Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108004666/tr3032sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270108004666/tr3032Isup2.hkl |
CCDC reference: 686412
Complex (II) was prepared as described previously (Pearson & Gontcharov, 1998), and crystals were obtained by recrystallization from 1:1 hexane/dichloromethane.
Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2000).
Fig. 1. A view of complex (II), projected on to the plane of the arene ring. Displacement ellipsoids are shown at the 50% probability level. |
[Cr(C19H26O3)(CO)3] | F(000) = 460 |
Mr = 438.43 | Dx = 1.410 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 1009 reflections |
a = 7.9484 (7) Å | θ = 3.4–29.4° |
b = 13.6135 (11) Å | µ = 0.59 mm−1 |
c = 9.5596 (8) Å | T = 120 K |
β = 93.026 (3)° | Plate, orange |
V = 1032.96 (15) Å3 | 0.25 × 0.15 × 0.05 mm |
Z = 2 |
Bruker 6000 CCD area-detector diffractometer | 4556 independent reflections |
Radiation source: fine-focus sealed tube | 4224 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 29.4°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −8→10 |
Tmin = 0.908, Tmax = 1.000 | k = −18→18 |
8946 measured reflections | l = −12→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.090 | w = 1/[σ2(Fo2) + (0.0446P)2 + 0.2306P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
4556 reflections | Δρmax = 0.63 e Å−3 |
263 parameters | Δρmin = −0.42 e Å−3 |
1 restraint | Absolute structure: Flack (1983) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.041 (18) |
[Cr(C19H26O3)(CO)3] | V = 1032.96 (15) Å3 |
Mr = 438.43 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 7.9484 (7) Å | µ = 0.59 mm−1 |
b = 13.6135 (11) Å | T = 120 K |
c = 9.5596 (8) Å | 0.25 × 0.15 × 0.05 mm |
β = 93.026 (3)° |
Bruker 6000 CCD area-detector diffractometer | 4556 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | 4224 reflections with I > 2σ(I) |
Tmin = 0.908, Tmax = 1.000 | Rint = 0.026 |
8946 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.090 | Δρmax = 0.63 e Å−3 |
S = 1.10 | Δρmin = −0.42 e Å−3 |
4556 reflections | Absolute structure: Flack (1983) |
263 parameters | Absolute structure parameter: 0.041 (18) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cr1 | 0.13080 (5) | 0.88233 (3) | 0.81395 (4) | 0.01414 (10) | |
O1 | 0.3028 (2) | 1.00836 (13) | 1.31732 (19) | 0.0200 (4) | |
O2 | 0.5090 (2) | 1.07359 (13) | 1.19128 (18) | 0.0192 (4) | |
O3 | 0.4793 (2) | 0.92637 (14) | 1.01162 (17) | 0.0170 (4) | |
O4 | 0.1579 (4) | 0.71595 (18) | 1.0176 (3) | 0.0516 (7) | |
O5 | −0.2383 (3) | 0.84936 (15) | 0.7649 (2) | 0.0295 (5) | |
O6 | 0.1788 (3) | 0.73504 (18) | 0.5860 (2) | 0.0376 (5) | |
C1 | 0.5952 (4) | 0.9499 (2) | 1.3697 (3) | 0.0214 (6) | |
H1A | 0.6465 | 1.0023 | 1.4317 | 0.026* | |
C2 | 0.4624 (3) | 0.98684 (19) | 1.2590 (3) | 0.0161 (5) | |
C3 | 0.4484 (3) | 0.89894 (18) | 1.1531 (2) | 0.0160 (5) | |
H3A | 0.3346 | 0.8678 | 1.1562 | 0.019* | |
C4 | 0.5852 (4) | 0.82611 (19) | 1.2094 (3) | 0.0201 (5) | |
C5 | 0.5077 (4) | 0.7804 (2) | 1.3390 (3) | 0.0247 (6) | |
H5A | 0.5748 | 0.7234 | 1.3739 | 0.030* | |
H5B | 0.3905 | 0.7588 | 1.3165 | 0.030* | |
C6 | 0.5128 (4) | 0.8642 (2) | 1.4481 (3) | 0.0277 (7) | |
H6A | 0.5816 | 0.8456 | 1.5333 | 0.033* | |
H6B | 0.3979 | 0.8817 | 1.4747 | 0.033* | |
C7 | 0.7218 (3) | 0.8951 (2) | 1.2784 (3) | 0.0223 (6) | |
C8 | 0.2749 (4) | 1.1128 (2) | 1.3091 (3) | 0.0242 (6) | |
H8A | 0.2409 | 1.1395 | 1.3997 | 0.029* | |
H8B | 0.1874 | 1.1292 | 1.2352 | 0.029* | |
C9 | 0.4457 (4) | 1.1517 (2) | 1.2727 (3) | 0.0255 (6) | |
H9A | 0.4349 | 1.2132 | 1.2176 | 0.031* | |
H9B | 0.5189 | 1.1637 | 1.3580 | 0.031* | |
C10 | 0.6381 (4) | 0.7516 (2) | 1.1026 (3) | 0.0272 (6) | |
H10A | 0.5396 | 0.7136 | 1.0683 | 0.041* | |
H10B | 0.7223 | 0.7071 | 1.1465 | 0.041* | |
H10C | 0.6866 | 0.7857 | 1.0240 | 0.041* | |
C11 | 0.8146 (4) | 0.9586 (2) | 1.1736 (3) | 0.0258 (6) | |
H11A | 0.8985 | 0.9997 | 1.2246 | 0.039* | |
H11B | 0.7333 | 1.0007 | 1.1214 | 0.039* | |
H11C | 0.8712 | 0.9160 | 1.1082 | 0.039* | |
C12 | 0.8590 (4) | 0.8405 (2) | 1.3674 (3) | 0.0343 (7) | |
H12A | 0.9409 | 0.8880 | 1.4073 | 0.052* | |
H12B | 0.9165 | 0.7937 | 1.3084 | 0.052* | |
H12C | 0.8071 | 0.8050 | 1.4433 | 0.052* | |
C13 | 0.3491 (3) | 0.96221 (17) | 0.9300 (2) | 0.0147 (5) | |
C14 | 0.1936 (3) | 0.99353 (19) | 0.9802 (3) | 0.0144 (5) | |
H14A | 0.1671 | 0.9795 | 1.0793 | 0.017* | |
C15 | 0.0668 (3) | 1.03020 (19) | 0.8860 (3) | 0.0178 (5) | |
H15A | −0.0481 | 1.0423 | 0.9203 | 0.021* | |
C16 | 0.0906 (3) | 1.03614 (19) | 0.7403 (3) | 0.0196 (5) | |
C17 | 0.2434 (3) | 1.00178 (19) | 0.6923 (3) | 0.0187 (5) | |
H17A | 0.2534 | 0.9925 | 0.5893 | 0.022* | |
C18 | 0.3722 (3) | 0.96410 (18) | 0.7851 (3) | 0.0167 (5) | |
H18A | 0.4704 | 0.9291 | 0.7469 | 0.020* | |
C19 | −0.0477 (4) | 1.0766 (2) | 0.6423 (3) | 0.0263 (6) | |
H19A | −0.0494 | 1.1484 | 0.6493 | 0.039* | |
H19B | −0.1565 | 1.0502 | 0.6680 | 0.039* | |
H19C | −0.0269 | 1.0575 | 0.5459 | 0.039* | |
C20 | 0.1477 (4) | 0.7792 (2) | 0.9392 (3) | 0.0265 (7) | |
C21 | −0.0951 (3) | 0.85939 (17) | 0.7862 (3) | 0.0194 (6) | |
C22 | 0.1634 (3) | 0.7924 (2) | 0.6736 (3) | 0.0221 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr1 | 0.01533 (17) | 0.01069 (16) | 0.01619 (17) | −0.00071 (18) | −0.00125 (12) | −0.00059 (18) |
O1 | 0.0176 (9) | 0.0190 (9) | 0.0236 (9) | 0.0035 (7) | 0.0046 (7) | −0.0018 (8) |
O2 | 0.0218 (10) | 0.0146 (8) | 0.0216 (9) | 0.0016 (7) | 0.0038 (7) | 0.0007 (7) |
O3 | 0.0145 (8) | 0.0239 (9) | 0.0124 (8) | 0.0021 (7) | −0.0009 (7) | 0.0008 (7) |
O4 | 0.0699 (19) | 0.0302 (13) | 0.0521 (15) | −0.0192 (13) | −0.0225 (13) | 0.0196 (12) |
O5 | 0.0203 (10) | 0.0308 (11) | 0.0372 (11) | −0.0052 (8) | −0.0007 (8) | 0.0010 (9) |
O6 | 0.0328 (12) | 0.0371 (12) | 0.0423 (13) | 0.0038 (10) | −0.0027 (10) | −0.0219 (11) |
C1 | 0.0256 (14) | 0.0246 (14) | 0.0136 (12) | 0.0050 (11) | −0.0028 (10) | −0.0022 (10) |
C2 | 0.0183 (12) | 0.0155 (11) | 0.0145 (11) | 0.0004 (10) | 0.0017 (9) | −0.0018 (10) |
C3 | 0.0178 (11) | 0.0172 (15) | 0.0130 (10) | 0.0003 (10) | 0.0018 (8) | −0.0004 (9) |
C4 | 0.0267 (14) | 0.0167 (13) | 0.0170 (12) | 0.0046 (11) | 0.0009 (10) | 0.0024 (10) |
C5 | 0.0323 (16) | 0.0227 (14) | 0.0193 (13) | 0.0082 (12) | 0.0029 (12) | 0.0042 (12) |
C6 | 0.0371 (15) | 0.0276 (18) | 0.0186 (12) | 0.0113 (12) | 0.0024 (11) | 0.0038 (11) |
C7 | 0.0222 (12) | 0.0238 (16) | 0.0204 (11) | 0.0055 (12) | −0.0031 (9) | −0.0041 (12) |
C8 | 0.0283 (15) | 0.0182 (13) | 0.0262 (14) | 0.0049 (11) | 0.0030 (12) | −0.0034 (11) |
C9 | 0.0275 (15) | 0.0164 (13) | 0.0325 (15) | 0.0029 (11) | −0.0002 (12) | −0.0037 (12) |
C10 | 0.0342 (16) | 0.0232 (14) | 0.0240 (13) | 0.0102 (12) | 0.0007 (12) | 0.0012 (11) |
C11 | 0.0144 (13) | 0.0301 (15) | 0.0326 (15) | 0.0009 (11) | −0.0007 (11) | −0.0031 (12) |
C12 | 0.0299 (17) | 0.0372 (16) | 0.0344 (16) | 0.0131 (14) | −0.0125 (13) | −0.0005 (14) |
C13 | 0.0177 (12) | 0.0113 (11) | 0.0148 (11) | −0.0006 (9) | −0.0011 (9) | −0.0010 (9) |
C14 | 0.0158 (13) | 0.0137 (12) | 0.0136 (12) | −0.0018 (10) | −0.0007 (9) | −0.0006 (10) |
C15 | 0.0139 (12) | 0.0128 (11) | 0.0264 (13) | −0.0002 (9) | −0.0013 (10) | −0.0037 (10) |
C16 | 0.0219 (13) | 0.0113 (11) | 0.0250 (13) | −0.0002 (10) | −0.0056 (10) | 0.0016 (10) |
C17 | 0.0214 (13) | 0.0174 (12) | 0.0176 (12) | −0.0033 (11) | 0.0023 (10) | 0.0006 (10) |
C18 | 0.0173 (13) | 0.0154 (12) | 0.0177 (12) | 0.0001 (10) | 0.0024 (10) | 0.0005 (10) |
C19 | 0.0283 (15) | 0.0199 (13) | 0.0295 (14) | 0.0052 (12) | −0.0093 (12) | 0.0037 (12) |
C20 | 0.0330 (17) | 0.0211 (15) | 0.0245 (15) | −0.0073 (13) | −0.0072 (13) | 0.0042 (12) |
C21 | 0.0205 (13) | 0.0155 (14) | 0.0222 (12) | 0.0001 (9) | 0.0016 (10) | −0.0002 (9) |
C22 | 0.0176 (13) | 0.0188 (13) | 0.0296 (14) | −0.0005 (11) | −0.0008 (11) | −0.0068 (12) |
Cr1—C21 | 1.828 (3) | C6—H6B | 0.9900 |
Cr1—C20 | 1.845 (3) | C7—C12 | 1.539 (4) |
Cr1—C22 | 1.845 (3) | C7—C11 | 1.541 (4) |
Cr1—C15 | 2.196 (3) | C8—C9 | 1.515 (4) |
Cr1—C17 | 2.216 (3) | C8—H8A | 0.9900 |
Cr1—C16 | 2.227 (3) | C8—H8B | 0.9900 |
Cr1—C14 | 2.232 (3) | C9—H9A | 0.9900 |
Cr1—C18 | 2.248 (3) | C9—H9B | 0.9900 |
Cr1—C13 | 2.285 (3) | C10—H10A | 0.9800 |
O1—C8 | 1.441 (3) | C10—H10B | 0.9800 |
O1—C2 | 1.443 (3) | C10—H10C | 0.9800 |
O2—C2 | 1.406 (3) | C11—H11A | 0.9800 |
O2—C9 | 1.425 (3) | C11—H11B | 0.9800 |
O3—C13 | 1.354 (3) | C11—H11C | 0.9800 |
O3—C3 | 1.436 (3) | C12—H12A | 0.9800 |
O4—C20 | 1.142 (4) | C12—H12B | 0.9800 |
O5—C21 | 1.154 (3) | C12—H12C | 0.9800 |
O6—C22 | 1.155 (3) | C13—C18 | 1.407 (3) |
C1—C2 | 1.539 (4) | C13—C14 | 1.415 (4) |
C1—C6 | 1.551 (4) | C14—C15 | 1.407 (4) |
C1—C7 | 1.557 (4) | C14—H14A | 1.0000 |
C1—H1A | 1.0000 | C15—C16 | 1.418 (4) |
C2—C3 | 1.568 (3) | C15—H15A | 1.0000 |
C3—C4 | 1.547 (4) | C16—C17 | 1.402 (4) |
C3—H3A | 1.0000 | C16—C19 | 1.510 (4) |
C4—C10 | 1.514 (4) | C17—C18 | 1.415 (4) |
C4—C5 | 1.543 (4) | C17—H17A | 1.0000 |
C4—C7 | 1.556 (4) | C18—H18A | 1.0000 |
C5—C6 | 1.544 (4) | C19—H19A | 0.9800 |
C5—H5A | 0.9900 | C19—H19B | 0.9800 |
C5—H5B | 0.9900 | C19—H19C | 0.9800 |
C6—H6A | 0.9900 | ||
C21—Cr1—C20 | 90.08 (13) | C12—C7—C1 | 112.4 (2) |
C21—Cr1—C22 | 87.45 (12) | C11—C7—C1 | 116.1 (2) |
C20—Cr1—C22 | 87.64 (14) | C4—C7—C1 | 94.0 (2) |
C21—Cr1—C15 | 87.72 (10) | O1—C8—C9 | 102.7 (2) |
C20—Cr1—C15 | 120.25 (12) | O1—C8—H8A | 111.2 |
C22—Cr1—C15 | 151.68 (12) | C9—C8—H8A | 111.2 |
C21—Cr1—C17 | 118.05 (11) | O1—C8—H8B | 111.2 |
C20—Cr1—C17 | 151.82 (12) | C9—C8—H8B | 111.2 |
C22—Cr1—C17 | 91.68 (11) | H8A—C8—H8B | 109.1 |
C15—Cr1—C17 | 66.33 (10) | O2—C9—C8 | 102.2 (2) |
C21—Cr1—C16 | 89.50 (10) | O2—C9—H9A | 111.3 |
C20—Cr1—C16 | 157.64 (12) | C8—C9—H9A | 111.3 |
C22—Cr1—C16 | 114.67 (11) | O2—C9—H9B | 111.3 |
C15—Cr1—C16 | 37.40 (10) | C8—C9—H9B | 111.3 |
C17—Cr1—C16 | 36.78 (10) | H9A—C9—H9B | 109.2 |
C21—Cr1—C14 | 113.59 (10) | C4—C10—H10A | 109.5 |
C20—Cr1—C14 | 92.76 (11) | C4—C10—H10B | 109.5 |
C22—Cr1—C14 | 158.95 (11) | H10A—C10—H10B | 109.5 |
C15—Cr1—C14 | 37.03 (9) | C4—C10—H10C | 109.5 |
C17—Cr1—C14 | 78.15 (9) | H10A—C10—H10C | 109.5 |
C16—Cr1—C14 | 67.07 (9) | H10B—C10—H10C | 109.5 |
C21—Cr1—C18 | 154.84 (10) | C7—C11—H11A | 109.5 |
C20—Cr1—C18 | 115.03 (12) | C7—C11—H11B | 109.5 |
C22—Cr1—C18 | 94.94 (11) | H11A—C11—H11B | 109.5 |
C15—Cr1—C18 | 78.34 (9) | C7—C11—H11C | 109.5 |
C17—Cr1—C18 | 36.96 (10) | H11A—C11—H11C | 109.5 |
C16—Cr1—C18 | 66.73 (10) | H11B—C11—H11C | 109.5 |
C14—Cr1—C18 | 65.87 (9) | C7—C12—H12A | 109.5 |
C21—Cr1—C13 | 150.08 (10) | C7—C12—H12B | 109.5 |
C20—Cr1—C13 | 91.13 (11) | H12A—C12—H12B | 109.5 |
C22—Cr1—C13 | 122.47 (11) | C7—C12—H12C | 109.5 |
C15—Cr1—C13 | 66.04 (9) | H12A—C12—H12C | 109.5 |
C17—Cr1—C13 | 65.67 (9) | H12B—C12—H12C | 109.5 |
C16—Cr1—C13 | 78.39 (9) | O3—C13—C18 | 116.0 (2) |
C14—Cr1—C13 | 36.49 (9) | O3—C13—C14 | 124.6 (2) |
C18—Cr1—C13 | 36.16 (9) | C18—C13—C14 | 119.3 (2) |
C8—O1—C2 | 108.4 (2) | O3—C13—Cr1 | 130.25 (17) |
C2—O2—C9 | 105.45 (19) | C18—C13—Cr1 | 70.50 (14) |
C13—O3—C3 | 118.21 (18) | C14—C13—Cr1 | 69.72 (14) |
C2—C1—C6 | 106.6 (2) | C15—C14—C13 | 119.9 (2) |
C2—C1—C7 | 102.2 (2) | C15—C14—Cr1 | 70.10 (14) |
C6—C1—C7 | 102.2 (2) | C13—C14—Cr1 | 73.79 (14) |
C2—C1—H1A | 114.8 | C15—C14—H14A | 119.7 |
C6—C1—H1A | 114.8 | C13—C14—H14A | 119.7 |
C7—C1—H1A | 114.8 | Cr1—C14—H14A | 119.7 |
O2—C2—O1 | 105.4 (2) | C14—C15—C16 | 121.4 (2) |
O2—C2—C1 | 113.8 (2) | C14—C15—Cr1 | 72.87 (15) |
O1—C2—C1 | 112.7 (2) | C16—C15—Cr1 | 72.48 (15) |
O2—C2—C3 | 110.83 (19) | C14—C15—H15A | 119.0 |
O1—C2—C3 | 111.8 (2) | C16—C15—H15A | 119.0 |
C1—C2—C3 | 102.6 (2) | Cr1—C15—H15A | 119.0 |
O3—C3—C4 | 109.99 (19) | C17—C16—C15 | 117.7 (2) |
O3—C3—C2 | 113.6 (2) | C17—C16—C19 | 122.3 (2) |
C4—C3—C2 | 103.87 (19) | C15—C16—C19 | 120.0 (2) |
O3—C3—H3A | 109.8 | C17—C16—Cr1 | 71.17 (15) |
C4—C3—H3A | 109.8 | C15—C16—Cr1 | 70.13 (14) |
C2—C3—H3A | 109.8 | C19—C16—Cr1 | 128.82 (19) |
C10—C4—C5 | 114.1 (2) | C16—C17—C18 | 121.8 (2) |
C10—C4—C3 | 114.2 (2) | C16—C17—Cr1 | 72.04 (15) |
C5—C4—C3 | 103.6 (2) | C18—C17—Cr1 | 72.76 (15) |
C10—C4—C7 | 118.5 (2) | C16—C17—H17A | 118.7 |
C5—C4—C7 | 101.6 (2) | C18—C17—H17A | 118.7 |
C3—C4—C7 | 102.9 (2) | Cr1—C17—H17A | 118.7 |
C4—C5—C6 | 104.3 (2) | C13—C18—C17 | 119.7 (2) |
C4—C5—H5A | 110.9 | C13—C18—Cr1 | 73.35 (14) |
C6—C5—H5A | 110.9 | C17—C18—Cr1 | 70.28 (15) |
C4—C5—H5B | 110.9 | C13—C18—H18A | 119.7 |
C6—C5—H5B | 110.9 | C17—C18—H18A | 119.7 |
H5A—C5—H5B | 108.9 | Cr1—C18—H18A | 119.7 |
C5—C6—C1 | 103.1 (2) | C16—C19—H19A | 109.5 |
C5—C6—H6A | 111.2 | C16—C19—H19B | 109.5 |
C1—C6—H6A | 111.2 | H19A—C19—H19B | 109.5 |
C5—C6—H6B | 111.2 | C16—C19—H19C | 109.5 |
C1—C6—H6B | 111.2 | H19A—C19—H19C | 109.5 |
H6A—C6—H6B | 109.1 | H19B—C19—H19C | 109.5 |
C12—C7—C11 | 106.3 (2) | O4—C20—Cr1 | 179.4 (3) |
C12—C7—C4 | 113.7 (3) | O5—C21—Cr1 | 176.5 (2) |
C11—C7—C4 | 114.2 (2) | O6—C22—Cr1 | 177.9 (2) |
Experimental details
Crystal data | |
Chemical formula | [Cr(C19H26O3)(CO)3] |
Mr | 438.43 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 120 |
a, b, c (Å) | 7.9484 (7), 13.6135 (11), 9.5596 (8) |
β (°) | 93.026 (3) |
V (Å3) | 1032.96 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.59 |
Crystal size (mm) | 0.25 × 0.15 × 0.05 |
Data collection | |
Diffractometer | Bruker 6000 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1997) |
Tmin, Tmax | 0.908, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8946, 4556, 4224 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.690 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.090, 1.10 |
No. of reflections | 4556 |
No. of parameters | 263 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −0.42 |
Absolute structure | Flack (1983) |
Absolute structure parameter | 0.041 (18) |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2000).
Arenes (Kündig & Pape, 2004, and references therein) can be converted to cyclohexenes and cyclohexenones by the one-pot sequence of nucleophilic addition to the corresponding arenetricarbonylchromium complex, followed by treatment of the resulting dienylchromium complex with a suitable electrophile and then decomplexation, leading to methodology that finds applications in the synthesis of natural products (Schmalz et al., 2004). When alkoxyarenetricarbonylchromium complexes are used in this sequence, carbon nucleophiles add predominantly to the meta position, ultimately yielding 5-substituted cyclohexenones. [For examples of application of cyclohexenone synthesis, see Pearson et al. (2004).] This reaction can be adapted to give an asymmetric synthesis of 5-substituted cyclohexenones by using chiral alkoxyarenetricarbonylchromiums, as reported earlier from our laboratories (Pearson et al., 1996; Pearson & Gontcharov, 1998; Gontcharov, 1997) and by Semmelhack & Schmalz (1996). Nucleophilic addition to chiral complexes of type (I) presents an interesting example of 1,5 asymmetric induction (Hollowood et al., 2003; Evans et al., 2003; O'Malley & Leighton, 2001; Castelot-Deliencourt et al., 2001), rare in the chemical literature, but the mechanism of asymmetric induction in these reactions is not completely understood.
A plausible mechanism for chirality transmission is by a small rotation of the tricarbonylchromium tripod on the arene ligand. This would lead to a distortion of the complex LUMO, so that its coefficients at the diastereotopic meta positions are unequal, thereby promoting preferential addition at one site (Pearson et al., 1995); in contrast, in simple methoxyarene complexes [(I), R* = CH3], the tricarbonylchromium Cr—C bonds eclipse the ipso and both meta C atoms of the arene (Semmelhack, 1991). As part of an effort to determine the extent to which the chiral alkoxy group causes this rotation, and therefore whether it might be a causative factor in asymmetric induction, the crystal structures of several alkoxyarenetricarbonylchromium complexes are being studied. We have already reported some of these results for complexes having a trimethylsilyl substituent [R' = Si(CH3)3] para to the chiral alkoxy group, all of which structures support our hypothesis (Paramahamsan et al., 2008 or 1980???). In order to show that such rotation of the Cr(CO)3 group is not specific to the nature of the R' substituents, we have also more recently determined the structure the title complex, (I), a complex bearing a simple alkyl group. The structure of this compound, prepared as described previously (Pearson & Gontcharov, 1998), are reported in the present paper.
As shown in Fig. 1, there is indeed a significant rotation of the Cr(CO)3 group (ca 25°) [the torsion angles with respect to the centroid (X) of the arene ring are C20—Cr1—X—C13 = 25.5 (2)°, C21—Cr1—X—C15 = 25.9 (2)° and C22—Cr1—X—C17 = 24.1 (2)°], and the direction of rotation is in agreement with the sense of asymmetric induction that we have previously reported during nucleophile additions to this complex (Pearson & Gontcharov, 1998). The rotation of the Cr(CO)3 unit also removes the mirror symmetry of the arene; for example, the aromatic bonds to atom C16 differ by 0.018 Å, in agreement with the distortion of the LUMO referred to above. Other geometrical parameters are unremarkable.