Download citation
Download citation
link to html
A newly synthesized N,N′-dipropyl-substituted isoindigo derivative, namely, 1-propyl-3-(1-propyl-1,2-di­hydro-2-oxo-3H-indol-3-yl­idene)-1,3-di­hydro-2H-in­dol-2-one, C22H22N2O2, was found to have three polymorphic forms (denoted Forms I, II and III) under various crystallization conditions. Crystal structure analysis indicated that Form III had a significantly different mol­ecular conformation from the other two polymorphs. Their different packing arrangements were correlated with differences in the inter­molecular inter­actions. Thermal measurements revealed that Forms I and II are enanti­otropically related, and Form II exhibits thermally dynamic behaviour.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229624002481/vp3033sup1.cif
Contains datablocks Form_I, Form_II, Form_III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229624002481/vp3033Form_Isup2.hkl
Contains datablock Form_I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229624002481/vp3033Form_IIsup3.hkl
Contains datablock Form_II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229624002481/vp3033Form_IIIsup4.hkl
Contains datablock Form_III

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229624002481/vp3033Form_Isup5.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229624002481/vp3033sup6.pdf
Additional characterization: DSC and PXRD profiles

CCDC references: 2321827; 2321826; 2321825

Computing details top

1-Propyl-3-(1-propyl-1,2-dihydro-2-oxo-3H-indol-3-ylidene)-1,3-dihydro-2H-indol-2-one (Form_I) top
Crystal data top
C22H22N2O2F(000) = 368
Mr = 346.41Dx = 1.301 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.8456 (2) ÅCell parameters from 3025 reflections
b = 5.5803 (1) Åθ = 4.7–74.5°
c = 16.7446 (3) ŵ = 0.67 mm1
β = 132.566 (1)°T = 223 K
V = 884.01 (3) Å3Block, dull dark red
Z = 20.40 × 0.30 × 0.25 mm
Data collection top
XtaLAB AFC12 (RINC) Kappa dual home/near
diffractometer
1535 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tube, Rigaku (Cu) X-ray SourceRint = 0.069
Mirror monochromatorθmax = 75.1°, θmin = 4.7°
Detector resolution: 5.8140 pixels mm-1h = 1514
ω scansk = 66
4261 measured reflectionsl = 2019
1759 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0893P)2 + 0.062P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.159(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.19 e Å3
1759 reflectionsΔρmin = 0.17 e Å3
120 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.011 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22087 (11)0.0744 (2)0.33166 (9)0.0655 (4)
N10.29921 (13)0.3704 (2)0.45455 (10)0.0508 (4)
C80.53039 (15)0.2622 (2)0.59591 (11)0.0468 (4)
C30.42327 (16)0.4276 (2)0.55897 (12)0.0480 (4)
C20.31708 (15)0.1689 (3)0.41834 (11)0.0484 (4)
C10.47079 (14)0.0931 (2)0.50603 (11)0.0452 (4)
C40.44401 (19)0.6179 (3)0.62170 (13)0.0565 (4)
H40.3710940.7278110.5944580.068*
C70.66029 (17)0.2889 (3)0.70122 (13)0.0602 (5)
H70.7338990.1797270.7295540.072*
C90.16559 (18)0.4990 (3)0.39196 (13)0.0610 (5)
H9a0.1019310.4448500.3164260.073*
H9b0.1829210.6704720.3929980.073*
C50.5742 (2)0.6412 (3)0.72484 (14)0.0631 (5)
H50.5911100.7689710.7689110.076*
C100.09383 (17)0.4630 (4)0.43456 (14)0.0675 (5)
H10a0.1546000.5280100.5082460.081*
H10b0.0051200.5536210.3890690.081*
C60.68017 (19)0.4786 (4)0.76408 (14)0.0676 (5)
H60.7680990.4963580.8351700.081*
C110.0625 (2)0.2049 (4)0.43661 (16)0.0774 (6)
H11a0.0015950.1413340.3634100.116*
H11b0.0190370.1931150.4663940.116*
H11c0.1497340.1136730.4813510.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0506 (6)0.0680 (8)0.0541 (7)0.0041 (5)0.0260 (6)0.0160 (5)
N10.0541 (7)0.0454 (7)0.0507 (7)0.0022 (5)0.0345 (6)0.0011 (5)
C80.0523 (8)0.0481 (8)0.0485 (8)0.0122 (6)0.0375 (7)0.0076 (6)
C30.0583 (8)0.0430 (7)0.0505 (8)0.0095 (6)0.0399 (7)0.0021 (6)
C20.0503 (7)0.0489 (7)0.0456 (8)0.0072 (6)0.0323 (7)0.0045 (6)
C10.0470 (7)0.0475 (7)0.0438 (7)0.0108 (5)0.0318 (6)0.0055 (5)
C40.0731 (10)0.0441 (8)0.0621 (10)0.0056 (7)0.0496 (9)0.0047 (6)
C70.0535 (8)0.0740 (11)0.0523 (9)0.0095 (7)0.0354 (8)0.0180 (7)
C90.0655 (10)0.0515 (9)0.0554 (9)0.0098 (7)0.0367 (8)0.0088 (7)
C50.0798 (11)0.0580 (9)0.0645 (10)0.0177 (8)0.0540 (10)0.0198 (8)
C100.0570 (9)0.0762 (12)0.0590 (10)0.0139 (8)0.0351 (9)0.0023 (8)
C60.0619 (9)0.0839 (12)0.0547 (9)0.0176 (9)0.0386 (8)0.0266 (9)
C110.0660 (10)0.0950 (15)0.0712 (12)0.0013 (10)0.0464 (10)0.0076 (10)
Geometric parameters (Å, º) top
O1—C21.2186 (17)C7—C61.389 (2)
N1—C31.3889 (18)C9—H9a0.9800
N1—C21.369 (2)C9—H9b0.9800
N1—C91.4579 (19)C9—C101.513 (3)
C8—C31.406 (2)C5—H50.9400
C8—C11.4775 (18)C5—C61.377 (3)
C8—C71.391 (2)C10—H10a0.9800
C3—C41.387 (2)C10—H10b0.9800
C2—C11.5203 (19)C10—C111.502 (3)
C1—C1i1.374 (3)C6—H60.9400
C4—H40.9400C11—H11a0.9700
C4—C51.375 (2)C11—H11b0.9700
C7—H70.9400C11—H11c0.9700
C3—N1—C9125.61 (13)N1—C9—C10113.10 (13)
C2—N1—C3110.67 (12)H9a—C9—H9b107.8
C2—N1—C9123.68 (13)C10—C9—H9a109.0
C3—C8—C1107.02 (12)C10—C9—H9b109.0
C7—C8—C3117.72 (13)C4—C5—H5119.8
C7—C8—C1135.27 (14)C4—C5—C6120.46 (15)
N1—C3—C8110.56 (12)C6—C5—H5119.8
C4—C3—N1126.76 (15)C9—C10—H10a108.9
C4—C3—C8122.69 (15)C9—C10—H10b108.9
O1—C2—N1122.96 (14)H10a—C10—H10b107.7
O1—C2—C1129.67 (14)C11—C10—C9113.36 (15)
N1—C2—C1107.35 (12)C11—C10—H10a108.9
C8—C1—C2104.23 (12)C11—C10—H10b108.9
C1i—C1—C8132.41 (16)C7—C6—H6119.2
C1i—C1—C2123.36 (15)C5—C6—C7121.64 (16)
C3—C4—H4120.9C5—C6—H6119.2
C5—C4—C3118.10 (16)C10—C11—H11a109.5
C5—C4—H4120.9C10—C11—H11b109.5
C8—C7—H7120.3C10—C11—H11c109.5
C6—C7—C8119.36 (16)H11a—C11—H11b109.5
C6—C7—H7120.3H11a—C11—H11c109.5
N1—C9—H9a109.0H11b—C11—H11c109.5
N1—C9—H9b109.0
O1—C2—C1—C8173.83 (15)C2—N1—C3—C80.43 (16)
O1—C2—C1—C1i6.9 (3)C2—N1—C3—C4179.26 (13)
N1—C3—C4—C5178.34 (13)C2—N1—C9—C10106.74 (17)
N1—C2—C1—C84.26 (15)C1—C8—C3—N12.40 (15)
N1—C2—C1—C1i175.04 (15)C1—C8—C3—C4177.90 (13)
N1—C9—C10—C1158.6 (2)C1—C8—C7—C6178.58 (16)
C8—C3—C4—C51.3 (2)C4—C5—C6—C70.8 (3)
C8—C7—C6—C50.1 (3)C7—C8—C3—N1177.50 (12)
C3—N1—C2—O1175.25 (13)C7—C8—C3—C42.2 (2)
C3—N1—C2—C13.00 (16)C7—C8—C1—C2175.91 (16)
C3—N1—C9—C1070.85 (19)C7—C8—C1—C1i4.9 (3)
C3—C8—C1—C23.97 (14)C9—N1—C3—C8178.28 (13)
C3—C8—C1—C1i175.25 (18)C9—N1—C3—C41.4 (2)
C3—C8—C7—C61.6 (2)C9—N1—C2—O12.7 (2)
C3—C4—C5—C60.2 (2)C9—N1—C2—C1179.10 (12)
Symmetry code: (i) x+1, y, z+1.
1-Propyl-3-(1-propyl-1,2-dihydro-2-oxo-3H-indol-3-ylidene)-1,3-dihydro-2H-indol-2-one (Form_II) top
Crystal data top
C22H22N2O2F(000) = 1472
Mr = 346.41Dx = 1.308 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 35.4947 (9) ÅCell parameters from 5948 reflections
b = 5.5238 (1) Åθ = 4.8–74.3°
c = 18.9927 (4) ŵ = 0.67 mm1
β = 109.151 (2)°T = 223 K
V = 3517.73 (14) Å3Needle, dull dark red
Z = 81 × 0.11 × 0.06 mm
Data collection top
XtaLAB AFC12 (RINC) Kappa dual offset/far
diffractometer
3518 independent reflections
Radiation source: micro-focus sealed X-ray tube, Rigaku (Cu) X-ray Source3113 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.034
Detector resolution: 5.8140 pixels mm-1θmax = 75.2°, θmin = 4.8°
ω scansh = 4344
Absorption correction: multi-scan
CrysAlis PRO; Rigaku OD, 2019)
k = 66
Tmin = 0.817, Tmax = 1.000l = 2323
9278 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.1061P)2 + 0.5262P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.152(Δ/σ)max = 0.002
S = 1.05Δρmax = 0.25 e Å3
3518 reflectionsΔρmin = 0.23 e Å3
238 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00101 (15)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.63730 (3)0.27171 (19)0.83154 (5)0.0592 (3)
O20.61174 (3)0.3533 (2)0.53628 (5)0.0612 (3)
N10.59659 (3)0.03824 (19)0.77483 (5)0.0443 (3)
N20.65393 (3)0.65684 (19)0.59344 (6)0.0464 (3)
C10.61464 (3)0.2200 (2)0.69428 (6)0.0399 (3)
C30.57628 (3)0.1136 (2)0.70218 (6)0.0409 (3)
C120.63529 (3)0.4009 (2)0.67389 (6)0.0404 (3)
C80.58551 (3)0.0398 (2)0.65104 (6)0.0408 (3)
C190.66452 (3)0.5806 (2)0.71726 (6)0.0425 (3)
C20.61876 (3)0.1628 (2)0.77486 (6)0.0427 (3)
C140.67413 (3)0.7322 (2)0.66610 (7)0.0428 (3)
C130.63096 (3)0.4584 (2)0.59320 (6)0.0441 (3)
C40.55074 (4)0.3089 (2)0.68118 (7)0.0498 (3)
H40.5457830.4101940.7169320.060*
C150.69986 (4)0.9271 (2)0.68733 (8)0.0524 (3)
H150.7053521.0260990.6516160.063*
C90.59376 (4)0.1501 (2)0.84255 (7)0.0533 (3)
H9a0.6146510.0827470.8856650.064*
H9b0.5987160.3242460.8409640.064*
C50.53267 (4)0.3505 (3)0.60557 (8)0.0567 (4)
H50.5151960.4823010.5894250.068*
C200.65649 (4)0.7721 (3)0.52599 (8)0.0553 (3)
H20a0.6537140.9476110.5301190.066*
H20b0.6342290.7159330.4831790.066*
C180.68318 (4)0.6282 (3)0.79280 (7)0.0562 (4)
H180.6781860.5288950.8289670.067*
C210.69528 (4)0.7197 (3)0.51183 (8)0.0599 (4)
H21a0.6956290.8088480.4674330.072*
H21b0.7175370.7785490.5541990.072*
C160.71731 (4)0.9719 (3)0.76299 (9)0.0573 (4)
H160.7346931.1041160.7791360.069*
C70.56636 (4)0.0063 (3)0.57552 (7)0.0583 (4)
H70.5711520.0934400.5392680.070*
C170.70924 (4)0.8234 (3)0.81446 (8)0.0620 (4)
H170.7216390.8545670.8655110.074*
C60.54018 (4)0.2000 (3)0.55412 (8)0.0643 (4)
H60.5272560.2290120.5030990.077*
C100.55374 (5)0.1129 (3)0.85314 (8)0.0595 (4)
H10a0.5333270.1981640.8132720.071*
H10b0.5545500.1863470.9005850.071*
C220.70128 (5)0.4536 (3)0.50062 (9)0.0657 (4)
H22a0.6789710.3930250.4596090.099*
H22b0.7029220.3656740.5457380.099*
H22c0.7257870.4312520.4893110.099*
C110.54160 (6)0.1482 (3)0.85300 (10)0.0745 (5)
H11a0.5404990.2226910.8061110.112*
H11b0.5609370.2328890.8937740.112*
H11c0.5155330.1573670.8590100.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0704 (6)0.0688 (6)0.0370 (5)0.0232 (5)0.0155 (4)0.0157 (4)
O20.0734 (6)0.0706 (6)0.0389 (5)0.0244 (5)0.0175 (4)0.0125 (4)
N10.0477 (5)0.0472 (6)0.0369 (5)0.0041 (4)0.0121 (4)0.0052 (4)
N20.0477 (6)0.0458 (6)0.0428 (5)0.0025 (4)0.0109 (4)0.0008 (4)
C10.0353 (5)0.0495 (6)0.0360 (5)0.0022 (4)0.0133 (4)0.0120 (4)
C30.0367 (5)0.0431 (6)0.0418 (6)0.0019 (4)0.0116 (5)0.0101 (5)
C120.0357 (5)0.0492 (6)0.0368 (5)0.0018 (4)0.0127 (4)0.0119 (4)
C80.0353 (5)0.0495 (6)0.0392 (6)0.0031 (4)0.0145 (4)0.0123 (5)
C190.0339 (5)0.0488 (6)0.0458 (6)0.0018 (4)0.0146 (5)0.0129 (5)
C20.0413 (6)0.0492 (6)0.0381 (6)0.0026 (5)0.0135 (5)0.0097 (5)
C140.0366 (5)0.0406 (6)0.0490 (6)0.0040 (4)0.0110 (5)0.0061 (5)
C130.0435 (6)0.0487 (6)0.0407 (6)0.0020 (5)0.0147 (5)0.0065 (5)
C40.0509 (7)0.0448 (6)0.0528 (7)0.0048 (5)0.0155 (6)0.0076 (5)
C150.0483 (7)0.0410 (6)0.0633 (8)0.0017 (5)0.0121 (6)0.0028 (5)
C90.0627 (8)0.0504 (7)0.0414 (6)0.0034 (6)0.0097 (5)0.0033 (5)
C50.0521 (7)0.0577 (8)0.0586 (8)0.0152 (6)0.0161 (6)0.0209 (6)
C200.0611 (8)0.0486 (7)0.0498 (7)0.0004 (6)0.0096 (6)0.0095 (5)
C180.0485 (7)0.0756 (9)0.0454 (7)0.0186 (6)0.0167 (5)0.0175 (6)
C210.0626 (8)0.0685 (9)0.0475 (7)0.0128 (7)0.0166 (6)0.0108 (6)
C160.0461 (7)0.0512 (7)0.0699 (9)0.0088 (5)0.0125 (6)0.0165 (6)
C70.0562 (7)0.0798 (10)0.0390 (6)0.0240 (7)0.0159 (5)0.0161 (6)
C170.0510 (7)0.0780 (10)0.0540 (7)0.0191 (7)0.0130 (6)0.0240 (7)
C60.0608 (8)0.0847 (10)0.0450 (7)0.0269 (7)0.0144 (6)0.0250 (7)
C100.0691 (9)0.0686 (9)0.0432 (6)0.0131 (7)0.0219 (6)0.0024 (6)
C220.0649 (8)0.0777 (10)0.0577 (8)0.0049 (7)0.0245 (7)0.0069 (7)
C110.0768 (10)0.0855 (11)0.0705 (10)0.0061 (9)0.0368 (8)0.0027 (8)
Geometric parameters (Å, º) top
O1—C21.2201 (14)C5—H50.9400
O2—C131.2196 (15)C5—C61.374 (2)
N1—C31.3944 (14)C20—H20a0.9800
N1—C21.3608 (16)C20—H20b0.9800
N1—C91.4599 (16)C20—C211.515 (2)
N2—C141.3938 (15)C18—H180.9400
N2—C131.3651 (16)C18—C171.3923 (19)
N2—C201.4599 (17)C21—H21a0.9800
C1—C121.3679 (18)C21—H21b0.9800
C1—C81.4757 (15)C21—C221.510 (2)
C1—C21.5222 (15)C16—H160.9400
C3—C81.4064 (17)C16—C171.376 (2)
C3—C41.3810 (17)C7—H70.9400
C12—C191.4763 (15)C7—C61.3876 (19)
C12—C131.5226 (16)C17—H170.9400
C8—C71.3944 (16)C6—H60.9400
C19—C141.4068 (18)C10—H10a0.9800
C19—C181.3938 (16)C10—H10b0.9800
C14—C151.3839 (17)C10—C111.505 (2)
C4—H40.9400C22—H22a0.9700
C4—C51.3864 (18)C22—H22b0.9700
C15—H150.9400C22—H22c0.9700
C15—C161.388 (2)C11—H11a0.9700
C9—H9a0.9800C11—H11b0.9700
C9—H9b0.9800C11—H11c0.9700
C9—C101.513 (2)
C3—N1—C9125.64 (10)N2—C20—H20a108.9
C2—N1—C3110.82 (10)N2—C20—H20b108.9
C2—N1—C9123.50 (10)N2—C20—C21113.22 (11)
C14—N2—C20125.36 (11)H20a—C20—H20b107.7
C13—N2—C14110.82 (10)C21—C20—H20a108.9
C13—N2—C20123.81 (10)C21—C20—H20b108.9
C12—C1—C8132.67 (10)C19—C18—H18120.1
C12—C1—C2123.55 (10)C17—C18—C19119.70 (13)
C8—C1—C2103.77 (10)C17—C18—H18120.1
N1—C3—C8109.96 (10)C20—C21—H21a109.0
C4—C3—N1126.62 (12)C20—C21—H21b109.0
C4—C3—C8123.41 (11)H21a—C21—H21b107.8
C1—C12—C19132.58 (10)C22—C21—C20112.92 (12)
C1—C12—C13123.42 (10)C22—C21—H21a109.0
C19—C12—C13103.99 (10)C22—C21—H21b109.0
C3—C8—C1107.56 (9)C15—C16—H16119.9
C7—C8—C1135.38 (11)C17—C16—C15120.19 (12)
C7—C8—C3117.06 (11)C17—C16—H16119.9
C14—C19—C12107.46 (10)C8—C7—H7120.1
C18—C19—C12135.31 (12)C6—C7—C8119.72 (13)
C18—C19—C14117.24 (11)C6—C7—H7120.1
O1—C2—N1123.17 (11)C18—C17—H17119.2
O1—C2—C1129.10 (12)C16—C17—C18121.66 (13)
N1—C2—C1107.71 (9)C16—C17—H17119.2
N2—C14—C19110.11 (10)C5—C6—C7121.72 (13)
C15—C14—N2126.63 (12)C5—C6—H6119.1
C15—C14—C19123.26 (12)C7—C6—H6119.1
O2—C13—N2123.02 (11)C9—C10—H10a108.7
O2—C13—C12129.43 (12)C9—C10—H10b108.7
N2—C13—C12107.54 (9)H10a—C10—H10b107.6
C3—C4—H4121.1C11—C10—C9114.26 (13)
C3—C4—C5117.75 (13)C11—C10—H10a108.7
C5—C4—H4121.1C11—C10—H10b108.7
C14—C15—H15121.0C21—C22—H22a109.5
C14—C15—C16117.91 (13)C21—C22—H22b109.5
C16—C15—H15121.0C21—C22—H22c109.5
N1—C9—H9a108.9H22a—C22—H22b109.5
N1—C9—H9b108.9H22a—C22—H22c109.5
N1—C9—C10113.50 (11)H22b—C22—H22c109.5
H9a—C9—H9b107.7C10—C11—H11a109.5
C10—C9—H9a108.9C10—C11—H11b109.5
C10—C9—H9b108.9C10—C11—H11c109.5
C4—C5—H5119.9H11a—C11—H11b109.5
C6—C5—C4120.29 (12)H11a—C11—H11c109.5
C6—C5—H5119.9H11b—C11—H11c109.5
N1—C3—C8—C11.87 (13)C19—C18—C17—C160.2 (2)
N1—C3—C8—C7177.73 (10)C2—N1—C3—C80.99 (13)
N1—C3—C4—C5178.52 (11)C2—N1—C3—C4179.19 (11)
N1—C9—C10—C1155.90 (16)C2—N1—C9—C10108.04 (14)
N2—C14—C15—C16179.64 (11)C2—C1—C12—C190.6 (2)
N2—C20—C21—C2261.62 (16)C2—C1—C12—C13179.70 (10)
C1—C12—C19—C14176.47 (12)C2—C1—C8—C33.63 (12)
C1—C12—C19—C183.4 (2)C2—C1—C8—C7175.86 (14)
C1—C12—C13—O24.8 (2)C14—N2—C13—O2176.90 (12)
C1—C12—C13—N2176.40 (11)C14—N2—C13—C122.01 (13)
C1—C8—C7—C6179.22 (13)C14—N2—C20—C2174.72 (16)
C3—N1—C2—O1175.40 (11)C14—C19—C18—C171.68 (19)
C3—N1—C2—C13.32 (13)C14—C15—C16—C170.7 (2)
C3—N1—C9—C1069.30 (16)C13—N2—C14—C190.23 (13)
C3—C8—C7—C61.3 (2)C13—N2—C14—C15179.78 (11)
C3—C4—C5—C60.2 (2)C13—N2—C20—C21105.42 (14)
C12—C1—C8—C3175.66 (12)C13—C12—C19—C142.74 (12)
C12—C1—C8—C74.8 (2)C13—C12—C19—C18177.36 (14)
C12—C1—C2—O16.3 (2)C4—C3—C8—C1177.96 (10)
C12—C1—C2—N1175.13 (11)C4—C3—C8—C72.44 (18)
C12—C19—C14—N21.71 (12)C4—C5—C6—C71.3 (2)
C12—C19—C14—C15177.86 (10)C15—C16—C17—C181.1 (2)
C12—C19—C18—C17178.21 (13)C9—N1—C3—C8178.61 (11)
C8—C1—C12—C19179.78 (11)C9—N1—C3—C41.56 (19)
C8—C1—C12—C131.1 (2)C9—N1—C2—O12.29 (19)
C8—C1—C2—O1174.38 (12)C9—N1—C2—C1178.99 (11)
C8—C1—C2—N14.25 (12)C20—N2—C14—C19179.65 (11)
C8—C3—C4—C51.68 (19)C20—N2—C14—C150.10 (19)
C8—C7—C6—C50.5 (2)C20—N2—C13—O23.22 (19)
C19—C12—C13—O2175.91 (13)C20—N2—C13—C12177.87 (11)
C19—C12—C13—N22.91 (12)C18—C19—C14—N2178.38 (10)
C19—C14—C15—C160.87 (18)C18—C19—C14—C152.06 (17)
1-Propyl-3-(1-propyl-1,2-dihydro-2-oxo-3H-indol-3-ylidene)-1,3-dihydro-2H-indol-2-one (Form_III) top
Crystal data top
C22H22N2O2F(000) = 736
Mr = 346.41Dx = 1.304 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 15.0486 (2) ÅCell parameters from 6130 reflections
b = 9.1347 (1) Åθ = 4.8–74.8°
c = 18.5227 (2) ŵ = 0.67 mm1
β = 136.112 (1)°T = 223 K
V = 1765.16 (4) Å3Block, dull light red
Z = 40.20 × 0.17 × 0.13 mm
Data collection top
XtaLAB AFC12 (RINC) Kappa dual home/near
diffractometer
3541 independent reflections
Radiation source: micro-focus sealed X-ray tube, Rigaku (Cu) X-ray Source3072 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 5.8140 pixels mm-1θmax = 75.2°, θmin = 4.2°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2019)
k = 115
Tmin = 0.270, Tmax = 1.000l = 2323
11608 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.5231P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.136(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.60 e Å3
3541 reflectionsΔρmin = 0.43 e Å3
266 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0030 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O20.23797 (11)0.83302 (14)0.20951 (9)0.0484 (3)
N20.44626 (12)0.89716 (14)0.35540 (10)0.0393 (3)
O10.33942 (14)0.65392 (19)0.53117 (10)0.0677 (4)
C80.14714 (14)0.57916 (16)0.26462 (12)0.0368 (3)
C120.35609 (14)0.73178 (16)0.38287 (11)0.0351 (3)
N10.16264 (16)0.5227 (2)0.39373 (12)0.0625 (5)
C130.33529 (14)0.82124 (17)0.30243 (12)0.0367 (3)
C70.09157 (15)0.56846 (19)0.16416 (12)0.0424 (4)
H70.1250790.6218930.1447300.051*
C140.53824 (14)0.86304 (17)0.46145 (12)0.0378 (3)
C190.48756 (14)0.76297 (17)0.48174 (11)0.0364 (3)
C10.26442 (14)0.64715 (17)0.36099 (11)0.0369 (3)
C30.09339 (16)0.4978 (2)0.28983 (13)0.0469 (4)
C180.56864 (16)0.70665 (19)0.58220 (12)0.0446 (4)
H180.5384500.6359990.5972720.053*
C200.46824 (16)0.99641 (18)0.30784 (13)0.0437 (4)
H20a0.5097641.0855230.3500640.052*
H20b0.3854491.0244480.2385380.052*
C150.66253 (16)0.91414 (19)0.53859 (13)0.0463 (4)
H150.6938920.9835530.5239140.056*
C170.69373 (17)0.7556 (2)0.65941 (13)0.0509 (4)
H170.7486070.7177740.7272080.061*
C210.55149 (18)0.92896 (19)0.29769 (14)0.0470 (4)
H21a0.6271350.8838070.3640820.056*
H21b0.5030110.8518810.2446340.056*
C60.01393 (16)0.4781 (2)0.09277 (14)0.0492 (4)
H60.0519940.4712950.0246080.059*
C20.26739 (17)0.6085 (2)0.44193 (13)0.0502 (4)
C50.06388 (17)0.3982 (2)0.11984 (15)0.0511 (4)
H50.1348760.3370050.0702320.061*
C160.73933 (16)0.8598 (2)0.63815 (14)0.0518 (4)
H160.8238860.8940240.6923410.062*
C40.01076 (18)0.4070 (2)0.21950 (15)0.0550 (5)
H40.0446490.3528370.2383590.066*
C220.5941 (2)1.0418 (2)0.26803 (16)0.0547 (5)
H22a0.5195611.0828880.2005010.082*
H22b0.6492660.9958900.2647990.082*
H22c0.6407851.1192310.3197530.082*
C11A0.1301 (6)0.3169 (6)0.5520 (5)0.0550 (12)0.7275
H11Aa0.0380930.3015030.4992880.082*0.7275
H11Ab0.1519570.3995040.5953600.082*0.7275
H11Ac0.1732860.2298720.5947960.082*0.7275
C9A0.1175 (2)0.4927 (3)0.4413 (2)0.0439 (5)0.7275
H9Aa0.0236350.4886040.3868750.053*0.7275
H9Ab0.1446260.5720280.4893670.053*0.7275
C10A0.1717 (2)0.3479 (3)0.5002 (2)0.0457 (5)0.7275
H10Aa0.1425310.2684210.4515920.055*0.7275
H10Ab0.2654770.3511150.5530440.055*0.7275
C9B0.1753 (8)0.3899 (10)0.4603 (7)0.0623 (18)0.2725
H9Ba0.1390700.2976410.4213920.075*0.2725
H9Bb0.2639540.3745660.5280390.075*0.2725
C11B0.0968 (17)0.3611 (17)0.5390 (14)0.063 (4)0.2725
H11Ba0.1121630.2595220.5353790.094*0.2725
H11Bb0.0141790.3697290.5142520.094*0.2725
H11Bc0.1636160.3947310.6105300.094*0.2725
C10B0.0975 (10)0.4561 (11)0.4698 (8)0.074 (2)0.2725
H10Ba0.0096190.4672130.4004510.089*0.2725
H10Bb0.1309010.5537340.5005620.089*0.2725
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0432 (6)0.0516 (7)0.0412 (6)0.0008 (5)0.0273 (5)0.0099 (5)
N20.0395 (7)0.0402 (7)0.0426 (7)0.0012 (5)0.0311 (6)0.0057 (5)
O10.0655 (8)0.0988 (11)0.0477 (7)0.0218 (8)0.0438 (7)0.0090 (7)
C80.0367 (7)0.0354 (7)0.0430 (8)0.0036 (6)0.0303 (7)0.0036 (6)
C120.0379 (7)0.0344 (7)0.0384 (7)0.0061 (6)0.0293 (7)0.0045 (6)
N10.0636 (10)0.0812 (12)0.0517 (9)0.0219 (9)0.0445 (8)0.0012 (8)
C130.0373 (7)0.0363 (7)0.0409 (8)0.0037 (6)0.0296 (7)0.0048 (6)
C70.0409 (8)0.0456 (9)0.0443 (8)0.0008 (7)0.0319 (7)0.0007 (7)
C140.0388 (8)0.0364 (8)0.0416 (8)0.0039 (6)0.0301 (7)0.0009 (6)
C190.0381 (7)0.0349 (7)0.0397 (8)0.0040 (6)0.0292 (7)0.0017 (6)
C10.0402 (8)0.0360 (8)0.0400 (8)0.0042 (6)0.0307 (7)0.0044 (6)
C30.0471 (9)0.0492 (9)0.0495 (9)0.0037 (7)0.0366 (8)0.0020 (7)
C180.0470 (9)0.0446 (9)0.0425 (8)0.0063 (7)0.0324 (8)0.0058 (7)
C200.0473 (9)0.0399 (8)0.0518 (9)0.0013 (7)0.0383 (8)0.0079 (7)
C150.0416 (8)0.0463 (9)0.0512 (9)0.0034 (7)0.0336 (8)0.0032 (7)
C170.0457 (9)0.0560 (10)0.0392 (8)0.0091 (8)0.0267 (8)0.0036 (7)
C210.0589 (10)0.0384 (8)0.0584 (10)0.0009 (7)0.0471 (9)0.0009 (7)
C60.0438 (9)0.0552 (10)0.0470 (9)0.0029 (8)0.0322 (8)0.0070 (8)
C20.0505 (9)0.0609 (11)0.0447 (9)0.0073 (8)0.0361 (8)0.0019 (8)
C50.0425 (9)0.0467 (9)0.0581 (10)0.0046 (7)0.0343 (8)0.0070 (8)
C160.0378 (8)0.0585 (11)0.0467 (9)0.0019 (8)0.0263 (8)0.0076 (8)
C40.0529 (10)0.0533 (10)0.0633 (11)0.0095 (8)0.0433 (10)0.0015 (8)
C220.0659 (11)0.0499 (10)0.0714 (12)0.0060 (9)0.0572 (11)0.0021 (9)
C11A0.068 (3)0.054 (3)0.0531 (18)0.0091 (18)0.047 (2)0.0009 (18)
C9A0.0483 (12)0.0481 (14)0.0536 (13)0.0058 (11)0.0428 (12)0.0124 (11)
C10A0.0528 (13)0.0421 (13)0.0495 (13)0.0008 (10)0.0393 (12)0.0083 (10)
C9B0.058 (4)0.060 (5)0.064 (5)0.000 (4)0.042 (4)0.008 (4)
C11B0.090 (10)0.067 (10)0.078 (8)0.012 (6)0.076 (9)0.004 (7)
C10B0.087 (6)0.071 (6)0.082 (6)0.011 (5)0.067 (5)0.010 (5)
Geometric parameters (Å, º) top
O2—C131.2188 (18)C21—H21a0.9800
N2—C131.368 (2)C21—H21b0.9800
N2—C141.3973 (19)C21—C221.511 (2)
N2—C201.4586 (19)C6—H60.9400
O1—C21.223 (2)C6—C51.375 (3)
C8—C71.389 (2)C5—H50.9400
C8—C11.465 (2)C5—C41.388 (3)
C8—C31.403 (2)C16—H160.9400
C12—C131.521 (2)C4—H40.9400
C12—C191.458 (2)C22—H22a0.9700
C12—C11.364 (2)C22—H22b0.9700
N1—C31.397 (2)C22—H22c0.9700
N1—C21.366 (2)C11A—H11Aa0.9700
N1—C9A1.476 (3)C11A—H11Ab0.9700
N1—C9B1.641 (9)C11A—H11Ac0.9700
C7—H70.9400C11A—C10A1.503 (7)
C7—C61.387 (2)C9A—H9Aa0.9800
C14—C191.404 (2)C9A—H9Ab0.9800
C14—C151.381 (2)C9A—C10A1.524 (3)
C19—C181.394 (2)C10A—H10Aa0.9800
C1—C21.509 (2)C10A—H10Ab0.9800
C3—C41.378 (2)C9B—H9Ba0.9800
C18—H180.9400C9B—H9Bb0.9800
C18—C171.381 (2)C9B—C10B1.436 (12)
C20—H20a0.9800C11B—H11Ba0.9700
C20—H20b0.9800C11B—H11Bb0.9700
C20—C211.525 (2)C11B—H11Bc0.9700
C15—H150.9400C11B—C10B1.555 (19)
C15—C161.382 (2)C10B—H10Ba0.9800
C17—H170.9400C10B—H10Bb0.9800
C17—C161.386 (3)
C13—N2—C14110.83 (12)C5—C6—H6119.4
C13—N2—C20124.96 (13)O1—C2—N1123.97 (16)
C14—N2—C20124.17 (13)O1—C2—C1128.76 (16)
C7—C8—C1134.09 (14)N1—C2—C1106.90 (14)
C7—C8—C3118.27 (15)C6—C5—H5119.6
C3—C8—C1107.24 (13)C6—C5—C4120.81 (16)
C19—C12—C13105.09 (13)C4—C5—H5119.6
C1—C12—C13124.30 (13)C15—C16—C17121.10 (16)
C1—C12—C19130.57 (14)C15—C16—H16119.4
C3—N1—C9A125.81 (17)C17—C16—H16119.4
C3—N1—C9B118.8 (3)C3—C4—C5117.68 (17)
C2—N1—C3110.97 (14)C3—C4—H4121.2
C2—N1—C9A121.83 (17)C5—C4—H4121.2
C2—N1—C9B118.6 (3)C21—C22—H22a109.5
O2—C13—N2124.85 (14)C21—C22—H22b109.5
O2—C13—C12128.34 (14)C21—C22—H22c109.5
N2—C13—C12106.67 (12)H22a—C22—H22b109.5
C8—C7—H7120.4H22a—C22—H22c109.5
C6—C7—C8119.30 (15)H22b—C22—H22c109.5
C6—C7—H7120.4H11Aa—C11A—H11Ab109.5
N2—C14—C19110.04 (13)H11Aa—C11A—H11Ac109.5
C15—C14—N2127.60 (15)H11Ab—C11A—H11Ac109.5
C15—C14—C19122.36 (15)C10A—C11A—H11Aa109.5
C14—C19—C12107.34 (13)C10A—C11A—H11Ab109.5
C18—C19—C12133.97 (15)C10A—C11A—H11Ac109.5
C18—C19—C14118.42 (14)N1—C9A—H9Aa109.6
C8—C1—C2104.98 (13)N1—C9A—H9Ab109.6
C12—C1—C8132.45 (14)N1—C9A—C10A110.5 (2)
C12—C1—C2122.55 (14)H9Aa—C9A—H9Ab108.1
N1—C3—C8109.58 (15)C10A—C9A—H9Aa109.6
C4—C3—C8122.68 (16)C10A—C9A—H9Ab109.6
C4—C3—N1127.72 (16)C11A—C10A—C9A111.5 (3)
C19—C18—H18120.3C11A—C10A—H10Aa109.3
C17—C18—C19119.41 (16)C11A—C10A—H10Ab109.3
C17—C18—H18120.3C9A—C10A—H10Aa109.3
N2—C20—H20a109.0C9A—C10A—H10Ab109.3
N2—C20—H20b109.0H10Aa—C10A—H10Ab108.0
N2—C20—C21112.80 (13)N1—C9B—H9Ba112.4
H20a—C20—H20b107.8N1—C9B—H9Bb112.4
C21—C20—H20a109.0H9Ba—C9B—H9Bb110.0
C21—C20—H20b109.0C10B—C9B—N196.7 (7)
C14—C15—H15121.1C10B—C9B—H9Ba112.4
C14—C15—C16117.76 (16)C10B—C9B—H9Bb112.4
C16—C15—H15121.1H11Ba—C11B—H11Bb109.5
C18—C17—H17119.6H11Ba—C11B—H11Bc109.5
C18—C17—C16120.83 (16)H11Bb—C11B—H11Bc109.5
C16—C17—H17119.6C10B—C11B—H11Ba109.5
C20—C21—H21a109.3C10B—C11B—H11Bb109.5
C20—C21—H21b109.3C10B—C11B—H11Bc109.5
H21a—C21—H21b107.9C9B—C10B—C11B110.9 (9)
C22—C21—C20111.76 (14)C9B—C10B—H10Ba109.5
C22—C21—H21a109.3C9B—C10B—H10Bb109.5
C22—C21—H21b109.3C11B—C10B—H10Ba109.5
C7—C6—H6119.4C11B—C10B—H10Bb109.5
C5—C6—C7121.25 (16)H10Ba—C10B—H10Bb108.1
N2—C14—C19—C120.10 (17)C19—C18—C17—C160.0 (3)
N2—C14—C19—C18174.91 (13)C1—C8—C7—C6171.43 (16)
N2—C14—C15—C16176.81 (16)C1—C8—C3—N16.02 (19)
N2—C20—C21—C22168.95 (15)C1—C8—C3—C4172.98 (17)
C8—C7—C6—C50.4 (3)C1—C12—C13—O20.5 (3)
C8—C1—C2—O1171.2 (2)C1—C12—C13—N2176.38 (14)
C8—C1—C2—N11.87 (19)C1—C12—C19—C14176.90 (15)
C8—C3—C4—C50.6 (3)C1—C12—C19—C189.4 (3)
C12—C19—C18—C17176.12 (17)C3—C8—C7—C60.3 (2)
C12—C1—C2—O17.2 (3)C3—C8—C1—C12176.99 (16)
C12—C1—C2—N1179.66 (16)C3—C8—C1—C24.75 (17)
N1—C3—C4—C5179.38 (19)C3—N1—C2—O1175.3 (2)
N1—C9A—C10A—C11A178.3 (3)C3—N1—C2—C11.8 (2)
N1—C9B—C10B—C11B175.5 (10)C3—N1—C9A—C10A99.3 (3)
C13—N2—C14—C191.20 (18)C3—N1—C9B—C10B111.3 (6)
C13—N2—C14—C15177.82 (15)C18—C17—C16—C152.2 (3)
C13—N2—C20—C21103.14 (18)C20—N2—C13—O24.4 (2)
C13—C12—C19—C140.89 (16)C20—N2—C13—C12179.61 (14)
C13—C12—C19—C18172.76 (17)C20—N2—C14—C19179.12 (14)
C13—C12—C1—C822.6 (3)C20—N2—C14—C150.1 (3)
C13—C12—C1—C2155.44 (15)C15—C14—C19—C12178.97 (14)
C7—C8—C1—C124.7 (3)C15—C14—C19—C184.2 (2)
C7—C8—C1—C2177.09 (18)C6—C5—C4—C30.2 (3)
C7—C8—C3—N1179.79 (16)C2—N1—C3—C85.0 (2)
C7—C8—C3—C40.8 (3)C2—N1—C3—C4174.0 (2)
C7—C6—C5—C40.7 (3)C2—N1—C9A—C10A95.4 (3)
C14—N2—C13—O2177.74 (15)C2—N1—C9B—C10B108.8 (6)
C14—N2—C13—C121.71 (16)C9A—N1—C3—C8161.66 (19)
C14—N2—C20—C2174.5 (2)C9A—N1—C3—C419.4 (3)
C14—C19—C18—C173.0 (2)C9A—N1—C2—O18.0 (3)
C14—C15—C16—C171.1 (3)C9A—N1—C2—C1165.48 (18)
C19—C12—C13—O2177.43 (16)C9B—N1—C3—C8147.7 (4)
C19—C12—C13—N21.59 (15)C9B—N1—C3—C431.2 (4)
C19—C12—C1—C8160.02 (16)C9B—N1—C2—O141.9 (5)
C19—C12—C1—C222.0 (3)C9B—N1—C2—C1144.6 (4)
C19—C14—C15—C162.1 (2)
Various crystallization conditions and the obtained crystals with different shape top
No.MethodCrystallization solventCrystallization temperatureObtained crystal (shape)No. of samples obtained/tried
11MeOH278 KA (Plate)12/18*, 0/62**
22CHCl3 / EtOH298 KB (Block)1/36
32CHCl3 / PE298 KC (Needle)48/48
42Et2O / MeOH298 KD (Needle)3/3
51MeOH278 KE (Block)29/29
Methods 1 and 2 represent the recrystallisation and liquid–vapour diffusion methods, respectively. Notes: (*) first attempt in run 1; (**) subsequent attempts for run 1.
Characteristic torsion angles of Forms I, II and III top
Form IForm IIForm III
The orientation of propyl groupsOppositeOppositeSame
N1—C9—C10—C11-58.57-55.92178.37 (A parts)
-175.54 (B parts)
C2—N1—C9—C10106.75108.06-95.44 (A parts)
108.77 (B parts)
C3—N1—C9—C10-70.86-69.2999.34 (A parts)
-111.30 (B parts)
N2—C20—C21—C2258.5761.64-168.96
C13—N2—C20—C21-106.75-105.43-103.13
C14—N2—C20—C2170.8674.7174.49
Results of lattice energy calculations (kJ mol-1) for Forms I, II and III top
Total energy*Most stable pairSecond stable pairThird stable pair
Form I-191.7-87.6 (22.8%)-20.4 (5.3%)-
Form II-189.9-87.6 (23.1%)-26.5 (7.0%)-19.4 (5.1%)
Form III A parts-189.0-70.1 (18.5%)-65.6 (17.4%)-34.2 (9.0%)
Form III B parts-180.4-69.9 (19.4%)-65.4 (18.1.%)-35.5 (9.9%)
Note: (*) the total energy of all molecular pairs is the sum of the points of all calculated molecular pairs. Half of the total energy corresponds to the lattice energy.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds