Download citation
Download citation
link to html
The title compound (D4PyMA), C22H19NO2, exhibits polymorphism after crystallization by slow evaporation from a binary mixture of chloro­form and hexane. Long needle-like crystals have an orthorhombic structure (space group Fdd2), with one mol­ecule in the asymmetric unit, while small tablet-like crystals exhibit a monoclinic crystal structure (space group P21/n), in which two independent but chemically identical mol­ecules comprise the asymmetric unit. The bond lengths and angles are normal, while the torsion angles around the -C-O- bond linking the di­phenyl(4-pyridyl)methyl and methacryl­ate groups show the flexibility of the mol­ecule by way of packing effects. The two polymorphs both contain weak C-H...[pi] and C-H...O/N contacts but have different conformations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104024217/tr1099sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104024217/tr1099Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104024217/tr1099IIsup3.hkl
Contains datablock II

CCDC references: 257025; 257026

Comment top

Methacrylate monomers with large bulky ester groups were synthesized to study the stereo-specific and asymmetric polymerization in which the ester group plays an important role. Okamoto et al. (1983, 1994) reported on a series of bulky methacrylates and found that many of these types of monomer yield highly isotactic optically active polymers with one-handed helical conformation by asymmetric anionic polymerization. The bulky side groups of the monomers containing pyridyl groups are especially interesting, because of their ability to form complexes with acidic low-molecular-weight molecules. Poly(4-vinylpyridine) complexed with, for example, nona- or pentadecylphenol self-assembles in lamellar structures with a periodicity in the order of 30–50 Å. (Ruokolainen et al., 1996). Block copolymers containing 4-vinylpyridine blocks complexed with nona- or pentadecylphenol resulted in supramolecular polymeric materials with hierarchical structure-within-structure morphologies (Ruokalainen et al., 1998, 1999). Based on its helical conformation, the title complex (D4PyMA), complexed with similar amphiphiles, may give rise to self-assembled structures that are even more interesting. After thorough purification of the synthesized monomer, two types of crystals were found and two polymorphs, (I) (orthorhombic) and (II) (monoclinic), were detected, as described below. An extensive literature search revealed no reports on the crystal structure of D4PyMA. The crystal and molecular structure of diphenyl-2-pyridylmethyl methacrylate (D2PyMA) has, however, been reported (Kageyama et al., 1986). The crystal structures of related methacrylates with a large bulky ester substituent, such as 1,1-diphenylethyl methacrylate and triphenylmethyl methacrylate (Kageyama et al., 1985) and diphenyl methyl methacrylate (Kageyama et al., 1982), all have a monoclinic space group (P21/a, P21/a and C2/c, respectively)

The molecular geometries of (I) and (II), with the atomic numbering, are shown in Figs. 1 and 2. The structure of D2PyMA, which differs only in the position of the N atom in the pyridyl ring, is reported (Kageyama et al., 1986) to be monoclinic, with the same space group (P21/n) as (II). In the case of the former, there is only one molecule in the asymmetric unit, whereas (II) contains two. Furthermore, the structure of D2PyMA was determined at ambient temperature, whilst that of (II) was determined at 100 K.

The distance between two adjacent double bonds is of importance to allow polymerization in the crystalline state (below the melting temperature). It was found that a distance of 3.76 Å is short enough to form linear polymers using γ-radiation (Enkelmann et al., 1978). However, it is not only the distance that is important; the crystal geometry has also to be taken into account, since methyl acrylate does not react under γ-radiation, although the distance between the double bonds is 3.711 Å (Brown et al., 1971).

The possibility of polymerization in the crystalline phase is very unlikely for either polymorph, since the shortest intermolecular distance between the mid-points of the double bonds is 5.455 (5) Å in (I) [C1=C3; the two closest equivalent mid-points are at (1/4 + x, 1/4 − y, 1/4 + z) and (−1/4 + x, 1/4 − y, −1/4 + z)], and 4.117 (6) Å (C11=C13; symmetry code of closest midpoint: −x, 1 − y, 1 − z) and 4.914 (6) Å (C21=C23; symmetry code of closest midpoint: −x, 1 − y, −z) in the two residues of (II). In (I), the observed C—H···π contacts shorter than 3.0 Å are C13—H13···Cg1 (2.71 Å; Cg1 is the centroid of the N/C6–C10 ring; symmetry code: 1/2 − x, −y, 1/2 + z), C8—H8···Cg2 (2.85 Å; Cg2 is the centroid of the C11–C16 ring; symmetry code: x, y, −1 + z) and C10—H10···Cg3 (2.94 Å; Cg3 is the centroid of the C17–C22 ring; symmetry code: −x, −y, z). In (II), the contacts are C29—H29···Cg4 (2.94 Å; Cg4 is the centroid of the N11/C16–C110 ring; symmetry code: −x, 1 − y, 1 − z) and C114—H114···Cg5 (2.60 Å; Cg5 is the centroid of the N21/C26–C210 ring; 1/2 + x, 1/2 − y, 1/2 + z). [For a general discussions of C—H···π contacts see Malone et al. (1997), Nisho et al. (1998) and Desiraju & Steiner (1999).]

Two very weak hydrogen-bond-like contacts were also observed, viz. a C19—H19···N(-x, −y, 1 + z) contact (2.54 Å) in (I) and a C110—H110···O11(1/2 − x, 1/2 + y, 3/2 − z) contact (2.44 Å) in II.

The density of the orthorhombic structure is higher than that for the monoclinic structure (1.279 versus 1.266 Mg m−3). This result suggests that the orthorhombic form may be thermodynamically more stable (Burger & Ramberger, 1979).

The main differences in the conformations appear around the Cn5—On2 bond; the C4—O2—C5—C11 torsion angle in (I) is 55.9 (3)°, and the corresponding angles in (II) are 50.3 (4) and −52.4 (4)°. The C4—O2—C5—C6 torsion angle in (I) is −72.2 (2)°, and the corresponding angles in (II) are −77.7 (4) and 75.5 (4)° in (II). The C4—O2—C5—C17 angle in (I) is 173.0 (2)°, and the corresponding angles in (II) are 166.5 (3) and −169.5 (3)°.

Several examples of concomitant polymorphism have been reported previously, for example, benzanilide from ethanol in a triclinic form (Bowes, et al., 2003) and a monoclinic form (Kashino et al., 1979). Yet another example is the crystallization of 2-iodo-4-nitroaniline from ethanol, which yields a mixture of triclinic and orthorhombic crystals (McWilliams et al., 2001). Fig. 3 shows the two crystal types, viz. the monoclinic crystal, (II), grown on top of an orthorhombic needle-like crystal of (I).

Experimental top

D4PyMA was synthesized according to the following procedure. To a suspension (60 wt% in mineral oil from Fluka) of NaH (13.9 g, 0.35 mol) in a 1000 ml three-necked flask, flushed with dry N2 gas and equipped with a reflux condenser, was added hexane (35 ml), and the mixture was stirred for 1 h. The supernatant mixture of hexane/mineral oil was removed with a syringe. To the remaining NaH (30.5 g, 0.117 mol), α-(4-pyridyl)benzhydrol suspended in tetrahydrofuran (THF, 300 ml) was added stepwise (H2) under stirring. After adding all the α-(4-pyridyl)benzhydrol suspension, the reaction mixture was refluxed for 20 h. The mixture was then cooled to 273 K, and freshly distilled methacryloylchloride (12.2 g, 0.117 mol) was added dropwise under stirring. After the addition was complete, the mixture was stirred for an additional 20 h at room temperature. Subsequently, THF was removed by evaporation. The reaction product was added stepwise to a solution Na2CO3 (5.5 g, 51.9 mmol) in a 350 ml water/ice mixture. Extraction was executed with diethyl ether (300 ml). The diethyl ether layer contained the product and the water layer, the excess of methacryloylchloride and NaCl. The remaining undissolved products were filtered off if necessary and the layers were separated. The remaining water layer was extracted another two times. The diethyl ether fractions were combined and the solvent was removed by evaporation. The crude product (dark-red oil) was purified by column chromatography over neutral Al2O3 activity type 1 using a chloroform–hexane mixture (2:1, v/v) and was recrystallized twice, firstly from a hexane–diethyl ether mixture(1:1, v/v) and secondly from chloroform. Yield 12.1 g (36.7 mmol, 35.5%) of pure monomer. 1H NMR (Varian VXR, 300 MHz, CDCl3): δ 1.93 (s, 3H, CH3), 5.60 (s, 1H, vinyl H), 6.19 (s, 1H, vinyl H), 7.1–7.4 (m, 12H, aromatic), 8.48–8.51 (d, 2H, aromatic next to N). Mass (Jeol JMS 600H 70 eV eI): m/z = 329 (calcualted: 329.4). Single crystals of (I) and (II) suitable for analysis were grown by slow evaporation from a chloroform–hexane (5:95, v/v) solution at room temperature in air.

Refinement top

Crystals of the monoclinic phase, (II), were grown together; consequently a single-crystal had to be cleaved from an aggreagate, resulting in plate-shaped fragments. Most crystals of (II) showed broad profiles with anisotropic mosaicity. At ambient temperature, only very weak low-order reflections of (II) were observed, from which the unit cell was determinated [a = 16.974 (5) Å, b = 11.967 (4) Å, c = 17.968 (6) Å, β = 100.795 (6)° and V = 3585 (2) Å3]. The volume of (II) is comparable to two times the reported value of the unit cell of D2PyMA (3589 Å3; Kageyama et al., 1986), the latter with Z=4. The absolute configuration of the orthorhombic phase, (I), could not be determined reliably; therefore the Friedel pairs were merged. The N-atom positions were discriminated from the other possible positions by comparing the geometric and displacement parameters after isotropic refinement. All H atoms in (I) and (II) were placed in idealized positions and constrained to ride on their parent atom. The final difference Fourier map for (II) contained a relatively large residual electron density [0.98 (13) e/Å3]. No satisfactory discrete disorder model could be fitted to this density.

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT? and XPREP (Bruker, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTO (Meetsma, 2004) and PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. A perspective drawing of (I), with the atomic labelling of non-H atoms. All non-H atoms are represented by displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A perspective drawing of the two unique molecules of (II), with the atomic labelling. All non-H atoms are represented by displacement ellipsoids drawn at the 50% probability level. H-atoms have been omitted for clarity.
[Figure 3] Fig. 3. A light microscopic picture of a crystal of the monoclinic compound, (II), on top of a crystal of the orthorhombic compound, (I).
(I) diphenyl(4-pyridyl)methyl methacrylate top
Crystal data top
C22H19NO2The final unit cell was obtained from the xyz centroids of 4817 reflections after integration using the SAINT software package (Bruker, 2000).
Mr = 329.40Dx = 1.279 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 4817 reflections
a = 19.170 (1) Åθ = 2.3–27.4°
b = 42.244 (3) ŵ = 0.08 mm1
c = 8.4475 (6) ÅT = 100 K
V = 6840.9 (8) Å3Needle, colorless
Z = 160.38 × 0.10 × 0.06 mm
F(000) = 2784
Data collection top
Bruker SMART Apex; area detector
diffractometer
1944 independent reflections
Radiation source: fine focus sealed Siemens Mo tube1750 reflections with I > 2σ(I)
Parallel mounted graphite monochromatorRint = 0.052
Detector resolution: 4096x4096 / 62x62 (binned 512) pixels mm-1θmax = 26.7°, θmin = 2.3°
π and ω scansh = 2424
Absorption correction: multi-scan
(SADABS, Bruker, 2000)
k = 5353
Tmin = 0.910, Tmax = 0.994l = 1010
13883 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.085H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0124P)2 + 8.7015P]
where P = (Fo2 + 2Fc2)/3
1944 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C22H19NO2V = 6840.9 (8) Å3
Mr = 329.40Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 19.170 (1) ŵ = 0.08 mm1
b = 42.244 (3) ÅT = 100 K
c = 8.4475 (6) Å0.38 × 0.10 × 0.06 mm
Data collection top
Bruker SMART Apex; area detector
diffractometer
1944 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2000)
1750 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.994Rint = 0.052
13883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.085H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
1944 reflectionsΔρmin = 0.20 e Å3
291 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.22564 (9)0.07996 (4)0.1146 (2)0.0307 (6)
O20.11558 (9)0.09228 (4)0.1832 (2)0.0227 (5)
N0.08673 (11)0.00934 (5)0.1274 (3)0.0262 (7)
C10.13339 (17)0.15317 (6)0.1032 (3)0.0328 (9)
C20.25401 (15)0.14140 (7)0.0114 (4)0.0416 (10)
C30.18642 (14)0.13299 (6)0.0806 (3)0.0281 (8)
C40.18008 (13)0.09882 (6)0.1271 (3)0.0238 (7)
C50.10218 (12)0.06076 (5)0.2484 (3)0.0185 (7)
C60.09934 (11)0.03615 (5)0.1156 (3)0.0180 (7)
C70.10586 (14)0.04425 (6)0.0422 (3)0.0243 (8)
C80.09946 (14)0.02110 (7)0.1570 (3)0.0281 (8)
C90.07974 (13)0.01689 (6)0.0260 (3)0.0235 (8)
C100.08500 (12)0.00469 (6)0.1489 (3)0.0206 (7)
C110.15524 (12)0.05446 (5)0.3804 (3)0.0207 (7)
C120.19774 (13)0.02824 (6)0.3885 (3)0.0258 (7)
C130.24400 (13)0.02423 (7)0.5139 (3)0.0302 (8)
C140.24952 (14)0.04720 (7)0.6293 (4)0.0322 (8)
C150.20825 (15)0.07387 (7)0.6207 (4)0.0332 (9)
C160.16070 (14)0.07727 (6)0.4990 (3)0.0267 (8)
C170.02824 (12)0.06362 (5)0.3183 (3)0.0186 (7)
C180.00821 (13)0.04424 (6)0.4450 (3)0.0209 (7)
C190.05867 (14)0.04557 (6)0.5059 (3)0.0252 (7)
C200.10703 (14)0.06604 (6)0.4408 (3)0.0272 (8)
C210.08803 (14)0.08511 (7)0.3150 (4)0.0296 (8)
C220.02094 (14)0.08392 (6)0.2535 (3)0.0258 (8)
H10.137660.174250.071950.0410 (17)*1.00 (6)
H1'0.091080.147120.154210.0457 (18)*1.00 (6)
H20.257770.132150.094680.0624*
H2'0.291580.133170.078460.0624*
H2"0.257890.164480.004090.0624*
H70.115980.065210.072210.0244 (14)*1.00 (5)
H80.104900.026560.271340.0594 (19)*1.00 (7)
H90.069830.039310.045420.0261 (14)*1.00 (5)
H100.079960.002450.255980.0246 (14)*1.00 (5)
H120.196960.011910.310110.0409 (16)*1.00 (6)
H130.272500.005330.516810.0523 (18)*1.00 (6)
H140.276490.045580.714420.0431 (17)*1.00 (6)
H150.212960.091420.704780.0375 (15)*1.00 (6)
H160.134160.094910.496350.0176 (14)*1.00 (5)
H180.039590.030920.483120.0137 (13)*1.00 (4)
H190.071260.032410.597520.0169 (13)*1.00 (4)
H200.153630.066710.485140.0273 (15)*1.00 (5)
H210.121340.099480.267170.0245 (14)*1.00 (5)
H220.008730.095360.162440.0254 (14)*1.00 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0268 (9)0.0310 (10)0.0342 (11)0.0016 (8)0.0059 (9)0.0015 (9)
O20.0259 (9)0.0172 (8)0.0251 (9)0.0008 (7)0.0018 (8)0.0035 (8)
N0.0241 (11)0.0281 (12)0.0265 (11)0.0032 (9)0.0003 (10)0.0054 (10)
C10.0515 (19)0.0175 (12)0.0293 (16)0.0060 (12)0.0016 (14)0.0017 (12)
C20.0402 (17)0.0421 (17)0.0425 (18)0.0141 (14)0.0064 (15)0.0146 (15)
C30.0363 (14)0.0289 (13)0.0192 (13)0.0083 (12)0.0064 (11)0.0027 (10)
C40.0282 (12)0.0241 (12)0.0191 (12)0.0048 (11)0.0001 (11)0.0004 (11)
C50.0213 (12)0.0149 (11)0.0192 (12)0.0001 (9)0.0014 (10)0.0014 (10)
C60.0119 (10)0.0203 (12)0.0219 (12)0.0019 (9)0.0005 (9)0.0000 (10)
C70.0287 (13)0.0224 (13)0.0217 (13)0.0030 (10)0.0001 (11)0.0030 (11)
C80.0305 (14)0.0337 (14)0.0200 (14)0.0022 (11)0.0030 (11)0.0002 (11)
C90.0210 (12)0.0191 (12)0.0304 (15)0.0010 (10)0.0047 (11)0.0001 (11)
C100.0173 (11)0.0218 (12)0.0227 (13)0.0011 (9)0.0029 (10)0.0030 (10)
C110.0183 (11)0.0207 (11)0.0231 (13)0.0045 (9)0.0037 (10)0.0048 (10)
C120.0218 (12)0.0295 (13)0.0260 (13)0.0015 (11)0.0011 (11)0.0003 (12)
C130.0212 (13)0.0379 (15)0.0315 (15)0.0048 (12)0.0042 (12)0.0050 (13)
C140.0257 (13)0.0420 (16)0.0289 (15)0.0037 (12)0.0049 (13)0.0076 (14)
C150.0353 (15)0.0343 (15)0.0301 (15)0.0101 (12)0.0020 (13)0.0048 (13)
C160.0282 (13)0.0236 (13)0.0284 (14)0.0048 (11)0.0044 (12)0.0016 (12)
C170.0199 (11)0.0175 (11)0.0185 (12)0.0006 (9)0.0030 (10)0.0052 (10)
C180.0235 (12)0.0206 (12)0.0186 (12)0.0016 (10)0.0010 (10)0.0050 (10)
C190.0303 (13)0.0248 (13)0.0205 (12)0.0066 (10)0.0033 (12)0.0056 (11)
C200.0253 (13)0.0253 (13)0.0311 (14)0.0000 (10)0.0079 (12)0.0101 (12)
C210.0240 (14)0.0268 (13)0.0379 (16)0.0055 (11)0.0015 (12)0.0008 (12)
C220.0290 (14)0.0216 (12)0.0267 (13)0.0007 (10)0.0033 (12)0.0033 (12)
Geometric parameters (Å, º) top
O1—C41.187 (3)C18—C191.383 (4)
O2—C41.353 (3)C19—C201.382 (4)
O2—C51.464 (3)C20—C211.382 (4)
N—C81.333 (4)C21—C221.388 (4)
N—C91.341 (4)C1—H10.9300
C1—C31.340 (4)C1—H1'0.9500
C2—C31.465 (4)C2—H20.9800
C3—C41.501 (4)C2—H2'0.9800
C5—C61.531 (3)C2—H2"0.9800
C5—C111.533 (3)C7—H70.9400
C5—C171.540 (3)C8—H81.0000
C6—C71.382 (4)C9—H90.9800
C6—C101.386 (3)C10—H100.9600
C7—C81.383 (4)C12—H120.9600
C9—C101.385 (4)C13—H130.9700
C11—C121.377 (3)C14—H140.8900
C11—C161.394 (3)C15—H151.0300
C12—C131.392 (4)C16—H160.9000
C13—C141.380 (4)C18—H180.8800
C14—C151.379 (4)C19—H190.9800
C15—C161.382 (4)C20—H200.9700
C17—C181.401 (3)C21—H210.9700
C17—C221.387 (3)C22—H220.9400
O1···C63.048 (3)C18···H10v2.9200
O1···C73.050 (3)C19···H10v2.8200
O1···C112.833 (3)C19···H2"xi2.9800
O1···C123.227 (3)C20···H14xii3.0600
O1···H22.8900C21···H9v3.0100
O1···H2'2.6000C21···H16x3.0600
O1···H72.7000C22···H9v2.7400
O1···H20i2.6200H1···H2"2.4100
O2···H1'2.3800H1···Nix2.8800
O2···H72.4400H1···C9ix3.0900
O2···H162.6700H1···H9ix2.5700
O2···H222.3900H1'···O22.3800
N···H19ii2.5400H2···O12.8900
N···H1iii2.8800H2···H15iv2.5600
C4···C73.063 (4)H2'···O12.6000
C4···C163.292 (4)H2"···H12.4100
C6···O13.048 (3)H2"···C7xiii3.0900
C7···C43.063 (4)H2"···C19xiv2.9800
C7···O13.050 (3)H7···O12.7000
C8···C15iv3.584 (4)H7···O22.4400
C8···C14iv3.571 (4)H7···C42.5200
C9···C9v3.374 (4)H8···C14iv3.0300
C9···C13vi3.395 (4)H8···C15iv2.9600
C9···C10v3.364 (3)H8···C16iv3.0800
C10···C10v3.283 (3)H8···H18iv2.4300
C10···C123.124 (4)H9···C21v3.0100
C10···C9v3.364 (3)H9···C22v2.7400
C10···C183.349 (4)H9···C1iii3.0600
C11···O12.833 (3)H9···H1iii2.5700
C12···O13.227 (3)H10···C112.9900
C12···C103.124 (4)H10···C122.8300
C13···C9vii3.395 (4)H10···C173.0100
C14···C8viii3.571 (4)H10···C182.8900
C15···C8viii3.584 (4)H10···H122.3700
C16···C43.292 (4)H10···H182.5000
C16···C183.271 (4)H10···C18v2.9200
C18···C163.271 (4)H10···C19v2.8200
C18···C103.349 (4)H12···C62.6900
C1···H9ix3.0600H12···C102.5600
C4···H72.5200H12···H102.3700
C6···H122.6900H13···C8vii3.0700
C7···H2"x3.0900H13···C9vii2.8800
C8···H13vi3.0700H13···C10vii2.9800
C9···H13vi2.8800H14···C20xv3.0600
C9···H1iii3.0900H15···H2viii2.5600
C10···H13vi2.9800H16···O22.6700
C10···H122.5600H16···C172.8500
C11···H102.9900H16···C21xiii3.0600
C11···H182.5800H16···H21xiii2.3600
C12···H102.8300H18···C112.5800
C14···H8viii3.0300H18···C163.0400
C15···H8viii2.9600H18···H8viii2.4300
C16···H8viii3.0800H18···H102.5000
C16···H183.0400H19···Nxvi2.5400
C17···H162.8500H20···O1xvii2.6200
C17···H103.0100H21···H16x2.3600
C18···H102.8900H22···O22.3900
C4—O2—C5118.56 (18)C3—C1—H1120.00
C8—N—C9115.4 (2)C3—C1—H1'123.00
C1—C3—C2125.0 (2)H1—C1—H1'117.00
C1—C3—C4120.9 (2)C3—C2—H2109.00
C2—C3—C4114.2 (2)C3—C2—H2'109.00
O1—C4—O2124.5 (2)C3—C2—H2"109.00
O1—C4—C3124.2 (2)H2—C2—H2'109.00
O2—C4—C3111.2 (2)H2—C2—H2"109.00
O2—C5—C6110.39 (19)H2'—C2—H2"109.00
O2—C5—C11108.38 (17)C6—C7—H7121.00
O2—C5—C17103.56 (17)C8—C7—H7120.00
C6—C5—C11116.04 (18)N—C8—H8115.00
C6—C5—C17107.55 (18)C7—C8—H8120.00
C11—C5—C17110.2 (2)N—C9—H9114.00
C5—C6—C7122.4 (2)C10—C9—H9122.00
C5—C6—C10120.6 (2)C6—C10—H10121.00
C7—C6—C10116.8 (2)C9—C10—H10120.00
C6—C7—C8119.6 (2)C11—C12—H12122.00
N—C8—C7124.6 (2)C13—C12—H12117.00
N—C9—C10124.1 (2)C12—C13—H13119.00
C6—C10—C9119.6 (2)C14—C13—H13121.00
C5—C11—C12124.7 (2)C13—C14—H14124.00
C5—C11—C16116.9 (2)C15—C14—H14116.00
C12—C11—C16118.4 (2)C14—C15—H15120.00
C11—C12—C13120.9 (2)C16—C15—H15120.00
C12—C13—C14120.1 (3)C11—C16—H16121.00
C13—C14—C15119.6 (3)C15—C16—H16118.00
C14—C15—C16120.2 (3)C17—C18—H18118.00
C11—C16—C15120.8 (2)C19—C18—H18121.00
C5—C17—C18120.0 (2)C18—C19—H19120.00
C5—C17—C22121.5 (2)C20—C19—H19120.00
C18—C17—C22118.5 (2)C19—C20—H20119.00
C17—C18—C19121.0 (2)C21—C20—H20122.00
C18—C19—C20120.0 (2)C20—C21—H21121.00
C19—C20—C21119.6 (2)C22—C21—H21118.00
C20—C21—C22120.7 (3)C17—C22—H22118.00
C17—C22—C21120.3 (2)C21—C22—H22121.00
C5—O2—C4—O16.5 (4)C11—C5—C17—C1837.2 (3)
C5—O2—C4—C3174.2 (2)C11—C5—C17—C22146.2 (2)
C4—O2—C5—C672.2 (2)C6—C5—C11—C16177.4 (2)
C4—O2—C5—C1155.9 (3)C17—C5—C11—C12120.5 (2)
C4—O2—C5—C17173.0 (2)C5—C6—C10—C9177.2 (2)
C9—N—C8—C70.3 (4)C7—C6—C10—C91.6 (3)
C8—N—C9—C100.0 (4)C5—C6—C7—C8176.9 (2)
C8—N—C9—H9179.00C10—C6—C7—C81.4 (4)
C9—N—C8—H8180.00C6—C7—C8—N0.4 (4)
C1—C3—C4—O23.0 (3)N—C9—C10—C61.0 (4)
C2—C3—C4—O12.1 (4)C5—C11—C12—C13179.3 (2)
C1—C3—C4—O1177.7 (3)C12—C11—C16—C150.8 (4)
C2—C3—C4—O2177.2 (2)C5—C11—C16—C15178.6 (2)
O2—C5—C6—C10177.93 (19)C16—C11—C12—C131.4 (4)
O2—C5—C6—C72.6 (3)C11—C12—C13—C142.3 (4)
C17—C5—C6—C7109.8 (2)C12—C13—C14—C150.9 (4)
C17—C5—C6—C1065.6 (3)C13—C14—C15—C161.3 (4)
O2—C5—C11—C12126.8 (2)C14—C15—C16—C112.2 (4)
O2—C5—C11—C1652.6 (3)C5—C17—C18—C19177.6 (2)
C6—C5—C11—C122.0 (3)C18—C17—C22—C210.8 (4)
C11—C5—C6—C7126.4 (2)C22—C17—C18—C190.9 (4)
C11—C5—C6—C1058.3 (3)C5—C17—C22—C21177.5 (2)
C17—C5—C11—C1660.1 (3)C17—C18—C19—C200.6 (4)
O2—C5—C17—C18152.9 (2)C18—C19—C20—C210.1 (4)
O2—C5—C17—C2230.5 (3)C19—C20—C21—C220.0 (4)
C6—C5—C17—C1890.2 (3)C20—C21—C22—C170.4 (4)
C6—C5—C17—C2286.4 (3)
Symmetry codes: (i) x+1/2, y, z1/2; (ii) x, y, z1; (iii) x+1/4, y1/4, z1/4; (iv) x, y, z1; (v) x, y, z; (vi) x+1/2, y, z1/2; (vii) x+1/2, y, z+1/2; (viii) x, y, z+1; (ix) x+1/4, y+1/4, z+1/4; (x) x1/4, y+1/4, z1/4; (xi) x1/4, y+1/4, z+3/4; (xii) x1/2, y, z1/2; (xiii) x+1/4, y+1/4, z+1/4; (xiv) x+1/4, y+1/4, z3/4; (xv) x+1/2, y, z+1/2; (xvi) x, y, z+1; (xvii) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O20.94002.44002.789 (3)102.00
C19—H19···Nxvi0.98002.54003.497 (4)165.00
Symmetry code: (xvi) x, y, z+1.
(II) diphenyl(4-pyridyl)methyl methacrylate top
Crystal data top
C22H19NO2F(000) = 1392
Mr = 329.40The final unit cell was obtained from the xyz centroids of 2934 reflections after integration using the SAINT software package (Bruker, 2000).
Monoclinic, P21/nDx = 1.266 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 16.712 (2) ÅCell parameters from 2934 reflections
b = 11.891 (1) Åθ = 2.5–26.8°
c = 17.724 (2) ŵ = 0.08 mm1
β = 101.045 (2)°T = 100 K
V = 3456.9 (6) Å3Platelet, colorless
Z = 80.20 × 0.18 × 0.06 mm
Data collection top
Bruker SMART Apex; area detector
diffractometer
6100 independent reflections
Radiation source: fine focus sealed Siemens Mo tube3615 reflections with I > 2σ(I)
Parallel mounted graphite monochromatorRint = 0.077
Detector resolution: 4096x4096 / 62x62 (binned 512) pixels mm-1θmax = 25.0°, θmin = 2.3°
π and ω scansh = 1919
Absorption correction: multi-scan
(SADABS, Bruker, 2000)
k = 1414
Tmin = 0.973, Tmax = 0.995l = 2121
24310 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.105Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.265H-atom parameters constrained
S = 1.46 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
6100 reflections(Δ/σ)max = 0.032
453 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C22H19NO2V = 3456.9 (6) Å3
Mr = 329.40Z = 8
Monoclinic, P21/nMo Kα radiation
a = 16.712 (2) ŵ = 0.08 mm1
b = 11.891 (1) ÅT = 100 K
c = 17.724 (2) Å0.20 × 0.18 × 0.06 mm
β = 101.045 (2)°
Data collection top
Bruker SMART Apex; area detector
diffractometer
6100 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2000)
3615 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.995Rint = 0.077
24310 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1050 restraints
wR(F2) = 0.265H-atom parameters constrained
S = 1.46Δρmax = 0.98 e Å3
6100 reflectionsΔρmin = 0.30 e Å3
453 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.18023 (16)0.3926 (2)0.66896 (17)0.0378 (10)
O120.14257 (15)0.5487 (2)0.59952 (14)0.0319 (9)
N110.0699 (2)0.6533 (3)0.8565 (2)0.0400 (12)
C110.0868 (2)0.4259 (3)0.4727 (2)0.0340 (12)
C120.1215 (3)0.2523 (3)0.5459 (3)0.0495 (17)
C130.1155 (2)0.3729 (3)0.5373 (2)0.0310 (14)
C140.1501 (2)0.4379 (3)0.6091 (2)0.0300 (12)
C150.1864 (2)0.6231 (3)0.6587 (2)0.0276 (12)
C160.1440 (2)0.6304 (3)0.7270 (2)0.0244 (11)
C170.0807 (2)0.5592 (3)0.7374 (2)0.0268 (11)
C180.0463 (2)0.5738 (3)0.8021 (3)0.0365 (14)
C190.1301 (2)0.7228 (3)0.8447 (2)0.0353 (12)
C1100.1673 (2)0.7145 (3)0.7817 (2)0.0294 (12)
C1110.2761 (2)0.5870 (3)0.6779 (2)0.0233 (11)
C1120.3190 (2)0.5718 (3)0.7524 (2)0.0313 (12)
C1130.4013 (2)0.5449 (3)0.7666 (2)0.0282 (12)
C1140.4423 (2)0.5346 (3)0.7075 (2)0.0312 (14)
C1150.4002 (2)0.5475 (3)0.6327 (2)0.0347 (14)
C1160.3183 (2)0.5727 (3)0.6183 (2)0.0302 (12)
C1170.1790 (2)0.7379 (3)0.6175 (2)0.0280 (12)
C1180.2424 (3)0.8174 (3)0.6298 (2)0.0367 (14)
C1190.2330 (3)0.9207 (3)0.5931 (3)0.0386 (16)
C1200.1613 (3)0.9513 (3)0.5471 (2)0.0403 (16)
C1210.0986 (3)0.8770 (3)0.5369 (2)0.0402 (16)
C1220.1059 (2)0.7703 (3)0.5725 (2)0.0305 (12)
O210.18284 (16)0.3557 (2)0.16962 (17)0.0379 (10)
O220.14905 (14)0.1995 (2)0.09936 (14)0.0296 (8)
N210.08157 (19)0.0917 (3)0.35931 (19)0.0337 (11)
C210.0866 (2)0.3216 (3)0.0279 (2)0.0377 (14)
C220.1149 (3)0.4948 (3)0.0496 (3)0.0434 (16)
C230.1148 (2)0.3749 (3)0.0389 (2)0.0306 (14)
C240.1535 (2)0.3106 (3)0.1102 (2)0.0314 (14)
C250.1944 (2)0.1255 (3)0.1590 (2)0.0260 (11)
C260.1528 (2)0.1170 (3)0.2279 (2)0.0219 (11)
C270.1777 (2)0.0328 (3)0.2823 (2)0.0293 (12)
C280.1414 (2)0.0235 (3)0.3458 (2)0.0325 (12)
C290.0563 (2)0.1714 (3)0.3051 (2)0.0310 (12)
C2100.0894 (2)0.1874 (3)0.2399 (2)0.0242 (11)
C2110.2836 (2)0.1631 (3)0.1780 (2)0.0229 (11)
C2120.3263 (2)0.1761 (3)0.1182 (2)0.0305 (12)
C2130.4086 (2)0.2032 (3)0.1331 (2)0.0330 (12)
C2140.4495 (2)0.2195 (3)0.2082 (2)0.0306 (14)
C2150.4082 (2)0.2108 (3)0.2670 (2)0.0325 (12)
C2160.3249 (2)0.1815 (3)0.2522 (2)0.0325 (12)
C2170.1868 (2)0.0104 (3)0.1182 (2)0.0252 (11)
C2180.1131 (2)0.0210 (3)0.0725 (2)0.0307 (12)
C2190.1047 (3)0.1271 (3)0.0373 (2)0.0374 (16)
C2200.1682 (3)0.2029 (3)0.0487 (2)0.0355 (14)
C2210.2396 (3)0.1732 (3)0.0957 (2)0.0354 (14)
C2220.2499 (2)0.0686 (3)0.1308 (2)0.0311 (12)
H110.068030.384260.426920.0408*
H11'0.084780.505710.471660.0408*
H120.091600.216180.499190.0744*
H12'0.098090.229090.590030.0744*
H12"0.178960.229860.554120.0744*
H170.061450.501920.701030.0324*
H180.003310.524720.808650.0436*
H190.147760.780120.881490.0423*
H1100.208890.766270.775550.0357*
H1120.291570.579890.794350.0375*
H1130.429340.533560.817910.0342*
H1140.499050.518820.717460.0374*
H1150.428010.538920.591130.0414*
H1160.290140.580380.566610.0361*
H1180.292150.800140.663600.0436*
H1190.277610.971590.600130.0462*
H1200.155471.022830.522710.0485*
H1210.048270.897310.505040.0483*
H1220.060500.720710.565390.0366*
H210.064710.363650.072670.0456*
H21'0.088690.241810.030330.0456*
H220.087610.531000.001960.0648*
H22'0.171270.521690.063100.0648*
H22"0.085970.513240.091150.0648*
H270.219560.018100.275540.0347*
H280.159820.034310.382010.0387*
H290.012980.219450.312280.0373*
H2100.069360.245010.204120.0289*
H2120.298630.166320.066610.0367*
H2130.437010.210640.091760.0398*
H2140.506070.236630.218420.0368*
H2150.435550.224530.318270.0386*
H2160.296830.174410.293760.0388*
H2180.068280.029560.065100.0369*
H2190.054490.146940.005090.0444*
H2200.162370.274330.024260.0424*
H2210.283390.225540.104590.0426*
H2220.300070.050510.163660.0371*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0442 (16)0.0256 (15)0.0425 (19)0.0065 (12)0.0059 (14)0.0042 (13)
O120.0362 (15)0.0297 (15)0.0275 (16)0.0007 (12)0.0007 (12)0.0021 (12)
N110.049 (2)0.039 (2)0.035 (2)0.0144 (17)0.0158 (17)0.0086 (17)
C110.036 (2)0.033 (2)0.032 (2)0.0015 (18)0.0038 (18)0.0136 (19)
C120.053 (3)0.034 (3)0.061 (3)0.010 (2)0.010 (2)0.006 (2)
C130.028 (2)0.033 (2)0.033 (3)0.0018 (17)0.0087 (17)0.0020 (19)
C140.024 (2)0.041 (2)0.025 (2)0.0048 (17)0.0044 (16)0.0053 (19)
C150.029 (2)0.033 (2)0.020 (2)0.0011 (16)0.0026 (16)0.0024 (17)
C160.0257 (19)0.0233 (19)0.024 (2)0.0033 (15)0.0041 (16)0.0040 (16)
C170.027 (2)0.0204 (19)0.033 (2)0.0007 (16)0.0055 (17)0.0045 (17)
C180.033 (2)0.032 (2)0.049 (3)0.0043 (18)0.019 (2)0.019 (2)
C190.041 (2)0.037 (2)0.027 (2)0.0112 (19)0.0044 (19)0.0026 (18)
C1100.031 (2)0.026 (2)0.030 (2)0.0017 (16)0.0028 (17)0.0017 (17)
C1110.028 (2)0.0196 (18)0.022 (2)0.0002 (15)0.0037 (16)0.0012 (15)
C1120.029 (2)0.042 (2)0.024 (2)0.0016 (18)0.0081 (16)0.0046 (18)
C1130.024 (2)0.034 (2)0.026 (2)0.0048 (16)0.0030 (16)0.0006 (18)
C1140.0218 (19)0.034 (2)0.038 (3)0.0013 (16)0.0065 (17)0.0029 (19)
C1150.045 (2)0.028 (2)0.036 (3)0.0072 (18)0.0203 (19)0.0006 (18)
C1160.036 (2)0.028 (2)0.026 (2)0.0067 (17)0.0046 (17)0.0004 (17)
C1170.034 (2)0.031 (2)0.020 (2)0.0004 (17)0.0081 (16)0.0023 (16)
C1180.043 (2)0.033 (2)0.037 (3)0.0039 (18)0.0149 (19)0.0021 (19)
C1190.051 (3)0.022 (2)0.050 (3)0.0032 (19)0.028 (2)0.0040 (19)
C1200.070 (3)0.023 (2)0.032 (3)0.007 (2)0.020 (2)0.0022 (18)
C1210.065 (3)0.032 (2)0.025 (3)0.006 (2)0.012 (2)0.002 (2)
C1220.041 (2)0.025 (2)0.026 (2)0.0016 (17)0.0074 (18)0.0031 (17)
O210.0425 (16)0.0273 (15)0.0417 (19)0.0038 (12)0.0026 (14)0.0006 (13)
O220.0324 (14)0.0291 (15)0.0252 (15)0.0003 (11)0.0006 (11)0.0055 (12)
N210.0364 (19)0.0353 (19)0.029 (2)0.0032 (15)0.0053 (15)0.0069 (16)
C210.048 (3)0.032 (2)0.030 (2)0.0003 (19)0.0002 (19)0.0082 (19)
C220.047 (3)0.027 (2)0.054 (3)0.0095 (19)0.004 (2)0.010 (2)
C230.028 (2)0.024 (2)0.041 (3)0.0026 (16)0.0099 (18)0.0090 (19)
C240.025 (2)0.034 (2)0.035 (3)0.0048 (17)0.0054 (18)0.006 (2)
C250.0269 (19)0.026 (2)0.024 (2)0.0003 (15)0.0019 (16)0.0019 (16)
C260.0229 (18)0.0234 (19)0.019 (2)0.0015 (15)0.0027 (15)0.0039 (15)
C270.030 (2)0.029 (2)0.029 (2)0.0082 (16)0.0058 (17)0.0006 (17)
C280.039 (2)0.034 (2)0.024 (2)0.0020 (18)0.0047 (18)0.0027 (17)
C290.026 (2)0.037 (2)0.031 (2)0.0031 (17)0.0082 (17)0.0156 (19)
C2100.0244 (19)0.0220 (19)0.026 (2)0.0037 (15)0.0047 (16)0.0008 (16)
C2110.0235 (19)0.0192 (18)0.025 (2)0.0027 (14)0.0025 (16)0.0009 (16)
C2120.035 (2)0.024 (2)0.033 (2)0.0075 (16)0.0075 (18)0.0014 (18)
C2130.044 (2)0.026 (2)0.033 (2)0.0061 (18)0.0176 (19)0.0007 (18)
C2140.027 (2)0.025 (2)0.039 (3)0.0057 (16)0.0047 (18)0.0004 (19)
C2150.031 (2)0.036 (2)0.028 (2)0.0060 (17)0.0008 (18)0.0024 (19)
C2160.029 (2)0.037 (2)0.032 (2)0.0010 (17)0.0068 (17)0.0035 (19)
C2170.033 (2)0.0252 (19)0.019 (2)0.0001 (16)0.0089 (16)0.0024 (16)
C2180.036 (2)0.029 (2)0.026 (2)0.0034 (17)0.0029 (17)0.0024 (18)
C2190.053 (3)0.029 (2)0.027 (3)0.0088 (19)0.000 (2)0.0010 (19)
C2200.060 (3)0.021 (2)0.028 (2)0.0049 (19)0.015 (2)0.0013 (17)
C2210.044 (2)0.024 (2)0.044 (3)0.0006 (18)0.023 (2)0.0031 (19)
C2220.032 (2)0.029 (2)0.034 (2)0.0043 (17)0.0104 (17)0.0027 (18)
Geometric parameters (Å, º) top
O11—C141.210 (5)C118—H1180.9494
O12—C141.331 (4)C119—H1190.9497
O12—C151.458 (4)C120—H1200.9506
O21—C241.200 (5)C21—C231.346 (5)
O22—C251.469 (4)C121—H1210.9501
O22—C241.335 (4)C122—H1220.9501
N11—C191.349 (5)C22—C231.438 (5)
N11—C181.354 (6)C23—C241.512 (5)
N21—C291.358 (5)C25—C261.520 (5)
N21—C281.344 (5)C25—C2111.531 (5)
C11—C131.314 (5)C25—C2171.542 (5)
C12—C131.444 (5)C26—C271.397 (5)
C13—C141.506 (5)C26—C2101.398 (5)
C15—C1111.534 (5)C27—C281.382 (5)
C15—C1171.542 (5)C29—C2101.387 (5)
C15—C161.518 (5)C21—H210.9499
C16—C171.395 (5)C21—H21'0.9507
C16—C1101.395 (5)C22—H22"0.9801
C17—C181.389 (6)C22—H22'0.9801
C19—C1101.382 (5)C22—H220.9791
C111—C1121.388 (5)C27—H270.9498
C11—H11'0.9497C28—H280.9505
C111—C1161.388 (5)C29—H290.9498
C11—H110.9510C211—C2121.395 (5)
C12—H120.9803C211—C2161.381 (5)
C12—H12'0.9789C212—C2131.388 (5)
C112—C1131.387 (5)C213—C2141.389 (5)
C12—H12"0.9803C214—C2151.360 (5)
C113—C1141.363 (5)C215—C2161.410 (5)
C114—C1151.385 (5)C217—C2221.398 (5)
C115—C1161.376 (5)C217—C2181.389 (5)
C17—H170.9505C218—C2191.403 (5)
C117—C1221.380 (5)C219—C2201.377 (6)
C117—C1181.406 (6)C220—C2211.364 (6)
C118—C1191.385 (5)C221—C2221.387 (5)
C18—H180.9498C210—H2100.9499
C119—C1201.363 (7)C212—H2120.9494
C19—H190.9503C213—H2130.9505
C120—C1211.356 (6)C214—H2140.9500
C121—C1221.412 (5)C215—H2150.9498
C110—H1100.9502C216—H2160.9498
C112—H1120.9502C218—H2180.9498
C113—H1130.9495C219—H2190.9498
C114—H1140.9496C220—H2200.9499
C115—H1150.9489C221—H2210.9506
C116—H1160.9508C222—H2220.9494
O11···C163.108 (4)C222···C11vi3.569 (5)
O11···C172.989 (4)C122···H213ii2.9485
O11···C1112.800 (4)C222···C2123.203 (5)
O11···C1123.285 (4)C222···C273.371 (5)
O11···C1163.393 (4)C210···H114v2.8672
O11···C110i3.300 (4)C211···H2222.5727
O21···C27ii3.136 (4)C211···H273.0799
O21···C263.094 (4)C212···H2222.8701
O21···C2112.830 (4)C213···H11'vi3.0089
O21···C2163.277 (4)C216···H273.0303
O21···C2102.956 (4)C217···H272.7580
O11···H12'2.6241C217···H2122.9019
O11···H172.5270C218···H115vi2.9372
O11···H110i2.4412C219···H115vi2.9834
O11···H12"2.8056C220···H19xii2.9245
O12···H172.5137C221···H216vi2.8195
O12···H1222.4724C222···H272.7744
O12···H11'2.3433H11···H122iii2.5105
O12···H1162.6675H11···H122.3658
O21···H22"2.6836H11'···O122.3433
O21···H2102.4794H11'···C213ii3.0089
O21···H22'2.7125H12···H112.3658
O21···H27ii2.2912H12···H120viii2.5355
O22···H21'2.3803H12···N212.8647
O22···H2102.5420H12'···O112.6241
O22···H2122.7014H12"···O112.8056
O22···H2182.4413H12"···H120viii2.5379
N11···C210iii3.443 (5)H17···C142.5207
N11···H22iv2.9252H17···O112.5270
N11···H210iii2.6599H17···O122.5137
N21···H122.8647H18···H22"iii2.5689
N21···H113v2.9179H19···H220xiii2.5778
N21···H114v2.9362H19···C220xiii2.9245
C11···C221ii3.553 (6)H21···H222.3795
C11···C222ii3.569 (5)H21'···O222.3803
C14···C1163.213 (5)H21'···C115vi2.9655
C14···C173.100 (5)H22···H212.3795
C16···O113.108 (4)H22···N11xiv2.9252
C17···O112.989 (4)H22'···O212.7125
C17···C143.100 (5)H22'···H220x2.5179
C24···C2103.086 (5)H22"···H18iii2.5689
C24···C2123.280 (5)H22"···O212.6836
C26···O213.094 (4)H27···C2172.7580
C27···C2163.157 (5)H27···C2113.0799
C27···C2223.371 (5)H27···C2163.0303
C27···O21vi3.136 (4)H27···C2222.7744
C29···C114v3.370 (5)H27···O21vi2.2912
C110···C1123.175 (5)H28···H120viii2.5991
C110···O11vii3.300 (4)H28···C120viii2.9264
C110···C1183.408 (5)H110···C1113.0897
C11···H122iii2.9863H110···C1172.7703
C111···O112.800 (4)H110···C1182.8126
C12···H120viii2.8330H110···C1123.0317
C112···C1103.175 (5)H110···O11vii2.4412
C112···C119i3.521 (6)H110···H1122.5992
C112···O113.285 (4)H112···C1102.5975
C114···C29ix3.370 (5)H112···C162.5961
C114···C210ix3.578 (5)H112···C119i2.8364
C14···H1163.0968H112···H1102.5992
C14···H172.5207H113···N21ix2.9179
C116···C143.213 (5)H114···C29ix2.8062
C116···O113.393 (4)H114···C210ix2.8672
C116···C1183.196 (5)H114···N21ix2.9362
C16···H1122.5961H114···C26ix3.0104
C18···H210iii2.8825H114···C27ix3.0490
C118···C1163.196 (5)H114···C28ix3.0022
C118···C1103.408 (5)H115···C218ii2.9372
C119···C112vii3.521 (6)H115···C219ii2.9834
C22···H220x2.9162H116···O122.6675
C24···H2102.5007H116···C143.0968
C26···H2162.5585H116···C1172.9006
C26···H114v3.0104H118···C1162.8783
C27···H114v3.0490H118···C1112.5663
C27···H2162.5856H120···H12x2.5355
C28···H114v3.0022H120···C12x2.8330
C28···H120viii3.0991H120···C28x3.0991
C29···H221ii3.0981H120···H12"x2.5379
C29···H114v2.8062H120···H28x2.5991
C210···N11iii3.443 (5)H122···H11iii2.5105
C210···C114v3.578 (5)H122···O122.4724
C210···O212.956 (4)H122···C11iii2.9863
C110···H1122.5975H210···O212.4794
C210···C243.086 (5)H210···O222.5420
C111···H1103.0897H210···C242.5007
C211···O212.830 (4)H210···N11iii2.6599
C111···H1182.5663H210···C18iii2.8825
C212···C243.280 (5)H212···O222.7014
C212···C2223.203 (5)H212···C2172.9019
C112···H1103.0317H213···C121vi2.9912
C113···H214xi3.0097H213···C122vi2.9485
C114···H214xi3.0716H214···C113xi3.0097
C115···H21'ii2.9655H214···C114xi3.0715
C116···H1182.8783H216···C262.5585
C216···O213.277 (4)H216···C272.5856
C216···C273.157 (5)H216···C221ii2.8195
C216···C221ii3.540 (5)H218···O222.4413
C117···H1102.7703H218···H219xv2.5937
C117···H1162.9006H219···H218xv2.5937
C118···H1102.8126H220···C22viii2.9162
C119···H112vii2.8364H220···H19xii2.5778
C120···H28x2.9264H220···H22'viii2.5179
C221···C11vi3.553 (6)H221···C29vi3.0981
C121···H213ii2.9912H222···C2112.5727
C221···C216vi3.540 (5)H222···C2122.8701
C14—O12—C15119.1 (3)C121—C122—H122120.00
C24—O22—C25118.8 (3)C117—C122—H122119.97
C18—N11—C19116.2 (3)C21—C23—C22125.0 (4)
C28—N21—C29115.9 (3)C21—C23—C24121.2 (3)
C11—C13—C14120.5 (3)C22—C23—C24113.7 (3)
C11—C13—C12125.1 (4)O21—C24—O22124.8 (3)
C12—C13—C14114.4 (3)O21—C24—C23123.0 (3)
O11—C14—C13122.7 (3)O22—C24—C23112.2 (3)
O12—C14—C13112.9 (3)O22—C25—C26111.4 (3)
O11—C14—O12124.4 (3)O22—C25—C211109.3 (3)
O12—C15—C117102.3 (3)O22—C25—C217102.1 (3)
O12—C15—C16111.2 (3)C26—C25—C211114.8 (3)
O12—C15—C111109.0 (3)C26—C25—C217108.0 (3)
C111—C15—C117109.8 (3)C211—C25—C217110.6 (3)
C16—C15—C117108.7 (3)C25—C26—C27118.7 (3)
C16—C15—C111115.1 (3)C25—C26—C210124.0 (3)
C17—C16—C110117.5 (3)C27—C26—C210117.3 (3)
C15—C16—C110119.0 (3)C26—C27—C28120.0 (3)
C15—C16—C17123.6 (3)N21—C28—C27123.7 (3)
C16—C17—C18118.5 (3)N21—C29—C210124.5 (3)
N11—C18—C17124.4 (3)C23—C21—H21'120.00
N11—C19—C110123.1 (3)H21—C21—H21'119.94
C16—C110—C19120.3 (3)C23—C21—H21120.06
C112—C111—C116117.6 (3)C23—C22—H22"109.43
H11—C11—H11'119.94H22—C22—H22'109.53
C15—C111—C112123.5 (3)C23—C22—H22109.48
C15—C111—C116118.9 (3)C23—C22—H22'109.41
C13—C11—H11119.95H22'—C22—H22"109.45
C13—C11—H11'120.11H22—C22—H22"109.53
C13—C12—H12'109.52C26—C27—H27119.92
C13—C12—H12"109.41C28—C27—H27120.05
C13—C12—H12109.40C27—C28—H28118.16
C111—C112—C113121.1 (3)N21—C28—H28118.15
H12'—C12—H12"109.55N21—C29—H29117.82
H12—C12—H12"109.42C210—C29—H29117.72
H12—C12—H12'109.52C26—C210—C29118.7 (3)
C112—C113—C114120.6 (3)C25—C211—C212118.9 (3)
C113—C114—C115119.2 (3)C25—C211—C216123.0 (3)
C114—C115—C116120.4 (3)C212—C211—C216118.1 (3)
C111—C116—C115121.2 (3)C211—C212—C213120.9 (3)
C18—C17—H17120.65C212—C213—C214120.2 (3)
C16—C17—H17120.81C213—C214—C215119.7 (3)
C118—C117—C122117.4 (3)C214—C215—C216120.3 (3)
C15—C117—C118122.2 (3)C211—C216—C215120.8 (3)
C15—C117—C122120.2 (3)C25—C217—C218119.8 (3)
N11—C18—H18117.77C25—C217—C222122.0 (3)
C17—C18—H18117.82C218—C217—C222118.0 (3)
C117—C118—C119120.6 (4)C217—C218—C219120.2 (3)
N11—C19—H19118.41C218—C219—C220121.0 (4)
C118—C119—C120121.7 (4)C219—C220—C221118.6 (3)
C110—C19—H19118.49C220—C221—C222121.7 (4)
C119—C120—C121118.3 (3)C217—C222—C221120.4 (3)
C120—C121—C122121.8 (4)C26—C210—H210120.72
C117—C122—C121120.0 (3)C29—C210—H210120.63
C19—C110—H110119.91C211—C212—H212119.50
C16—C110—H110119.83C213—C212—H212119.59
C113—C112—H112119.44C212—C213—H213119.88
C111—C112—H112119.50C214—C213—H213119.94
C112—C113—H113119.78C213—C214—H214120.12
C114—C113—H113119.67C215—C214—H214120.19
C113—C114—H114120.42C214—C215—H215119.89
C115—C114—H114120.39C216—C215—H215119.83
C114—C115—H115119.78C211—C216—H216119.58
C116—C115—H115119.80C215—C216—H216119.63
C115—C116—H116119.38C217—C218—H218119.87
C111—C116—H116119.44C219—C218—H218119.93
C117—C118—H118119.70C218—C219—H219119.50
C119—C118—H118119.67C220—C219—H219119.52
C118—C119—H119119.21C219—C220—H220120.62
C120—C119—H119119.10C221—C220—H220120.74
C121—C120—H120120.87C220—C221—H221119.16
C119—C120—H120120.83C222—C221—H221119.18
C120—C121—H121119.15C217—C222—H222119.75
C122—C121—H121119.01C221—C222—H222119.84
C15—O12—C14—O1112.6 (5)C15—C117—C118—H1181.42
C15—O12—C14—C13168.5 (3)C122—C117—C118—H118175.21
C14—O12—C15—C1677.7 (4)C15—C117—C122—H1222.21
C14—O12—C15—C11150.3 (4)H118—C118—C119—C120176.69
C14—O12—C15—C117166.5 (3)H118—C118—C119—H1193.30
C25—O22—C24—C23170.9 (3)C117—C118—C119—H119176.71
C24—O22—C25—C2675.5 (4)H119—C119—C120—H1200.72
C24—O22—C25—C21152.4 (4)C118—C119—C120—H120179.27
C24—O22—C25—C217169.5 (3)H119—C119—C120—C121179.14
C25—O22—C24—O2110.7 (5)H120—C120—C121—C122179.96
C19—N11—C18—C171.1 (6)C119—C120—C121—H121179.91
C18—N11—C19—C1100.7 (5)H120—C120—C121—H1210.23
C29—N21—C28—C271.4 (5)H121—C121—C122—C117178.42
C28—N21—C29—C2101.8 (5)C120—C121—C122—H122178.36
C11—C13—C14—O11176.9 (3)H121—C121—C122—H1221.45
C11—C13—C14—O124.2 (5)C21—C23—C24—O225.3 (5)
C12—C13—C14—O12179.1 (3)C22—C23—C24—O211.3 (5)
C12—C13—C14—O110.1 (5)C21—C23—C24—O21176.3 (3)
C117—C15—C111—C112117.2 (4)C22—C23—C24—O22177.1 (3)
O12—C15—C111—C11651.1 (4)O22—C25—C26—C21012.0 (5)
C16—C15—C111—C1125.8 (5)O22—C25—C26—C27166.7 (3)
C117—C15—C16—C11055.1 (4)C217—C25—C26—C2755.4 (4)
O12—C15—C117—C12242.7 (4)C217—C25—C26—C210123.4 (4)
C16—C15—C111—C116176.8 (3)C26—C25—C211—C212178.4 (3)
C117—C15—C111—C11660.2 (4)C217—C25—C211—C21259.2 (4)
O12—C15—C117—C118143.7 (3)O22—C25—C211—C216129.7 (3)
O12—C15—C111—C112131.5 (3)C211—C25—C26—C2768.5 (4)
C117—C15—C16—C17122.9 (4)C211—C25—C26—C210112.8 (4)
C111—C15—C117—C11828.1 (5)O22—C25—C217—C21841.1 (4)
O12—C15—C16—C110167.0 (3)O22—C25—C211—C21252.4 (4)
C16—C15—C117—C12275.0 (4)C26—C25—C217—C21876.5 (4)
O12—C15—C16—C1711.1 (5)C211—C25—C217—C218157.2 (3)
C111—C15—C16—C11068.5 (4)O22—C25—C217—C222144.6 (3)
C111—C15—C16—C17113.4 (4)C26—C25—C211—C2163.7 (5)
C16—C15—C117—C11898.7 (4)C217—C25—C211—C216118.7 (4)
C111—C15—C117—C122158.3 (3)C211—C25—C217—C22228.4 (5)
C15—C16—C17—C18179.9 (3)C26—C25—C217—C22297.9 (4)
C17—C16—C110—C192.2 (5)C27—C26—C210—C291.3 (5)
C110—C16—C17—C181.8 (5)C25—C26—C210—C29180.0 (3)
C15—C16—C110—C19179.6 (3)C25—C26—C27—C28179.6 (3)
C16—C17—C18—N110.1 (6)C210—C26—C27—C281.6 (5)
N11—C19—C110—C161.0 (6)C26—C27—C28—N210.3 (6)
C15—C111—C116—H1164.30N21—C29—C210—C260.5 (5)
C112—C111—C116—H116178.16C216—C211—C212—C2132.0 (5)
C15—C111—C112—H1123.53C25—C211—C212—C213176.0 (3)
C116—C111—C112—H112179.05C212—C211—C216—C2151.0 (5)
H112—C112—C113—C114178.95C25—C211—C216—C215176.9 (3)
H112—C112—C113—H1131.05C211—C212—C213—C2141.0 (5)
C111—C112—C113—H113178.91C212—C213—C214—C2151.2 (5)
C112—C113—C114—H114177.75C213—C214—C215—C2162.2 (5)
H113—C113—C114—H1142.25C214—C215—C216—C2111.1 (5)
H113—C113—C114—C115177.80C25—C217—C218—C219177.8 (3)
C113—C114—C115—H115178.69C222—C217—C218—C2193.2 (5)
H114—C114—C115—C116178.63C25—C217—C222—C221177.2 (3)
H114—C114—C115—H1151.35C218—C217—C222—C2212.7 (5)
C114—C115—C116—H116179.24C217—C218—C219—C2201.6 (6)
H115—C115—C116—H1160.77C218—C219—C220—C2210.6 (6)
H115—C115—C116—C111179.28C219—C220—C221—C2221.1 (6)
C118—C117—C122—H122176.13C220—C221—C222—C2170.6 (6)
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x1/2, y+1/2, z1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+3/2; (viii) x, y1, z; (ix) x+1/2, y+1/2, z+1/2; (x) x, y+1, z; (xi) x+1, y+1, z+1; (xii) x, y1, z1; (xiii) x, y+1, z+1; (xiv) x, y, z1; (xv) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O120.95002.34002.693 (4)101.00
C17—H17···O110.95002.53002.989 (4)110.00
C21—H21···O220.95002.38002.717 (4)100.00
C27—H27···O21vi0.95002.29003.136 (4)148.00
C110—H110···O11vii0.95002.44003.300 (4)150.00
C210—H210···O210.95002.48002.956 (4)111.00
Symmetry codes: (vi) x+1/2, y1/2, z+1/2; (vii) x+1/2, y+1/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC22H19NO2C22H19NO2
Mr329.40329.40
Crystal system, space groupOrthorhombic, Fdd2Monoclinic, P21/n
Temperature (K)100100
a, b, c (Å)19.170 (1), 42.244 (3), 8.4475 (6)16.712 (2), 11.891 (1), 17.724 (2)
α, β, γ (°)90, 90, 9090, 101.045 (2), 90
V3)6840.9 (8)3456.9 (6)
Z168
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.38 × 0.10 × 0.060.20 × 0.18 × 0.06
Data collection
DiffractometerBruker SMART Apex; area detector
diffractometer
Bruker SMART Apex; area detector
diffractometer
Absorption correctionMulti-scan
(SADABS, Bruker, 2000)
Multi-scan
(SADABS, Bruker, 2000)
Tmin, Tmax0.910, 0.9940.973, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
13883, 1944, 1750 24310, 6100, 3615
Rint0.0520.077
(sin θ/λ)max1)0.6330.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.085, 1.06 0.105, 0.265, 1.46
No. of reflections19446100
No. of parameters291453
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.200.98, 0.30

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2000), SAINT? and XPREP (Bruker, 2000), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), PLUTO (Meetsma, 2004) and PLATON (Spek, 2003), PLATON.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds