Download citation
Download citation
link to html
The tricarbonyl­chromium unit bound to the arene ring of the chiral title complex, [Cr(C19H26O3)(CO)3], is rotated by ca 25° in agreement with the proposed mechanism for 1,5-asymmetric induction of nucleophilic attack.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108004666/tr3032sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108004666/tr3032Isup2.hkl
Contains datablock I

CCDC reference: 686412

Comment top

Arenes (Kündig & Pape, 2004, and references therein) can be converted to cyclohexenes and cyclohexenones by the one-pot sequence of nucleophilic addition to the corresponding arenetricarbonylchromium complex, followed by treatment of the resulting dienylchromium complex with a suitable electrophile and then decomplexation, leading to methodology that finds applications in the synthesis of natural products (Schmalz et al., 2004). When alkoxyarenetricarbonylchromium complexes are used in this sequence, carbon nucleophiles add predominantly to the meta position, ultimately yielding 5-substituted cyclohexenones. [For examples of application of cyclohexenone synthesis, see Pearson et al. (2004).] This reaction can be adapted to give an asymmetric synthesis of 5-substituted cyclohexenones by using chiral alkoxyarenetricarbonylchromiums, as reported earlier from our laboratories (Pearson et al., 1996; Pearson & Gontcharov, 1998; Gontcharov, 1997) and by Semmelhack & Schmalz (1996). Nucleophilic addition to chiral complexes of type (I) presents an interesting example of 1,5 asymmetric induction (Hollowood et al., 2003; Evans et al., 2003; O'Malley & Leighton, 2001; Castelot-Deliencourt et al., 2001), rare in the chemical literature, but the mechanism of asymmetric induction in these reactions is not completely understood.

A plausible mechanism for chirality transmission is by a small rotation of the tricarbonylchromium tripod on the arene ligand. This would lead to a distortion of the complex LUMO, so that its coefficients at the diastereotopic meta positions are unequal, thereby promoting preferential addition at one site (Pearson et al., 1995); in contrast, in simple methoxyarene complexes [(I), R* = CH3], the tricarbonylchromium Cr—C bonds eclipse the ipso and both meta C atoms of the arene (Semmelhack, 1991). As part of an effort to determine the extent to which the chiral alkoxy group causes this rotation, and therefore whether it might be a causative factor in asymmetric induction, the crystal structures of several alkoxyarenetricarbonylchromium complexes are being studied. We have already reported some of these results for complexes having a trimethylsilyl substituent [R' = Si(CH3)3] para to the chiral alkoxy group, all of which structures support our hypothesis (Paramahamsan et al., 2008 or 1980???). In order to show that such rotation of the Cr(CO)3 group is not specific to the nature of the R' substituents, we have also more recently determined the structure the title complex, (I), a complex bearing a simple alkyl group. The structure of this compound, prepared as described previously (Pearson & Gontcharov, 1998), are reported in the present paper.

As shown in Fig. 1, there is indeed a significant rotation of the Cr(CO)3 group (ca 25°) [the torsion angles with respect to the centroid (X) of the arene ring are C20—Cr1—X—C13 = 25.5 (2)°, C21—Cr1—X—C15 = 25.9 (2)° and C22—Cr1—X—C17 = 24.1 (2)°], and the direction of rotation is in agreement with the sense of asymmetric induction that we have previously reported during nucleophile additions to this complex (Pearson & Gontcharov, 1998). The rotation of the Cr(CO)3 unit also removes the mirror symmetry of the arene; for example, the aromatic bonds to atom C16 differ by 0.018 Å, in agreement with the distortion of the LUMO referred to above. Other geometrical parameters are unremarkable.

Related literature top

For related literature, see: Gontcharov (1997).

Experimental top

Complex (II) was prepared as described previously (Pearson & Gontcharov, 1998), and crystals were obtained by recrystallization from 1:1 hexane/dichloromethane.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2000).

Figures top
[Figure 1] Fig. 1. A view of complex (II), projected on to the plane of the arene ring. Displacement ellipsoids are shown at the 50% probability level.
{η6-1-methyl-4-{spiro[(1R,2S)-1,7,7- trimethylbicyclo[2.2.1]heptane-3,2'-1,3-dioxolan]-2- yloxy}benzene}tricarbonylchromium top
Crystal data top
[Cr(C19H26O3)(CO)3]F(000) = 460
Mr = 438.43Dx = 1.410 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1009 reflections
a = 7.9484 (7) Åθ = 3.4–29.4°
b = 13.6135 (11) ŵ = 0.59 mm1
c = 9.5596 (8) ÅT = 120 K
β = 93.026 (3)°Plate, orange
V = 1032.96 (15) Å30.25 × 0.15 × 0.05 mm
Z = 2
Data collection top
Bruker 6000 CCD area-detector
diffractometer
4556 independent reflections
Radiation source: fine-focus sealed tube4224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 29.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 810
Tmin = 0.908, Tmax = 1.000k = 1818
8946 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.2306P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
4556 reflectionsΔρmax = 0.63 e Å3
263 parametersΔρmin = 0.42 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.041 (18)
Crystal data top
[Cr(C19H26O3)(CO)3]V = 1032.96 (15) Å3
Mr = 438.43Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.9484 (7) ŵ = 0.59 mm1
b = 13.6135 (11) ÅT = 120 K
c = 9.5596 (8) Å0.25 × 0.15 × 0.05 mm
β = 93.026 (3)°
Data collection top
Bruker 6000 CCD area-detector
diffractometer
4556 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
4224 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 1.000Rint = 0.026
8946 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.63 e Å3
S = 1.10Δρmin = 0.42 e Å3
4556 reflectionsAbsolute structure: Flack (1983)
263 parametersAbsolute structure parameter: 0.041 (18)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.13080 (5)0.88233 (3)0.81395 (4)0.01414 (10)
O10.3028 (2)1.00836 (13)1.31732 (19)0.0200 (4)
O20.5090 (2)1.07359 (13)1.19128 (18)0.0192 (4)
O30.4793 (2)0.92637 (14)1.01162 (17)0.0170 (4)
O40.1579 (4)0.71595 (18)1.0176 (3)0.0516 (7)
O50.2383 (3)0.84936 (15)0.7649 (2)0.0295 (5)
O60.1788 (3)0.73504 (18)0.5860 (2)0.0376 (5)
C10.5952 (4)0.9499 (2)1.3697 (3)0.0214 (6)
H1A0.64651.00231.43170.026*
C20.4624 (3)0.98684 (19)1.2590 (3)0.0161 (5)
C30.4484 (3)0.89894 (18)1.1531 (2)0.0160 (5)
H3A0.33460.86781.15620.019*
C40.5852 (4)0.82611 (19)1.2094 (3)0.0201 (5)
C50.5077 (4)0.7804 (2)1.3390 (3)0.0247 (6)
H5A0.57480.72341.37390.030*
H5B0.39050.75881.31650.030*
C60.5128 (4)0.8642 (2)1.4481 (3)0.0277 (7)
H6A0.58160.84561.53330.033*
H6B0.39790.88171.47470.033*
C70.7218 (3)0.8951 (2)1.2784 (3)0.0223 (6)
C80.2749 (4)1.1128 (2)1.3091 (3)0.0242 (6)
H8A0.24091.13951.39970.029*
H8B0.18741.12921.23520.029*
C90.4457 (4)1.1517 (2)1.2727 (3)0.0255 (6)
H9A0.43491.21321.21760.031*
H9B0.51891.16371.35800.031*
C100.6381 (4)0.7516 (2)1.1026 (3)0.0272 (6)
H10A0.53960.71361.06830.041*
H10B0.72230.70711.14650.041*
H10C0.68660.78571.02400.041*
C110.8146 (4)0.9586 (2)1.1736 (3)0.0258 (6)
H11A0.89850.99971.22460.039*
H11B0.73331.00071.12140.039*
H11C0.87120.91601.10820.039*
C120.8590 (4)0.8405 (2)1.3674 (3)0.0343 (7)
H12A0.94090.88801.40730.052*
H12B0.91650.79371.30840.052*
H12C0.80710.80501.44330.052*
C130.3491 (3)0.96221 (17)0.9300 (2)0.0147 (5)
C140.1936 (3)0.99353 (19)0.9802 (3)0.0144 (5)
H14A0.16710.97951.07930.017*
C150.0668 (3)1.03020 (19)0.8860 (3)0.0178 (5)
H15A0.04811.04230.92030.021*
C160.0906 (3)1.03614 (19)0.7403 (3)0.0196 (5)
C170.2434 (3)1.00178 (19)0.6923 (3)0.0187 (5)
H17A0.25340.99250.58930.022*
C180.3722 (3)0.96410 (18)0.7851 (3)0.0167 (5)
H18A0.47040.92910.74690.020*
C190.0477 (4)1.0766 (2)0.6423 (3)0.0263 (6)
H19A0.04941.14840.64930.039*
H19B0.15651.05020.66800.039*
H19C0.02691.05750.54590.039*
C200.1477 (4)0.7792 (2)0.9392 (3)0.0265 (7)
C210.0951 (3)0.85939 (17)0.7862 (3)0.0194 (6)
C220.1634 (3)0.7924 (2)0.6736 (3)0.0221 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.01533 (17)0.01069 (16)0.01619 (17)0.00071 (18)0.00125 (12)0.00059 (18)
O10.0176 (9)0.0190 (9)0.0236 (9)0.0035 (7)0.0046 (7)0.0018 (8)
O20.0218 (10)0.0146 (8)0.0216 (9)0.0016 (7)0.0038 (7)0.0007 (7)
O30.0145 (8)0.0239 (9)0.0124 (8)0.0021 (7)0.0009 (7)0.0008 (7)
O40.0699 (19)0.0302 (13)0.0521 (15)0.0192 (13)0.0225 (13)0.0196 (12)
O50.0203 (10)0.0308 (11)0.0372 (11)0.0052 (8)0.0007 (8)0.0010 (9)
O60.0328 (12)0.0371 (12)0.0423 (13)0.0038 (10)0.0027 (10)0.0219 (11)
C10.0256 (14)0.0246 (14)0.0136 (12)0.0050 (11)0.0028 (10)0.0022 (10)
C20.0183 (12)0.0155 (11)0.0145 (11)0.0004 (10)0.0017 (9)0.0018 (10)
C30.0178 (11)0.0172 (15)0.0130 (10)0.0003 (10)0.0018 (8)0.0004 (9)
C40.0267 (14)0.0167 (13)0.0170 (12)0.0046 (11)0.0009 (10)0.0024 (10)
C50.0323 (16)0.0227 (14)0.0193 (13)0.0082 (12)0.0029 (12)0.0042 (12)
C60.0371 (15)0.0276 (18)0.0186 (12)0.0113 (12)0.0024 (11)0.0038 (11)
C70.0222 (12)0.0238 (16)0.0204 (11)0.0055 (12)0.0031 (9)0.0041 (12)
C80.0283 (15)0.0182 (13)0.0262 (14)0.0049 (11)0.0030 (12)0.0034 (11)
C90.0275 (15)0.0164 (13)0.0325 (15)0.0029 (11)0.0002 (12)0.0037 (12)
C100.0342 (16)0.0232 (14)0.0240 (13)0.0102 (12)0.0007 (12)0.0012 (11)
C110.0144 (13)0.0301 (15)0.0326 (15)0.0009 (11)0.0007 (11)0.0031 (12)
C120.0299 (17)0.0372 (16)0.0344 (16)0.0131 (14)0.0125 (13)0.0005 (14)
C130.0177 (12)0.0113 (11)0.0148 (11)0.0006 (9)0.0011 (9)0.0010 (9)
C140.0158 (13)0.0137 (12)0.0136 (12)0.0018 (10)0.0007 (9)0.0006 (10)
C150.0139 (12)0.0128 (11)0.0264 (13)0.0002 (9)0.0013 (10)0.0037 (10)
C160.0219 (13)0.0113 (11)0.0250 (13)0.0002 (10)0.0056 (10)0.0016 (10)
C170.0214 (13)0.0174 (12)0.0176 (12)0.0033 (11)0.0023 (10)0.0006 (10)
C180.0173 (13)0.0154 (12)0.0177 (12)0.0001 (10)0.0024 (10)0.0005 (10)
C190.0283 (15)0.0199 (13)0.0295 (14)0.0052 (12)0.0093 (12)0.0037 (12)
C200.0330 (17)0.0211 (15)0.0245 (15)0.0073 (13)0.0072 (13)0.0042 (12)
C210.0205 (13)0.0155 (14)0.0222 (12)0.0001 (9)0.0016 (10)0.0002 (9)
C220.0176 (13)0.0188 (13)0.0296 (14)0.0005 (11)0.0008 (11)0.0068 (12)
Geometric parameters (Å, º) top
Cr1—C211.828 (3)C6—H6B0.9900
Cr1—C201.845 (3)C7—C121.539 (4)
Cr1—C221.845 (3)C7—C111.541 (4)
Cr1—C152.196 (3)C8—C91.515 (4)
Cr1—C172.216 (3)C8—H8A0.9900
Cr1—C162.227 (3)C8—H8B0.9900
Cr1—C142.232 (3)C9—H9A0.9900
Cr1—C182.248 (3)C9—H9B0.9900
Cr1—C132.285 (3)C10—H10A0.9800
O1—C81.441 (3)C10—H10B0.9800
O1—C21.443 (3)C10—H10C0.9800
O2—C21.406 (3)C11—H11A0.9800
O2—C91.425 (3)C11—H11B0.9800
O3—C131.354 (3)C11—H11C0.9800
O3—C31.436 (3)C12—H12A0.9800
O4—C201.142 (4)C12—H12B0.9800
O5—C211.154 (3)C12—H12C0.9800
O6—C221.155 (3)C13—C181.407 (3)
C1—C21.539 (4)C13—C141.415 (4)
C1—C61.551 (4)C14—C151.407 (4)
C1—C71.557 (4)C14—H14A1.0000
C1—H1A1.0000C15—C161.418 (4)
C2—C31.568 (3)C15—H15A1.0000
C3—C41.547 (4)C16—C171.402 (4)
C3—H3A1.0000C16—C191.510 (4)
C4—C101.514 (4)C17—C181.415 (4)
C4—C51.543 (4)C17—H17A1.0000
C4—C71.556 (4)C18—H18A1.0000
C5—C61.544 (4)C19—H19A0.9800
C5—H5A0.9900C19—H19B0.9800
C5—H5B0.9900C19—H19C0.9800
C6—H6A0.9900
C21—Cr1—C2090.08 (13)C12—C7—C1112.4 (2)
C21—Cr1—C2287.45 (12)C11—C7—C1116.1 (2)
C20—Cr1—C2287.64 (14)C4—C7—C194.0 (2)
C21—Cr1—C1587.72 (10)O1—C8—C9102.7 (2)
C20—Cr1—C15120.25 (12)O1—C8—H8A111.2
C22—Cr1—C15151.68 (12)C9—C8—H8A111.2
C21—Cr1—C17118.05 (11)O1—C8—H8B111.2
C20—Cr1—C17151.82 (12)C9—C8—H8B111.2
C22—Cr1—C1791.68 (11)H8A—C8—H8B109.1
C15—Cr1—C1766.33 (10)O2—C9—C8102.2 (2)
C21—Cr1—C1689.50 (10)O2—C9—H9A111.3
C20—Cr1—C16157.64 (12)C8—C9—H9A111.3
C22—Cr1—C16114.67 (11)O2—C9—H9B111.3
C15—Cr1—C1637.40 (10)C8—C9—H9B111.3
C17—Cr1—C1636.78 (10)H9A—C9—H9B109.2
C21—Cr1—C14113.59 (10)C4—C10—H10A109.5
C20—Cr1—C1492.76 (11)C4—C10—H10B109.5
C22—Cr1—C14158.95 (11)H10A—C10—H10B109.5
C15—Cr1—C1437.03 (9)C4—C10—H10C109.5
C17—Cr1—C1478.15 (9)H10A—C10—H10C109.5
C16—Cr1—C1467.07 (9)H10B—C10—H10C109.5
C21—Cr1—C18154.84 (10)C7—C11—H11A109.5
C20—Cr1—C18115.03 (12)C7—C11—H11B109.5
C22—Cr1—C1894.94 (11)H11A—C11—H11B109.5
C15—Cr1—C1878.34 (9)C7—C11—H11C109.5
C17—Cr1—C1836.96 (10)H11A—C11—H11C109.5
C16—Cr1—C1866.73 (10)H11B—C11—H11C109.5
C14—Cr1—C1865.87 (9)C7—C12—H12A109.5
C21—Cr1—C13150.08 (10)C7—C12—H12B109.5
C20—Cr1—C1391.13 (11)H12A—C12—H12B109.5
C22—Cr1—C13122.47 (11)C7—C12—H12C109.5
C15—Cr1—C1366.04 (9)H12A—C12—H12C109.5
C17—Cr1—C1365.67 (9)H12B—C12—H12C109.5
C16—Cr1—C1378.39 (9)O3—C13—C18116.0 (2)
C14—Cr1—C1336.49 (9)O3—C13—C14124.6 (2)
C18—Cr1—C1336.16 (9)C18—C13—C14119.3 (2)
C8—O1—C2108.4 (2)O3—C13—Cr1130.25 (17)
C2—O2—C9105.45 (19)C18—C13—Cr170.50 (14)
C13—O3—C3118.21 (18)C14—C13—Cr169.72 (14)
C2—C1—C6106.6 (2)C15—C14—C13119.9 (2)
C2—C1—C7102.2 (2)C15—C14—Cr170.10 (14)
C6—C1—C7102.2 (2)C13—C14—Cr173.79 (14)
C2—C1—H1A114.8C15—C14—H14A119.7
C6—C1—H1A114.8C13—C14—H14A119.7
C7—C1—H1A114.8Cr1—C14—H14A119.7
O2—C2—O1105.4 (2)C14—C15—C16121.4 (2)
O2—C2—C1113.8 (2)C14—C15—Cr172.87 (15)
O1—C2—C1112.7 (2)C16—C15—Cr172.48 (15)
O2—C2—C3110.83 (19)C14—C15—H15A119.0
O1—C2—C3111.8 (2)C16—C15—H15A119.0
C1—C2—C3102.6 (2)Cr1—C15—H15A119.0
O3—C3—C4109.99 (19)C17—C16—C15117.7 (2)
O3—C3—C2113.6 (2)C17—C16—C19122.3 (2)
C4—C3—C2103.87 (19)C15—C16—C19120.0 (2)
O3—C3—H3A109.8C17—C16—Cr171.17 (15)
C4—C3—H3A109.8C15—C16—Cr170.13 (14)
C2—C3—H3A109.8C19—C16—Cr1128.82 (19)
C10—C4—C5114.1 (2)C16—C17—C18121.8 (2)
C10—C4—C3114.2 (2)C16—C17—Cr172.04 (15)
C5—C4—C3103.6 (2)C18—C17—Cr172.76 (15)
C10—C4—C7118.5 (2)C16—C17—H17A118.7
C5—C4—C7101.6 (2)C18—C17—H17A118.7
C3—C4—C7102.9 (2)Cr1—C17—H17A118.7
C4—C5—C6104.3 (2)C13—C18—C17119.7 (2)
C4—C5—H5A110.9C13—C18—Cr173.35 (14)
C6—C5—H5A110.9C17—C18—Cr170.28 (15)
C4—C5—H5B110.9C13—C18—H18A119.7
C6—C5—H5B110.9C17—C18—H18A119.7
H5A—C5—H5B108.9Cr1—C18—H18A119.7
C5—C6—C1103.1 (2)C16—C19—H19A109.5
C5—C6—H6A111.2C16—C19—H19B109.5
C1—C6—H6A111.2H19A—C19—H19B109.5
C5—C6—H6B111.2C16—C19—H19C109.5
C1—C6—H6B111.2H19A—C19—H19C109.5
H6A—C6—H6B109.1H19B—C19—H19C109.5
C12—C7—C11106.3 (2)O4—C20—Cr1179.4 (3)
C12—C7—C4113.7 (3)O5—C21—Cr1176.5 (2)
C11—C7—C4114.2 (2)O6—C22—Cr1177.9 (2)

Experimental details

Crystal data
Chemical formula[Cr(C19H26O3)(CO)3]
Mr438.43
Crystal system, space groupMonoclinic, P21
Temperature (K)120
a, b, c (Å)7.9484 (7), 13.6135 (11), 9.5596 (8)
β (°) 93.026 (3)
V3)1032.96 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.25 × 0.15 × 0.05
Data collection
DiffractometerBruker 6000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.908, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8946, 4556, 4224
Rint0.026
(sin θ/λ)max1)0.690
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.090, 1.10
No. of reflections4556
No. of parameters263
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.42
Absolute structureFlack (1983)
Absolute structure parameter0.041 (18)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2000).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds