The
-form of chlorpropamide [systematic name: 4-chloro-
N-(propylaminocarbonyl)benzenesulfonamide], C
10H
13ClN
2O
3S, has been obtained as single crystals from solution (and not as a polycrystalline sample by heating the
-,
- or
-forms). The results of anisotropic structure refinements for the
- and
-forms are reported. The density of the
-polymorph is the highest, and that of the
-polymorph the lowest, among the five known chlorpropamide polymorphs. The main intermolecular hydrogen-bonding pattern in polymorphs
and
is the same as in polymorphs
,
and
, but the conformations differ. The densities of the polymorphs were found to depend on the molecular conformations.
Supporting information
CCDC references: 718135; 718136
Single crystals of the δ-form were obtained by recrystallization of a
commercial sample of chlorpropamide from a heptane–ethylacetate [Solvent
ratio?] solution on rapid cooling, as described by Drebushchak et
al. (2008). Powder diffraction did not reveal the presence of any
other
polymorphs in this sample. Single crystals of the ε-polymorph were obtained
by dissolving a commercial sample of chlorpropamide (30 mg) in chloroform (0.5 ml) and keeping it at 373 K until complete evaporation of the solvent.
According to X-ray powder diffraction, the batch contained a mixture of the
ε-form as the dominant phase and the α- and β-forms as minor admixtures.
Single crystals of the ε-form for X-ray diffraction study could be selected
from the batch.
All H atoms were positioned geometrically and refined using a riding model,
with C—H = 0.93 (aromatic), 0.96 (CH3) or 0.97 Å (CH2) and N—H =
0.86 Å, and with Uiso(H) = 1.2Ueq(C,N). A DFIX
restraint (SHELXL97; Sheldrick, 2008) was used to refine atom
C10. The
δ- and ε-polymorphs show poor diffraction properties, which may be a result
of the high mobility of the alkyl chains, manifested by the large values of
the atomic displacement parameters for C9 and C10 (Fig. 1). The same was
observed previously for the β-polymorph (Drebushchak et al.,
2006).
For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and publCIF (Westrip, 2007).
(d-form) 4-chloro-
N-(propylaminocarbonyl)benzenesulfonamide
top
Crystal data top
C10H13ClN2O3S | Dx = 1.455 Mg m−3 |
Mr = 276.73 | Melting point: Kinetic phase transition (Drebushchak et al., 2008) K |
Orthorhombic, Pbca | Cu Kα radiation, λ = 1.5418 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 1546 reflections |
a = 9.3198 (4) Å | θ = 4.3–67.0° |
b = 10.3218 (3) Å | µ = 4.24 mm−1 |
c = 26.2663 (10) Å | T = 295 K |
V = 2526.74 (16) Å3 | Plate, colourless |
Z = 8 | 0.22 × 0.14 × 0.03 mm |
F(000) = 1152 | |
Data collection top
Oxford Diffraction KM4 CCD diffractometer | 2159 independent reflections |
Radiation source: Ultra (Cu) X-ray Source | 1318 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.074 |
Detector resolution: 10.3457 pixels mm-1 | θmax = 66.6°, θmin = 5.8° |
ω scans | h = −10→10 |
Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction, 2008) | k = −12→12 |
Tmin = 0.432, Tmax = 0.883 | l = −17→31 |
6522 measured reflections | |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.062 | H-atom parameters constrained |
wR(F2) = 0.169 | w = 1/[σ2(Fo2) + (0.1038P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.93 | (Δ/σ)max < 0.001 |
2159 reflections | Δρmax = 0.35 e Å−3 |
156 parameters | Δρmin = −0.38 e Å−3 |
1 restraint | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0015 (3) |
Crystal data top
C10H13ClN2O3S | V = 2526.74 (16) Å3 |
Mr = 276.73 | Z = 8 |
Orthorhombic, Pbca | Cu Kα radiation |
a = 9.3198 (4) Å | µ = 4.24 mm−1 |
b = 10.3218 (3) Å | T = 295 K |
c = 26.2663 (10) Å | 0.22 × 0.14 × 0.03 mm |
Data collection top
Oxford Diffraction KM4 CCD diffractometer | 2159 independent reflections |
Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction, 2008) | 1318 reflections with I > 2σ(I) |
Tmin = 0.432, Tmax = 0.883 | Rint = 0.074 |
6522 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.062 | 1 restraint |
wR(F2) = 0.169 | H-atom parameters constrained |
S = 0.93 | Δρmax = 0.35 e Å−3 |
2159 reflections | Δρmin = −0.38 e Å−3 |
156 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.1637 (6) | 0.6441 (5) | 0.29327 (18) | 0.0748 (14) | |
C2 | 0.0520 (6) | 0.7283 (6) | 0.2962 (2) | 0.0883 (17) | |
H2 | −0.0166 | 0.7316 | 0.2705 | 0.106* | |
C3 | 0.0419 (5) | 0.8098 (5) | 0.33845 (19) | 0.0723 (13) | |
H3 | −0.0332 | 0.8687 | 0.3411 | 0.087* | |
C4 | 0.1438 (4) | 0.8024 (4) | 0.37608 (14) | 0.0489 (9) | |
C5 | 0.2565 (5) | 0.7192 (4) | 0.37148 (16) | 0.0622 (11) | |
H5 | 0.3262 | 0.7163 | 0.3968 | 0.075* | |
C6 | 0.2684 (6) | 0.6392 (5) | 0.32948 (18) | 0.0743 (14) | |
H6 | 0.3460 | 0.5833 | 0.3260 | 0.089* | |
C7 | 0.1512 (4) | 0.7253 (4) | 0.50360 (14) | 0.0478 (9) | |
C8 | 0.1343 (5) | 0.5476 (5) | 0.56420 (18) | 0.0658 (12) | |
H8A | 0.2368 | 0.5440 | 0.5580 | 0.079* | |
H8B | 0.0940 | 0.4643 | 0.5548 | 0.079* | |
C9 | 0.1095 (9) | 0.5695 (7) | 0.6193 (3) | 0.126 (3) | |
H9A | 0.0089 | 0.5527 | 0.6260 | 0.151* | |
H9B | 0.1639 | 0.5045 | 0.6377 | 0.151* | |
C10 | 0.1437 (10) | 0.6939 (8) | 0.6413 (3) | 0.192 (5) | |
H10A | 0.2441 | 0.7114 | 0.6369 | 0.231* | |
H10B | 0.1212 | 0.6929 | 0.6770 | 0.231* | |
H10C | 0.0885 | 0.7601 | 0.6248 | 0.231* | |
N1 | 0.0706 (3) | 0.8150 (3) | 0.47570 (12) | 0.0522 (9) | |
H1N | −0.0185 | 0.8230 | 0.4836 | 0.063* | |
N2 | 0.0718 (3) | 0.6471 (3) | 0.53210 (13) | 0.0558 (9) | |
H2N | −0.0199 | 0.6557 | 0.5315 | 0.067* | |
O1 | 0.0195 (3) | 0.9955 (3) | 0.41986 (11) | 0.0597 (8) | |
O2 | 0.2709 (3) | 0.9501 (3) | 0.44145 (11) | 0.0563 (8) | |
O3 | 0.2821 (3) | 0.7228 (3) | 0.50048 (11) | 0.0575 (8) | |
S1 | 0.13079 (10) | 0.90580 (9) | 0.42946 (4) | 0.0487 (4) | |
Cl1 | 0.1775 (2) | 0.54007 (18) | 0.24117 (6) | 0.1281 (8) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.094 (4) | 0.076 (3) | 0.054 (3) | −0.013 (3) | 0.003 (3) | −0.006 (2) |
C2 | 0.073 (4) | 0.118 (4) | 0.074 (3) | −0.006 (3) | −0.018 (3) | −0.020 (3) |
C3 | 0.051 (3) | 0.096 (3) | 0.070 (3) | 0.007 (3) | −0.009 (2) | −0.008 (3) |
C4 | 0.041 (2) | 0.056 (2) | 0.049 (2) | −0.0021 (19) | 0.0012 (19) | 0.0094 (18) |
C5 | 0.065 (3) | 0.069 (3) | 0.053 (2) | 0.013 (2) | −0.006 (2) | 0.002 (2) |
C6 | 0.093 (4) | 0.071 (3) | 0.059 (3) | 0.017 (3) | 0.002 (3) | 0.000 (2) |
C7 | 0.037 (2) | 0.060 (2) | 0.046 (2) | 0.003 (2) | 0.0002 (18) | −0.0057 (18) |
C8 | 0.063 (3) | 0.068 (2) | 0.066 (3) | 0.001 (2) | −0.003 (2) | 0.012 (2) |
C9 | 0.152 (6) | 0.149 (6) | 0.076 (4) | 0.039 (6) | −0.027 (4) | 0.030 (4) |
C10 | 0.203 (9) | 0.232 (10) | 0.142 (7) | 0.117 (8) | −0.090 (7) | −0.098 (8) |
N1 | 0.0331 (17) | 0.067 (2) | 0.056 (2) | 0.0077 (16) | 0.0051 (15) | 0.0059 (16) |
N2 | 0.0381 (18) | 0.071 (2) | 0.059 (2) | 0.0010 (17) | 0.0028 (16) | 0.0101 (18) |
O1 | 0.0481 (16) | 0.0558 (14) | 0.0752 (19) | 0.0118 (14) | 0.0052 (14) | 0.0082 (14) |
O2 | 0.0383 (16) | 0.0602 (15) | 0.0705 (18) | −0.0106 (13) | 0.0000 (13) | −0.0031 (14) |
O3 | 0.0322 (15) | 0.0715 (18) | 0.0687 (18) | 0.0010 (13) | 0.0008 (13) | 0.0111 (15) |
S1 | 0.0384 (6) | 0.0532 (5) | 0.0544 (6) | 0.0019 (5) | 0.0027 (5) | 0.0028 (5) |
Cl1 | 0.1794 (19) | 0.1276 (13) | 0.0775 (10) | −0.0071 (13) | −0.0020 (10) | −0.0391 (10) |
Geometric parameters (Å, º) top
C1—C2 | 1.359 (7) | C8—N2 | 1.450 (5) |
C1—C6 | 1.363 (7) | C8—C9 | 1.483 (8) |
C1—Cl1 | 1.744 (5) | C8—H8A | 0.9700 |
C2—C3 | 1.395 (7) | C8—H8B | 0.9700 |
C2—H2 | 0.9300 | C9—C10 | 1.444 (9) |
C3—C4 | 1.372 (6) | C9—H9A | 0.9700 |
C3—H3 | 0.9300 | C9—H9B | 0.9700 |
C4—C5 | 1.363 (5) | C10—H10A | 0.9600 |
C4—S1 | 1.766 (4) | C10—H10B | 0.9600 |
C5—C6 | 1.383 (6) | C10—H10C | 0.9600 |
C5—H5 | 0.9300 | N1—S1 | 1.634 (3) |
C6—H6 | 0.9300 | N1—H1N | 0.8600 |
C7—O3 | 1.223 (4) | N2—H2N | 0.8600 |
C7—N2 | 1.326 (5) | O1—S1 | 1.413 (3) |
C7—N1 | 1.399 (5) | O2—S1 | 1.419 (3) |
| | | |
C2—C1—C6 | 122.1 (5) | H8A—C8—H8B | 107.7 |
C2—C1—Cl1 | 119.7 (4) | C10—C9—C8 | 119.5 (7) |
C6—C1—Cl1 | 118.2 (4) | C10—C9—H9A | 107.4 |
C1—C2—C3 | 118.8 (5) | C8—C9—H9A | 107.4 |
C1—C2—H2 | 120.6 | C10—C9—H9B | 107.4 |
C3—C2—H2 | 120.6 | C8—C9—H9B | 107.4 |
C4—C3—C2 | 119.5 (4) | H9A—C9—H9B | 107.0 |
C4—C3—H3 | 120.2 | C9—C10—H10A | 109.5 |
C2—C3—H3 | 120.2 | C9—C10—H10B | 109.5 |
C5—C4—C3 | 120.3 (4) | H10A—C10—H10B | 109.5 |
C5—C4—S1 | 120.2 (3) | C9—C10—H10C | 109.5 |
C3—C4—S1 | 119.4 (3) | H10A—C10—H10C | 109.5 |
C4—C5—C6 | 120.6 (4) | H10B—C10—H10C | 109.5 |
C4—C5—H5 | 119.7 | C7—N1—S1 | 125.8 (3) |
C6—C5—H5 | 119.7 | C7—N1—H1N | 117.1 |
C1—C6—C5 | 118.5 (5) | S1—N1—H1N | 117.1 |
C1—C6—H6 | 120.7 | C7—N2—C8 | 122.4 (3) |
C5—C6—H6 | 120.7 | C7—N2—H2N | 118.8 |
O3—C7—N2 | 125.5 (4) | C8—N2—H2N | 118.8 |
O3—C7—N1 | 120.9 (4) | O1—S1—O2 | 120.26 (17) |
N2—C7—N1 | 113.5 (3) | O1—S1—N1 | 104.88 (16) |
N2—C8—C9 | 113.4 (4) | O2—S1—N1 | 109.63 (17) |
N2—C8—H8A | 108.9 | O1—S1—C4 | 107.72 (18) |
C9—C8—H8A | 108.9 | O2—S1—C4 | 107.93 (17) |
N2—C8—H8B | 108.9 | N1—S1—C4 | 105.49 (17) |
C9—C8—H8B | 108.9 | | |
| | | |
C6—C1—C2—C3 | −1.9 (8) | O3—C7—N2—C8 | 0.7 (6) |
Cl1—C1—C2—C3 | 179.3 (4) | N1—C7—N2—C8 | −179.6 (4) |
C1—C2—C3—C4 | −0.6 (8) | C9—C8—N2—C7 | 115.4 (6) |
C2—C3—C4—C5 | 2.2 (7) | C7—N1—S1—O1 | −169.5 (3) |
C2—C3—C4—S1 | 180.0 (4) | C7—N1—S1—O2 | −39.1 (4) |
C3—C4—C5—C6 | −1.4 (6) | C7—N1—S1—C4 | 76.9 (3) |
S1—C4—C5—C6 | −179.2 (4) | C5—C4—S1—O1 | 169.9 (3) |
C2—C1—C6—C5 | 2.7 (8) | C3—C4—S1—O1 | −7.9 (4) |
Cl1—C1—C6—C5 | −178.5 (4) | C5—C4—S1—O2 | 38.6 (4) |
C4—C5—C6—C1 | −1.0 (7) | C3—C4—S1—O2 | −139.2 (3) |
N2—C8—C9—C10 | −50.9 (8) | C5—C4—S1—N1 | −78.5 (4) |
O3—C7—N1—S1 | 11.8 (5) | C3—C4—S1—N1 | 103.7 (4) |
N2—C7—N1—S1 | −167.8 (3) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O3i | 0.86 | 1.96 | 2.788 (4) | 160 |
N2—H2N···O2i | 0.86 | 2.34 | 3.058 (4) | 141 |
N2—H2N···O3i | 0.86 | 2.38 | 3.135 (4) | 146 |
Symmetry code: (i) x−1/2, −y+3/2, −z+1. |
(e-form) 4-chloro-
N-((propylaminocarbonyl)benzenesulfonamide
top
Crystal data top
C10H13ClN2O3S | Dx = 1.375 Mg m−3 |
Mr = 276.73 | Melting point: 401 K |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 2528 reflections |
a = 19.9121 (10) Å | θ = 3.0–29.1° |
b = 7.3459 (4) Å | µ = 0.44 mm−1 |
c = 9.1384 (4) Å | T = 295 K |
V = 1336.69 (12) Å3 | Plate, colourless |
Z = 4 | 0.40 × 0.15 × 0.03 mm |
F(000) = 576 | |
Data collection top
Oxford Diffraction KM4 CCD diffractometer | 2447 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1556 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
Detector resolution: 10.3457 pixels mm-1 | θmax = 25.7°, θmin = 3.0° |
ω scans | h = −24→21 |
Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction, 2008) | k = −7→8 |
Tmin = 0.893, Tmax = 0.987 | l = −11→10 |
6456 measured reflections | |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0453P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.87 | (Δ/σ)max < 0.001 |
2447 reflections | Δρmax = 0.33 e Å−3 |
155 parameters | Δρmin = −0.26 e Å−3 |
1 restraint | Absolute structure: Flack (1983), with 1102 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.07 (8) |
Crystal data top
C10H13ClN2O3S | V = 1336.69 (12) Å3 |
Mr = 276.73 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 19.9121 (10) Å | µ = 0.44 mm−1 |
b = 7.3459 (4) Å | T = 295 K |
c = 9.1384 (4) Å | 0.40 × 0.15 × 0.03 mm |
Data collection top
Oxford Diffraction KM4 CCD diffractometer | 2447 independent reflections |
Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction, 2008) | 1556 reflections with I > 2σ(I) |
Tmin = 0.893, Tmax = 0.987 | Rint = 0.034 |
6456 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.080 | Δρmax = 0.33 e Å−3 |
S = 0.87 | Δρmin = −0.26 e Å−3 |
2447 reflections | Absolute structure: Flack (1983), with 1102 Friedel pairs |
155 parameters | Absolute structure parameter: 0.07 (8) |
1 restraint | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
C1 | 0.28064 (17) | 0.3459 (5) | 0.4054 (5) | 0.0664 (10) | |
C2 | 0.3165 (2) | 0.3293 (5) | 0.2769 (4) | 0.0656 (11) | |
H2 | 0.3165 | 0.4229 | 0.2083 | 0.079* | |
C3 | 0.35196 (19) | 0.1731 (5) | 0.2520 (4) | 0.0618 (10) | |
H3 | 0.3764 | 0.1601 | 0.1659 | 0.074* | |
C4 | 0.35178 (16) | 0.0354 (5) | 0.3534 (3) | 0.0456 (8) | |
C5 | 0.31681 (17) | 0.0525 (5) | 0.4813 (4) | 0.0634 (10) | |
H5 | 0.3173 | −0.0404 | 0.5504 | 0.076* | |
C6 | 0.2804 (2) | 0.2111 (6) | 0.5065 (4) | 0.0762 (13) | |
H6 | 0.2560 | 0.2245 | 0.5925 | 0.091* | |
C7 | 0.50857 (15) | 0.0304 (4) | 0.3303 (3) | 0.0424 (7) | |
C8 | 0.59407 (17) | 0.2667 (4) | 0.3088 (4) | 0.0573 (9) | |
H8A | 0.6344 | 0.2729 | 0.2494 | 0.069* | |
H8B | 0.6074 | 0.2325 | 0.4071 | 0.069* | |
C9 | 0.5622 (2) | 0.4508 (5) | 0.3133 (6) | 0.0958 (14) | |
H9A | 0.5222 | 0.4456 | 0.3738 | 0.115* | |
H9B | 0.5486 | 0.4852 | 0.2152 | 0.115* | |
C10 | 0.6087 (3) | 0.5920 (7) | 0.3728 (7) | 0.141 (3) | |
H10A | 0.6131 | 0.5764 | 0.4767 | 0.170* | |
H10B | 0.5910 | 0.7108 | 0.3525 | 0.170* | |
H10C | 0.6520 | 0.5796 | 0.3275 | 0.170* | |
N1 | 0.46851 (13) | −0.0948 (4) | 0.2541 (3) | 0.0469 (7) | |
H1N | 0.4823 | −0.1353 | 0.1710 | 0.056* | |
N2 | 0.54965 (13) | 0.1249 (4) | 0.2493 (3) | 0.0480 (7) | |
H2N | 0.5508 | 0.1034 | 0.1568 | 0.058* | |
O1 | 0.36688 (11) | −0.2571 (3) | 0.19618 (19) | 0.0549 (6) | |
O2 | 0.40594 (11) | −0.2620 (3) | 0.4524 (2) | 0.0527 (6) | |
O3 | 0.50327 (11) | 0.0410 (3) | 0.4653 (2) | 0.0604 (6) | |
S1 | 0.39692 (4) | −0.16578 (10) | 0.31776 (7) | 0.0446 (2) | |
Cl1 | 0.23596 (6) | 0.54549 (16) | 0.43487 (18) | 0.1049 (5) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.053 (2) | 0.058 (3) | 0.089 (3) | −0.007 (2) | 0.010 (2) | 0.000 (2) |
C2 | 0.085 (3) | 0.053 (3) | 0.059 (3) | 0.001 (2) | 0.006 (2) | 0.0134 (19) |
C3 | 0.081 (3) | 0.058 (3) | 0.0460 (17) | 0.002 (2) | 0.0147 (18) | 0.005 (2) |
C4 | 0.0494 (18) | 0.046 (2) | 0.042 (2) | −0.0117 (16) | 0.0007 (14) | 0.0002 (14) |
C5 | 0.066 (2) | 0.063 (3) | 0.060 (2) | 0.006 (2) | 0.0237 (19) | 0.0143 (19) |
C6 | 0.070 (3) | 0.083 (3) | 0.076 (3) | 0.009 (2) | 0.030 (2) | −0.001 (2) |
C7 | 0.0459 (17) | 0.0469 (19) | 0.0345 (17) | −0.0024 (16) | −0.0046 (16) | 0.0052 (19) |
C8 | 0.064 (2) | 0.062 (2) | 0.0460 (16) | −0.0154 (18) | −0.0071 (18) | 0.000 (2) |
C9 | 0.111 (3) | 0.061 (3) | 0.115 (3) | −0.002 (2) | −0.052 (3) | −0.022 (3) |
C10 | 0.176 (6) | 0.060 (3) | 0.188 (7) | −0.009 (3) | −0.076 (5) | −0.020 (3) |
N1 | 0.0483 (16) | 0.0580 (19) | 0.0343 (12) | −0.0063 (14) | 0.0049 (11) | −0.0089 (13) |
N2 | 0.0567 (17) | 0.0551 (19) | 0.0324 (12) | −0.0096 (15) | 0.0025 (12) | 0.0006 (13) |
O1 | 0.0651 (16) | 0.0533 (15) | 0.0463 (13) | −0.0137 (12) | −0.0049 (11) | −0.0085 (11) |
O2 | 0.0691 (14) | 0.0504 (14) | 0.0385 (12) | −0.0019 (12) | −0.0021 (11) | 0.0126 (11) |
O3 | 0.0733 (14) | 0.0879 (18) | 0.0201 (11) | −0.0272 (14) | −0.0005 (11) | −0.0042 (12) |
S1 | 0.0537 (4) | 0.0471 (4) | 0.0331 (3) | −0.0078 (4) | −0.0019 (4) | 0.0032 (5) |
Cl1 | 0.0872 (7) | 0.0628 (7) | 0.1647 (13) | 0.0110 (6) | 0.0415 (8) | −0.0064 (8) |
Geometric parameters (Å, º) top
C1—C6 | 1.354 (5) | C8—N2 | 1.470 (4) |
C1—C2 | 1.380 (5) | C8—C9 | 1.494 (5) |
C1—Cl1 | 1.736 (4) | C8—H8A | 0.9700 |
C2—C3 | 1.367 (5) | C8—H8B | 0.9700 |
C2—H2 | 0.9300 | C9—C10 | 1.492 (6) |
C3—C4 | 1.372 (4) | C9—H9A | 0.9700 |
C3—H3 | 0.9300 | C9—H9B | 0.9700 |
C4—C5 | 1.366 (4) | C10—H10A | 0.9600 |
C4—S1 | 1.760 (4) | C10—H10B | 0.9600 |
C5—C6 | 1.391 (5) | C10—H10C | 0.9600 |
C5—H5 | 0.9300 | N1—S1 | 1.626 (3) |
C6—H6 | 0.9300 | N1—H1N | 0.8600 |
C7—O3 | 1.241 (4) | N2—H2N | 0.8600 |
C7—N2 | 1.304 (4) | O1—S1 | 1.429 (2) |
C7—N1 | 1.403 (4) | O2—S1 | 1.430 (2) |
| | | |
C6—C1—C2 | 121.2 (4) | H8A—C8—H8B | 107.7 |
C6—C1—Cl1 | 120.7 (3) | C8—C9—C10 | 112.1 (4) |
C2—C1—Cl1 | 118.2 (3) | C8—C9—H9A | 109.2 |
C3—C2—C1 | 118.9 (3) | C10—C9—H9A | 109.2 |
C3—C2—H2 | 120.6 | C8—C9—H9B | 109.2 |
C1—C2—H2 | 120.6 | C10—C9—H9B | 109.2 |
C2—C3—C4 | 120.4 (3) | H9A—C9—H9B | 107.9 |
C2—C3—H3 | 119.8 | C9—C10—H10A | 109.5 |
C4—C3—H3 | 119.8 | C9—C10—H10B | 109.5 |
C5—C4—C3 | 120.8 (3) | H10A—C10—H10B | 109.5 |
C5—C4—S1 | 119.7 (3) | C9—C10—H10C | 109.5 |
C3—C4—S1 | 119.5 (2) | H10A—C10—H10C | 109.5 |
C4—C5—C6 | 119.0 (3) | H10B—C10—H10C | 109.5 |
C4—C5—H5 | 120.5 | C7—N1—S1 | 122.1 (2) |
C6—C5—H5 | 120.5 | C7—N1—H1N | 119.0 |
C1—C6—C5 | 119.9 (3) | S1—N1—H1N | 119.0 |
C1—C6—H6 | 120.1 | C7—N2—C8 | 123.0 (3) |
C5—C6—H6 | 120.1 | C7—N2—H2N | 118.5 |
O3—C7—N2 | 125.8 (3) | C8—N2—H2N | 118.5 |
O3—C7—N1 | 119.1 (3) | O1—S1—O2 | 119.32 (13) |
N2—C7—N1 | 115.1 (3) | O1—S1—N1 | 103.84 (13) |
N2—C8—C9 | 113.3 (3) | O2—S1—N1 | 110.87 (14) |
N2—C8—H8A | 108.9 | O1—S1—C4 | 108.92 (14) |
C9—C8—H8A | 108.9 | O2—S1—C4 | 108.64 (13) |
N2—C8—H8B | 108.9 | N1—S1—C4 | 104.17 (14) |
C9—C8—H8B | 108.9 | | |
| | | |
C6—C1—C2—C3 | 0.3 (6) | O3—C7—N2—C8 | −3.0 (5) |
Cl1—C1—C2—C3 | 180.0 (3) | N1—C7—N2—C8 | 178.0 (3) |
C1—C2—C3—C4 | 0.0 (6) | C9—C8—N2—C7 | −88.9 (5) |
C2—C3—C4—C5 | −0.7 (5) | C7—N1—S1—O1 | 168.1 (2) |
C2—C3—C4—S1 | 179.1 (3) | C7—N1—S1—O2 | −62.6 (3) |
C3—C4—C5—C6 | 0.9 (5) | C7—N1—S1—C4 | 54.1 (3) |
S1—C4—C5—C6 | −178.8 (3) | C5—C4—S1—O1 | 114.0 (3) |
C2—C1—C6—C5 | 0.0 (6) | C3—C4—S1—O1 | −65.8 (3) |
Cl1—C1—C6—C5 | −179.7 (3) | C5—C4—S1—O2 | −17.4 (3) |
C4—C5—C6—C1 | −0.6 (6) | C3—C4—S1—O2 | 162.8 (3) |
N2—C8—C9—C10 | −179.4 (4) | C5—C4—S1—N1 | −135.7 (3) |
O3—C7—N1—S1 | 25.3 (4) | C3—C4—S1—N1 | 44.6 (3) |
N2—C7—N1—S1 | −155.7 (2) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O3i | 0.86 | 2.02 | 2.727 (3) | 138 |
N2—H2N···O2i | 0.86 | 2.36 | 3.026 (3) | 134 |
N2—H2N···O3i | 0.86 | 2.31 | 3.054 (3) | 145 |
Symmetry code: (i) −x+1, −y, z−1/2. |
Experimental details
| (d-form) | (e-form) |
Crystal data |
Chemical formula | C10H13ClN2O3S | C10H13ClN2O3S |
Mr | 276.73 | 276.73 |
Crystal system, space group | Orthorhombic, Pbca | Orthorhombic, Pna21 |
Temperature (K) | 295 | 295 |
a, b, c (Å) | 9.3198 (4), 10.3218 (3), 26.2663 (10) | 19.9121 (10), 7.3459 (4), 9.1384 (4) |
V (Å3) | 2526.74 (16) | 1336.69 (12) |
Z | 8 | 4 |
Radiation type | Cu Kα | Mo Kα |
µ (mm−1) | 4.24 | 0.44 |
Crystal size (mm) | 0.22 × 0.14 × 0.03 | 0.40 × 0.15 × 0.03 |
|
Data collection |
Diffractometer | Oxford Diffraction KM4 CCD diffractometer | Oxford Diffraction KM4 CCD diffractometer |
Absorption correction | Multi-scan CrysAlis RED (Oxford Diffraction, 2008) | Multi-scan CrysAlis RED (Oxford Diffraction, 2008) |
Tmin, Tmax | 0.432, 0.883 | 0.893, 0.987 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6522, 2159, 1318 | 6456, 2447, 1556 |
Rint | 0.074 | 0.034 |
(sin θ/λ)max (Å−1) | 0.595 | 0.609 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.062, 0.169, 0.93 | 0.035, 0.080, 0.87 |
No. of reflections | 2159 | 2447 |
No. of parameters | 156 | 155 |
No. of restraints | 1 | 1 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.38 | 0.33, −0.26 |
Absolute structure | ? | Flack (1983), with 1102 Friedel pairs |
Absolute structure parameter | ? | 0.07 (8) |
Selected torsion angles (°) for the δ and ε-forms of (I) top | δ-form | ε-form |
N2—C8—C9—C10 | -50.9 (8) | -179.4 (4) |
O3—C7—N1—S1 | 11.8 (5) | 25.3 (4) |
N2—C7—N1—S1 | -167.8 (3) | -155.7 (2) |
O3—C7—N2—C8 | 0.7 (6) | -3.0 (5) |
N1—C7—N2—C8 | -179.6 (4) | 178.0 (3) |
C9—C8—N2—C7 | 115.4 (6) | -88.9 (5) |
C7—N1—S1—O1 | -169.5 (3) | 168.1 (2) |
C7—N1—S1—O2 | -39.1 (4) | -62.6 (3) |
C7—N1—S1—C4 | 76.9 (3) | 54.1 (3) |
C5—C4—S1—O1 | 169.9 (3) | 114.0 (3) |
C3—C4—S1—O1 | -7.9 (4) | -65.8 (3) |
C5—C4—S1—O2 | 38.6 (4) | -17.4 (3) |
C3—C4—S1—O2 | -139.2 (3) | 162.8 (3) |
C5—C4—S1—N1 | -78.5 (4) | -135.7 (3) |
C3—C4—S1—N1 | 103.7 (4) | 44.6 (3) |
Hydrogen-bond geometry for the δ- and ε-forms of (I) (Å, °) topD—H···A | D—H | H···A | D···A | D—H···A |
δ-form | | | | |
N1—H1N···O3i | 0.86 | 1.96 | 2.788 (4) | 160 |
N2—H2N···O2i | 0.86 | 2.34 | 3.058 (4) | 141 |
N2—H2N···O3i | 0.86 | 2.38 | 3.135 (4) | 146 |
| | | | |
ε-form | | | | |
N1—H1N···O3ii | 0.86 | 2.02 | 2.727 (3) | 138 |
N2—H2N···O2ii | 0.86 | 2.36 | 3.026 (3) | 134 |
N2—H2N···O3ii | 0.86 | 2.31 | 3.054 (3) | 145 |
Symmetry codes: (i) x-1/2, -y+3/2, -z+1;
(ii) -x+1, -y, z-1/2. |
Chlorpropamide, 4-chloro-N-(propylaminocarbonyl)benzenesulfonamide, (I), is an antidiabetic drug and the crystal structures have been reported for three polymorphs, α (Koo et al., 1980), β (Drebushchak et al., 2006) and γ (Drebushchak et al., 2007). This work reports the crystal structures of two additional polymorphs, δ and ε. The latter has previously only been obtained by heating of the α-, γ- or δ-forms as a polycrystalline sample. Although the structure of this form was claimed to be solved from powder diffraction data, the atomic coordinates were not published (Wildfong et al., 2007). Our work reports the results of a single-crystal structure determination of ε-chlorpropamide, which became possible after this polymorph was obtained for the first time as single crystals from solution. The δ-form is a new polymorph first described by Drebushchak et al. (2008), where the structure was refined isotropically to R[F2 > 2σ(F2)] = 0.187 because of the poor quality of the crystals available. The quality of the data was, however, sufficiently good to establish reliably the gauche conformation of the alkyl tail. All polymorphs were characterized by differential scanning calorimetry (Drebushchak et al., 2008) and FT–IR spectroscopy (Chesalov et al., 2008).
The asymmetric unit of both the δ- and ε-forms contains only one molecule, like the other polymorphs do (Fig. 1). Bond lengths and angles in all the polymorphs are similar, and agree with statistical data from Mogul [Bruno et al., 2004; Cambridge Structural Database, Version 5.29 (Allen, 2002)]. The conformations are different (Table 1; Fig. 1). In the δ-polymorph, the –CH2—CH3 alkyl tail and the benzene ring are on opposite sides of the N1/C7/O3/N2/C8 plane, as in the α-polymorph (orientation I), whereas in the ε-form they are on the same side, as in the β- and γ-forms (orientation II). The δ-form differs from all other polymorphs in the gauche conformation of the propyl tail (compare the N2—C8—C9—C10 torsion angle in Table 1 with the values close to 180° observed for this angle in all the other forms). The ε-form differs significantly from the other polymorphs in the angle between the planes of the benzene ring and atoms N1/C7/O3/N2/C8.
In all the chlorpropamide polymorphs to date, the molecules are linked via N—H···O hydrogen bonds (Table 2) to form infinite ribbons. The N1—H1N···O3i hydrogen bond [symmetry code: (i) x-1/2, -y+3/2, -z+1] in the ε-polymorph (Table 2) is the shortest of all the hydrogen bonds observed in the chlorpropamide polymorphs, although the ε-form is the least dense. The structural motif in the δ- and ε-polymorphs is the same as in the α- and γ-forms (Z-shaped), in contrast with the π-shaped motif observed in the β-form (Fig. 2). Despite having the same Z-shaped motif, the ribbons in the α-, γ-, δ- and ε-polymorphs pack in different ways. Orientation II of the alkyl tails does not allow the Z-shaped ribbons to pack in dense piles (Fig. 3), which is why structures with tail orientation I are denser. The difference between the highest (δ-form, tail orientation I) and lowest (ε-form, tail orientation II) density values is 5.6%.
The structural data obtained for the ε-form explain the peculiar behaviour of the β-form with increasing temperature, compared with that of the α-, γ- and δ-polymorphs. In contrast with the other forms, which are converted into the ε-form on heating, samples of the β-form often melt prior to transformation into the ε-form (Drebushchak et al., 2008). The preservation of the packing motif is more important for these structural transformations than the similarity or difference in the molecular conformations. The Z-shaped motif is inherited after α → ε, γ → ε and δ → ε polymorphic transitions, while the conformation of the molecules changes significantly. The flexible alkyl tail rotates during the transitions α → ε and δ → ε, changing its orientation from type I to type II. The –CH2—CH2—CH3 tail changes its conformation from gauche to trans in the transition δ → ε. However, these transitions do not require the breaking of intermolecular hydrogen bonds or rotation of the molecules to a noticeable extent with respect to each other. On the contrary, the β → ε transformation is related to a change from the π-shaped motif to the Z-shaped one, requiring a change in the orientation of every second molecule in the ribbon (Fig. 2). Therefore, this process seems kinetically hindered in the solid state.
The chlorpropamide polymorphs can be obtained by crystallization from the same solvents under different conditions, and are often present as mixtures in the same batch. The different conformations and packing motifs of nearest neighbours in the different polymorphs might reflect the different conformations and molecular aggregates co-existing in solution, giving rise to different crystal structures depending on the crystallization conditions (Gavezzotti, 2007).