—C2 | 128.3 (7) | N2—N1—C1 | 115.3 (7) |
N1—C1—C4 | 122.4 (7) | N1—N2—C7 | 122.8 (7) |
C2—C1—C4 | 109.0 (8) | N1—N2—H2 | 118.6 |
O2—C2—C1 | 128.2 (9) | C7—N2—H2 | 118.6 |
O2—C2—C3 | 125.4 (8) | C8—C7—C12 | 120.6 (9) |
C1—C2—C3 | 106.4 (7) | C8—C7—N2 | 122.4 (7) |
C4—O1—C3 | 110.9 (6) | C12—C7—N2 | 117.0 (8) |
O1—C3—C2 | 104.9 (6) | C9—C8—C7 | 118.7 (8) |
O1—C3—C5 | 109.7 (6) | C9—C8—H8 | 120.7 |
C2—C3—C5 | 110.3 (6) | C7—C8—H8 | 120.7 |
O1—C3—H3 | 110.6 | C10—C9—C8 | 120.1 (10) |
C2—C3—H3 | 110.6 | C10—C9—H9 | 119.9 |
C5—C3—H3 | 110.6 | C8—C9—H9 | 119.9 |
O3—C4—O1 | 119.1 (7) | C9—C10—C11 | 122.0 (9) |
O3—C4—C1 | 132.2 (8) | C9—C10—H10 | 119.0 |
O1—C4—C1 | 108.6 (7) | C11—C10—H10 | 119.0 |
O4—C5—C6 | 108.1 (7) | C10—C11—C12 | 118.4 (8) |
O4—C5—C3 | 107.3 (6) | C10—C11—H11 | 120.8 |
C6—C5—C3 | 113.7 (6) | C12—C11—H11 | 120.8 |
O4—C5—H5 | 109.2 | O13—C12—C11 | 125.8 (8) |
C6—C5—H5 | 109.2 | O13—C12—C7 | 114.0 (8) |
C3—C5—H5 | 109.2 | C11—C12—C7 | 120.2 (9) |
C5—O4—H4 | 109.5 | C12—O13—C14 | 117.5 (8) |
O5—C6—C5 | 109.8 (7) | O13—C14—H14A | 109.5 |
O5—C6—H6A | 109.7 | O13—C14—H14B | 109.5 |
C5—C6—H6A | 109.7 | H14A—C14—H14B | 109.5 |
O5—C6—H6B | 109.7 | O13—C14—H14C | 109.5 |
C5—C6—H6B | 109.7 | H14A—C14—H14C | 109.5 |
H6A—C6—H6B | 108.2 | H14B—C14—H14C | 109.5 |
C6—O5—H5A | 109.5 | ||
N1—C1—C2—O2 | 3.7 (14) | O4—C5—C6—O5 | −179.4 (6) |
C4—C1—C2—O2 | 177.8 (9) | C3—C5—C6—O5 | −60.3 (8) |
N1—C1—C2—C3 | −173.6 (8) | C2—C1—N1—N2 | −5.5 (11) |
C4—C1—C2—C3 | 0.4 (9) | C4—C1—N1—N2 | −178.8 (7) |
C4—O1—C3—C2 | 5.3 (8) | C1—N1—N2—C7 | −178.4 (7) |
C4—O1—C3—C5 | −113.1 (7) | N1—N2—C7—C8 | 5.3 (12) |
O2—C2—C3—O1 | 179.2 (8) | N1—N2—C7—C12 | −176.2 (7) |
C1—C2—C3—O1 | −3.3 (8) | C12—C7—C8—C9 | 2.9 (13) |
O2—C2—C3—C5 | −62.7 (12) | N2—C7—C8—C9 | −178.6 (9) |
C1—C2—C3—C5 | 114.7 (7) | C7—C8—C9—C10 | −2.2 (15) |
C3—O1—C4—O3 | 176.7 (8) | C8—C9—C10—C11 | 1.4 (16) |
C3—O1—C4—C1 | −5.2 (8) | C9—C10—C11—C12 | −1.4 (15) |
N1—C1—C4—O3 | −4.9 (14) | C10—C11—C12—O13 | 179.0 (9) |
C2—C1—C4—O3 | −179.4 (9) | C10—C11—C12—C7 | 2.1 (12) |
N1—C1—C4—O1 | 177.4 (7) | C8—C7—C12—O13 | 179.8 (8) |
C2—C1—C4—O1 | 2.9 (8) | N2—C7—C12—O13 | 1.3 (10) |
O1—C3—C5—O4 | 60.9 (7) | C8—C7—C12—C11 | −2.9 (12) |
C2—C3—C5—O4 | −54.1 (8) | N2—C7—C12—C11 | 178.5 (8) |
O1—C3—C5—C6 | −58.6 (9) | C11—C12—O13—C14 | 9.5 (13) |
C2—C3—C5—C6 | −173.7 (7) | C7—C12—O13—C14 | −173.4 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2 | 0.86 | 2.04 | 2.743 (10) | 139 |
O4—H4···O5i | 0.82 | 1.86 | 2.680 (8) | 178 |
O5—H5A···O3ii | 0.82 | 1.91 | 2.721 (8) | 172 |
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C13H14N2O6 |
Mr | 294.26 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 8.194 (2), 8.308 (2), 5.463 (3) |
α, β, γ (°) | 106.12 (3), 101.98 (3), 95.69 (2) |
V (Å3) | 344.6 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.30 × 0.15 × 0.05 |
Data collection | |
Diffractometer | Rigaku AFC-7S diffractometer |
Absorption correction | Psi scan (North et al., 1968) |
Tmin, Tmax | 0.960, 0.998 |
No. of measured, independent and observed [I > 2σ(I)'] reflections | 1680, 1575, 961 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.073, 0.221, 1.05 |
No. of reflections | 1575 |
No. of parameters | 193 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.30 |
Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 2000), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Speck, 2003) and Mercury (CCDC, 2003), SHELXL97.
C1—N1 | 1.334 (11) | O1—C4 | 1.363 (10) |
C1—C2 | 1.431 (12) | O1—C3 | 1.458 (10) |
C1—C4 | 1.443 (10) | N1—N2 | 1.298 (8) |
C2—O2 | 1.232 (9) | N2—C7 | 1.404 (11) |
C2—C3 | 1.501 (12) | ||
N1—C1—C2 | 128.3 (7) | O1—C3—C5 | 109.7 (6) |
N1—C1—C4 | 122.4 (7) | C2—C3—C5 | 110.3 (6) |
C2—C1—C4 | 109.0 (8) | O3—C4—O1 | 119.1 (7) |
O2—C2—C1 | 128.2 (9) | O3—C4—C1 | 132.2 (8) |
O2—C2—C3 | 125.4 (8) | O1—C4—C1 | 108.6 (7) |
C1—C2—C3 | 106.4 (7) | N2—N1—C1 | 115.3 (7) |
C4—O1—C3 | 110.9 (6) | N1—N2—C7 | 122.8 (7) |
O1—C3—C2 | 104.9 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O2 | 0.86 | 2.04 | 2.743 (10) | 139 |
O4—H4···O5i | 0.82 | 1.86 | 2.680 (8) | 178 |
O5—H5A···O3ii | 0.82 | 1.91 | 2.721 (8) | 172 |
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z. |
Vegetables and fruit may turn red–brown when they are kept under aerobic conditions for a long time. A mechanism proposed to account for this indicated that reactions of dehydroascorbic acid with amino acids play an important role in the process of oxidation of L-ascorbic acid to 2,2'-nitrilo-di-2(2')-deoxy-L-ascorbic acid monoammonium salt, which is red–brown (Kurata et al., 1973a,b).
In the course of structural studies of the red–brown pigment, the hydrazones were prepared by reaction of dehydroascorbic acid with hydrazines. Among eight hydrazones synthesized, the crystal structures of 2-methoxyphenylhydrazone dehydroascorbic acid, (I), was determined by single-crystal X-ray diffraction methods (Fig. 1 and Table 1).
The molecular structure of (I) comprises an ethylene glycol open chain linked to the hydrazone group via a lactone ring. The 15 non-H atoms of the phenylhydrazone and lactone ring are effectively coplanar, with the maximum deviation from the least-squares plane through these atoms being 0.066 (9) Å for C8. The bond lengths and angles in (I) are quite similar to those reported for the closely related structure of p-bromophenylhydrazone dehydroascorbic acid (Hvoslef & Nordenson, 1976).
The hydrogen-bonding distances and angles are listed in Table 2. An intramolecular N2—H···O2 hydrogen bond is observed. Both of the OH groups of the ethylene glycol residue participate in hydrogen bonds. The terminal OH group (O5) is connected to the carbonyl atom O3. These interactions link the molecules into ribbons that are aligned along the a axis, as shown in Fig. 2. The ribbons are stacked along [011] and are connected by hydrogen bonds formed between two OH groups (O3—H···O5). The stacking distance between ribbons is approximately 3.4 Å. The intermolecular hydrogen bonds described above combine to generate a two-dimensional layer structure.