Download citation
Download citation
link to html
A new one-dimensional thio­cyanate-bridged cobalt(III) Schiff base com­plex, namely, catena-poly[[[4-bromo-2-((Z)-{[2-(thio­phen-2-yl)eth­yl]imino}­meth­yl)phe­nolato-κ2N,O]cobalt(III)]-μ-thio­cyanato-κ2N:S], [Co(SCN)(C13H11BrNOS)2]n or [Co(μ1,3-SCN)L2]n (1), where HL is 4-bromo-2-((Z)-{[2-(thio­phene-2-yl)eth­yl]imino}­meth­yl)phenol, a bidentate Schiff base prepared from the condensation reaction of 5-bromo­salicyl­aldehyde and 2-(thio­phen-2-yl)ethyl­amine, has been synthesized by stirring Co(ClO4)2·6H2O, the Schiff base HL and ammonium thio­cyanate (in a 1:2:1 molar ratio) in ethanol medium. The com­plex was characterized by FT–IR, electronic spectra and single-crystal X-ray diffraction (SC-XRD) studies. The SC-XRD data suggest that the com­pound crystallizes in the ortho­rhom­bic space group Pca21. The CoIII ion in 1 adopts a distorted octa­hedral geometry, the metal sites being six-coordinated by one thio­cyanate N atom and one thio­cyanate S atom in apical positions, and by two imine N atoms and two phenolate O atoms from two anionic L ligands which form the basal plane. The thio­cyanate ligand acts as a μ-1,3 bridge, joining neighbouring CoIII atoms and forming a uniform zigzag one-dimensional polymeric chain. The crystallographic data were also used in the Hirshfeld surface (HS) analysis, which aimed to investigate the nature and qu­anti­tative significance of any noncovalent inter­molecular inter­actions inside the crystal lattice. The crystal void parameters have also been com­puted and show the molecules to be tightly packed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229624006375/vx3004sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229624006375/vx3004Isup2.hkl
Contains datablock I

CCDC reference: 2104680

Computing details top

catena-Poly[[[4-bromo-2-((Z)-{[2-(thiophen-2-yl)ethyl]imino}methyl)phenolato-κ2N,O]cobalt(III)]-µ-thiocyanato-κ2N:S] top
Crystal data top
[Co(SCN)(C13H11BrNOS)2]Dx = 1.656 Mg m3
Mr = 735.40Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 511 reflections
a = 16.5337 (9) Åθ = 4.0–18.4°
b = 13.2578 (7) ŵ = 3.53 mm1
c = 13.4575 (7) ÅT = 294 K
V = 2949.9 (3) Å3Plate, black
Z = 40.25 × 0.21 × 0.07 mm
F(000) = 1464
Data collection top
Bruker DUO VENTURE
diffractometer
4887 reflections with I > 2σ(I)
φ and ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.2°, θmin = 2.0°
Tmin = 0.511, Tmax = 0.745h = 1919
38170 measured reflectionsk = 1515
5236 independent reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.3519P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.37 e Å3
5236 reflectionsΔρmin = 0.65 e Å3
357 parametersAbsolute structure: Refined as an inversion twin
35 restraintsAbsolute structure parameter: 0.019 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Single-crystal X-ray intensity data of 1 were collected on a Bruker DUO VENTURE diffractometer equipped with graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) at 294 (2) K. Data collection and reduction were carried out using APEX3 and SAINT packages (Bruker, 2016). Multi-scan absorption correction using SADABS (Bruker, 2016) was applied to the intensity data. The structure was solved by direct methods using SHELXT (Sheldrick, 2015a) and refined with full-matrix least-squares on F2 on all unique reflections using SHELXL2019 (Sheldrick, 2015b).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.55187 (4)0.07467 (5)0.66869 (6)0.0667 (2)
Br20.01241 (5)0.86507 (5)0.35974 (7)0.0764 (2)
Co10.23708 (4)0.46306 (5)0.61983 (6)0.04410 (19)
S1A0.1346 (4)0.0811 (4)0.4033 (5)0.0818 (17)0.508 (10)
C10A0.1724 (4)0.1989 (4)0.4120 (4)0.0545 (14)0.508 (10)
C11A0.2508 (13)0.203 (2)0.374 (2)0.0642 (14)0.508 (10)
H11A0.2827210.2601400.3705290.077*0.508 (10)
C12A0.275 (2)0.102 (3)0.342 (4)0.085 (5)0.508 (10)
H12A0.3256670.0881910.3142140.102*0.508 (10)
C13A0.218 (2)0.032 (2)0.355 (3)0.083 (7)0.508 (10)
H13A0.2240010.0362090.3387540.099*0.508 (10)
S1B0.2707 (3)0.2109 (5)0.3738 (5)0.0642 (14)0.492 (10)
C10B0.1724 (4)0.1989 (4)0.4120 (4)0.0545 (14)0.492 (10)
C11B0.1449 (17)0.1025 (16)0.384 (2)0.0818 (17)0.492 (10)
H11B0.0933680.0775460.3965290.098*0.492 (10)
C12B0.208 (2)0.047 (2)0.333 (3)0.083 (7)0.492 (10)
H12B0.2009190.0173720.3078990.099*0.492 (10)
C13B0.278 (2)0.098 (3)0.324 (4)0.085 (5)0.492 (10)
H13B0.3245320.0721730.2935350.102*0.492 (10)
S20.4193 (2)0.85630 (18)0.5991 (2)0.1086 (9)
S30.36270 (8)0.48549 (13)0.28652 (10)0.0490 (3)
O10.3295 (2)0.4323 (3)0.6924 (3)0.0458 (8)
O20.1368 (2)0.4934 (3)0.5636 (3)0.0450 (8)
N10.2125 (2)0.3127 (3)0.6065 (3)0.0401 (9)
N20.2599 (2)0.6140 (3)0.6404 (3)0.0380 (9)
N30.2977 (3)0.4627 (4)0.4756 (4)0.0577 (13)
C10.3770 (3)0.3521 (4)0.6830 (4)0.0380 (10)
C20.4580 (3)0.3609 (4)0.7138 (4)0.0440 (11)
H20.4771370.4223540.7374280.053*
C30.5093 (3)0.2787 (4)0.7091 (4)0.0457 (12)
H30.5629460.2847610.7290910.055*
C40.4804 (3)0.1874 (4)0.6744 (4)0.0470 (11)
C50.4019 (3)0.1767 (4)0.6439 (4)0.0467 (12)
H50.3833390.1146930.6210400.056*
C60.3503 (3)0.2592 (4)0.6472 (3)0.0405 (11)
C70.2660 (3)0.2434 (4)0.6187 (4)0.0422 (10)
H70.2495740.1771260.6083610.051*
C80.1317 (3)0.2788 (5)0.5752 (4)0.0488 (13)
H8A0.0909570.3232640.6029550.059*
H8B0.1218590.2112500.6001270.059*
C90.1255 (3)0.2791 (5)0.4602 (4)0.0538 (14)
H9A0.0691430.2719400.4414880.065*
H9B0.1441410.3438550.4355710.065*
C140.1135 (3)0.5774 (4)0.5181 (4)0.0381 (10)
C150.0423 (3)0.5726 (4)0.4600 (4)0.0500 (13)
H150.0150540.5117400.4525540.060*
C160.0136 (3)0.6582 (5)0.4147 (5)0.0529 (13)
H160.0334220.6551920.3768390.063*
C170.0543 (3)0.7492 (5)0.4249 (4)0.0493 (13)
C180.1228 (3)0.7555 (4)0.4797 (4)0.0454 (11)
H180.1496340.8168700.4854180.054*
C190.1536 (3)0.6696 (4)0.5282 (4)0.0400 (10)
C200.2208 (3)0.6831 (4)0.5948 (4)0.0394 (11)
H200.2375690.7491520.6057860.047*
C210.3267 (3)0.6465 (4)0.7052 (4)0.0465 (12)
H21A0.3329720.5987570.7593030.056*
H21B0.3141150.7118680.7336240.056*
C220.4056 (3)0.6533 (5)0.6469 (5)0.0545 (14)
H22A0.4496550.6668320.6926500.065*
H22B0.4161650.5888160.6154030.065*
C230.4041 (3)0.7335 (4)0.5693 (5)0.0563 (14)
C240.3834 (3)0.7201 (4)0.4648 (4)0.0492 (13)
H240.3736180.6596910.4318280.059*
C250.3814 (6)0.8211 (7)0.4231 (6)0.093 (3)
H250.3686190.8326190.3568110.112*
C260.3988 (8)0.8954 (6)0.4843 (8)0.110 (4)
H260.3994610.9628400.4653230.131*
C270.3222 (3)0.4714 (4)0.3964 (4)0.0403 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0652 (4)0.0524 (3)0.0825 (4)0.0116 (3)0.0085 (3)0.0013 (3)
Br20.0716 (5)0.0571 (4)0.1004 (5)0.0047 (3)0.0297 (4)0.0145 (4)
Co10.0413 (4)0.0484 (4)0.0426 (3)0.0082 (3)0.0047 (3)0.0006 (3)
S1A0.091 (3)0.048 (3)0.107 (4)0.0199 (19)0.000 (2)0.006 (2)
C10A0.057 (3)0.057 (3)0.049 (3)0.011 (3)0.018 (3)0.000 (3)
C11A0.064 (3)0.068 (2)0.0604 (16)0.013 (2)0.001 (2)0.0059 (15)
C12A0.071 (5)0.114 (7)0.070 (15)0.018 (5)0.001 (6)0.007 (6)
C13A0.114 (10)0.049 (8)0.084 (16)0.010 (7)0.029 (11)0.002 (10)
S1B0.064 (3)0.068 (2)0.0604 (16)0.013 (2)0.001 (2)0.0059 (15)
C10B0.057 (3)0.057 (3)0.049 (3)0.011 (3)0.018 (3)0.000 (3)
C11B0.091 (3)0.048 (3)0.107 (4)0.0199 (19)0.000 (2)0.006 (2)
C12B0.114 (10)0.049 (8)0.084 (16)0.010 (7)0.029 (11)0.002 (10)
C13B0.071 (5)0.114 (7)0.070 (15)0.018 (5)0.001 (6)0.007 (6)
S20.153 (2)0.0650 (12)0.1078 (18)0.0386 (14)0.0157 (17)0.0019 (11)
S30.0380 (6)0.0734 (9)0.0356 (6)0.0066 (6)0.0027 (5)0.0105 (6)
O10.0396 (18)0.0472 (18)0.051 (2)0.0016 (15)0.0096 (15)0.0080 (16)
O20.0389 (18)0.049 (2)0.0470 (18)0.0137 (15)0.0115 (16)0.0065 (17)
N10.0379 (19)0.049 (2)0.034 (2)0.0136 (18)0.0052 (18)0.0021 (17)
N20.0336 (19)0.046 (2)0.034 (2)0.0091 (17)0.0010 (16)0.0037 (17)
N30.069 (3)0.065 (3)0.039 (3)0.017 (3)0.017 (2)0.001 (2)
C10.035 (2)0.047 (2)0.032 (2)0.0050 (19)0.0024 (19)0.002 (2)
C20.043 (3)0.044 (3)0.045 (3)0.008 (2)0.004 (2)0.001 (2)
C30.035 (2)0.059 (3)0.044 (3)0.002 (2)0.005 (2)0.004 (2)
C40.044 (3)0.051 (3)0.046 (3)0.003 (2)0.002 (3)0.003 (2)
C50.051 (3)0.043 (3)0.046 (3)0.006 (2)0.003 (2)0.001 (2)
C60.037 (2)0.046 (3)0.038 (3)0.005 (2)0.0006 (19)0.002 (2)
C70.043 (3)0.046 (3)0.037 (2)0.012 (2)0.005 (2)0.002 (2)
C80.035 (2)0.057 (3)0.054 (3)0.018 (2)0.005 (2)0.001 (3)
C90.046 (3)0.056 (3)0.059 (3)0.005 (2)0.022 (3)0.004 (3)
C140.035 (2)0.043 (3)0.036 (2)0.0039 (19)0.000 (2)0.004 (2)
C150.041 (3)0.056 (3)0.053 (3)0.010 (2)0.011 (2)0.003 (3)
C160.042 (3)0.061 (3)0.055 (3)0.003 (2)0.014 (3)0.006 (3)
C170.047 (3)0.050 (3)0.051 (3)0.000 (2)0.005 (2)0.005 (2)
C180.045 (3)0.040 (2)0.051 (3)0.003 (2)0.002 (2)0.001 (2)
C190.034 (2)0.050 (3)0.036 (2)0.006 (2)0.001 (2)0.001 (2)
C200.037 (2)0.042 (3)0.040 (3)0.009 (2)0.001 (2)0.003 (2)
C210.046 (3)0.050 (3)0.043 (3)0.016 (2)0.015 (2)0.000 (2)
C220.038 (3)0.056 (3)0.070 (4)0.010 (2)0.014 (3)0.002 (3)
C230.044 (3)0.047 (3)0.078 (4)0.011 (2)0.004 (3)0.001 (3)
C240.057 (3)0.039 (3)0.052 (3)0.009 (2)0.012 (3)0.007 (2)
C250.129 (8)0.088 (6)0.064 (5)0.005 (5)0.017 (5)0.017 (4)
C260.181 (11)0.045 (4)0.103 (7)0.019 (5)0.022 (7)0.008 (5)
C270.031 (2)0.042 (3)0.048 (3)0.0046 (19)0.003 (2)0.001 (2)
Geometric parameters (Å, º) top
Co1—O11.858 (4)C2—C31.383 (8)
Co1—O21.866 (4)C2—H20.9300
Co1—N12.043 (4)C3—C41.382 (8)
Co1—N22.055 (4)C3—H30.9300
Co1—N32.184 (5)C4—C51.369 (8)
Co1—S3i2.800 (2)C5—C61.389 (8)
Br1—C41.907 (5)C5—H50.9300
Br2—C171.900 (6)C6—C71.460 (7)
S1A—C13A1.66 (2)C7—H70.9300
S1A—C10A1.687 (7)C8—C91.552 (9)
C10A—C11A1.39 (2)C8—H8A0.9700
C10A—C91.467 (9)C8—H8B0.9700
C11A—C12A1.46 (2)C9—H9A0.9700
C11A—H11A0.9300C9—H9B0.9700
C12A—C13A1.343 (19)C14—C191.396 (7)
C12A—H12A0.9300C14—C151.415 (7)
C13A—H13A0.9300C15—C161.373 (8)
S1B—C13B1.65 (2)C15—H150.9300
S1B—C10B1.711 (7)C16—C171.388 (9)
C10B—C11B1.41 (2)C16—H160.9300
C10B—C91.467 (9)C17—C181.355 (8)
C11B—C12B1.45 (3)C18—C191.407 (8)
C11B—H11B0.9300C18—H180.9300
C12B—C13B1.339 (19)C19—C201.439 (7)
C12B—H12B0.9300C20—H200.9300
C13B—H13B0.9300C21—C221.525 (8)
S2—C261.665 (11)C21—H21A0.9700
S2—C231.696 (6)C21—H21B0.9700
S3—C271.633 (5)C22—C231.490 (9)
O1—C11.328 (6)C22—H22A0.9700
O2—C141.328 (6)C22—H22B0.9700
N1—C71.286 (7)C23—C241.458 (9)
N1—C81.471 (6)C24—C251.452 (10)
N2—C201.279 (7)C24—H240.9300
N2—C211.472 (6)C25—C261.315 (13)
N3—C271.147 (7)C25—H250.9300
C1—C61.394 (7)C26—H260.9300
C1—C21.407 (7)
O1—Co1—N189.74 (16)C6—C5—H5120.3
O1—Co1—N289.54 (16)C5—C6—C1120.8 (4)
O2—Co1—N290.44 (16)C5—C6—C7117.7 (5)
O2—Co1—N189.90 (16)C1—C6—C7121.4 (5)
O1—Co1—O2172.12 (17)N1—C7—C6126.0 (5)
N3—Co1—S3i169.20 (14)N1—C7—H7117.0
N1—Co1—N2177.19 (16)C6—C7—H7117.0
N1—Co1—S3i93.23 (11)N1—C8—C9110.1 (4)
O1—Co1—N395.1 (2)N1—C8—H8A109.6
O1—Co1—S3i94.97 (12)C9—C8—H8A109.6
O2—Co1—N392.7 (2)N1—C8—H8B109.6
N2—Co1—S3i84.08 (11)C9—C8—H8B109.6
N1—Co1—N390.63 (18)H8A—C8—H8B108.1
O2—Co1—S3i77.21 (12)C10B—C9—C8113.8 (5)
C27—N3—Co1171.2 (5)C10A—C9—C8113.8 (5)
N3—C27—S3176.4 (5)C10A—C9—H9A108.8
N2—Co1—N392.14 (18)C8—C9—H9A108.8
C13A—S1A—C10A95.0 (12)C10A—C9—H9B108.8
C11A—C10A—C9128.9 (12)C8—C9—H9B108.8
C11A—C10A—S1A110.6 (12)H9A—C9—H9B107.7
C9—C10A—S1A120.4 (5)O2—C14—C19123.5 (5)
C10A—C11A—C12A109.7 (19)O2—C14—C15117.3 (4)
C10A—C11A—H11A125.2C19—C14—C15119.2 (5)
C12A—C11A—H11A125.2C16—C15—C14119.8 (5)
C13A—C12A—C11A114 (2)C16—C15—H15120.1
C13A—C12A—H12A123.2C14—C15—H15120.1
C11A—C12A—H12A123.2C15—C16—C17120.4 (5)
C12A—C13A—S1A111 (2)C15—C16—H16119.8
C12A—C13A—H13A124.4C17—C16—H16119.8
S1A—C13A—H13A124.4C18—C17—C16120.9 (5)
C13B—S1B—C10B96.3 (12)C18—C17—Br2120.4 (4)
C11B—C10B—C9127.3 (12)C16—C17—Br2118.7 (4)
C11B—C10B—S1B108.1 (12)C17—C18—C19120.3 (5)
C9—C10B—S1B124.6 (5)C17—C18—H18119.8
C10B—C11B—C12B110.5 (19)C19—C18—H18119.8
C10B—C11B—H11B124.7C14—C19—C18119.4 (5)
C12B—C11B—H11B124.7C14—C19—C20122.4 (5)
C13B—C12B—C11B115 (3)C18—C19—C20117.8 (5)
C13B—C12B—H12B122.7N2—C20—C19126.9 (5)
C11B—C12B—H12B122.7N2—C20—H20116.6
C12B—C13B—S1B110 (2)C19—C20—H20116.6
C12B—C13B—H13B124.8N2—C21—C22110.8 (4)
S1B—C13B—H13B124.8N2—C21—H21A109.5
C26—S2—C2392.8 (4)C22—C21—H21A109.5
C1—O1—Co1127.7 (3)N2—C21—H21B109.5
C14—O2—Co1128.7 (3)C22—C21—H21B109.5
C7—N1—C8116.3 (5)H21A—C21—H21B108.1
C7—N1—Co1123.3 (3)C23—C22—C21112.8 (5)
C8—N1—Co1120.2 (4)C23—C22—H22A109.0
C20—N2—C21117.0 (4)C21—C22—H22A109.0
C20—N2—Co1122.7 (3)C23—C22—H22B109.0
C21—N2—Co1120.2 (3)C21—C22—H22B109.0
O1—C1—C6123.6 (4)H22A—C22—H22B107.8
O1—C1—C2118.0 (4)C24—C23—C22126.4 (5)
C6—C1—C2118.5 (5)C24—C23—S2112.3 (5)
C3—C2—C1120.4 (5)C22—C23—S2121.1 (5)
C3—C2—H2119.8C25—C24—C23105.4 (6)
C1—C2—H2119.8C25—C24—H24127.3
C4—C3—C2119.6 (5)C23—C24—H24127.3
C4—C3—H3120.2C26—C25—C24116.4 (8)
C2—C3—H3120.2C26—C25—H25121.8
C5—C4—C3121.3 (5)C24—C25—H25121.8
C5—C4—Br1119.6 (4)C25—C26—S2113.1 (7)
C3—C4—Br1119.1 (4)C25—C26—H26123.5
C4—C5—C6119.5 (5)S2—C26—H26123.5
C4—C5—H5120.3
Symmetry code: (i) x+1/2, y, z+1/2.
Hydrogen–bond and ππ interactions geometry (Å, °) top
Cg1 and Cg2 are the centroids of the C14–C19 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C16—H16···S3i0.932.813.582 (6)141
Centroid-to-centroid distancePerpendicular interplanar distanceOffset
Cg1···Cg2i3.882 (3)3.505 (2)1.668 (7)
Symmetry code: (i) x-1/2, -y+1, z.
Quantitative data from the Hirshfeld surface study of 1 top
Volume VH3)Area AH2)Globularity (G)Asphericity (Ω)
Complex 1726.91550.540.7100.125
Voids in the crystal structure of compound 1 top
Void volume (Å3)Void surface (Å2)Unit-cell volume (Å3)Molecular occupancy (%)Porosity (%)
Complex 1362.731038.302949.987.7112.29
Selected geometric parameters (Å, ?) for compound 1 top
Bond(Å)Bond angle(?)Bond angle(?)
Co1-O11.858 (4)O1- Co1-N189.74 (16)O1- Co1-N289.54 (16)
Co1-O21.866 (4)O2- Co1-N290.44 (16)O2-Co1-N189.90 (16)
Co1-N12.043 (4)O1- Co1-O2172.12 (17)N3-Co1-S3i169.20 (14)
Co1-N22.055 (4)N1- Co1-N2177.19 (16)N1-Co1-S3i93.23 (11)
Co1-N32.184 (5)O1- Co1-N395.1 (2)O1-Co1-S3i94.97 (12)
Co1- S3i2.800 (2)N3- Co1-O292.7 (2)N2-Co1-S3i84.08 (11)
N1- Co1-N390.63 (18)O2-Co1-S3i77.21 (12)
C27- N3-Co1171.2 (5)N3 -C27- S3176.4 (5)
Symmetry code: (i) 1/2-x, y, 1/2+z.

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds