The intermetallic title compound, pentacerium diplatinum tetraindide, crystallizes in space group Pbam and adopts the Lu5Ni2In4 structure type. One Ce atom exhibits site symmetry 2/m and all other atoms (two Ce, one Pt and two In) are located on mirror planes.
Supporting information
Key indicators
- Single-crystal X-ray study
- T = 291 K
- Mean (e-Ce)= 0.001 Å
- R factor = 0.036
- wR factor = 0.115
- Data-to-parameter ratio = 39.7
checkCIF/PLATON results
No syntax errors found
No errors found in this datablock
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
pentacerium diplatinum tetraindide
top
Crystal data top
Ce5Pt2In4 | F(000) = 1284 |
Mr = 1550.06 | Dx = 8.839 Mg m−3 |
Orthorhombic, Pbam | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2 2ab | Cell parameters from 25 reflections |
a = 8.2088 (14) Å | θ = 18.2–23.1° |
b = 18.579 (4) Å | µ = 50.69 mm−1 |
c = 3.8188 (8) Å | T = 291 K |
V = 582.4 (2) Å3 | Lath, metallic light-grey |
Z = 2 | 0.07 × 0.04 × 0.01 mm |
Data collection top
Enraf–Nonius CAD-4 diffractometer | 1149 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 35.0°, θmin = 2.2° |
ω scans | h = −13→0 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→29 |
Tmin = 0.090, Tmax = 0.602 | l = 0→6 |
1430 measured reflections | 1 standard reflections every 120 min |
1430 independent reflections | intensity decay: none |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.115 | (Δ/σ)max < 0.001 |
S = 0.82 | Δρmax = 2.46 e Å−3 |
1430 reflections | Δρmin = −4.63 e Å−3 |
36 parameters | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0017 (3) |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Ce1 | 0.12160 (8) | 0.41785 (4) | 0.0000 | 0.01245 (16) | |
Ce2 | 0.24262 (8) | 0.22254 (4) | 0.0000 | 0.01195 (16) | |
Ce3 | 0.0000 | 0.0000 | 0.0000 | 0.0134 (2) | |
Pt | 0.01979 (6) | 0.30468 (2) | 0.5000 | 0.01234 (14) | |
In1 | 0.29027 (10) | 0.07173 (5) | 0.5000 | 0.01462 (19) | |
In2 | 0.43306 (11) | 0.34996 (5) | 0.5000 | 0.01504 (19) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ce1 | 0.0110 (3) | 0.0103 (3) | 0.0160 (3) | −0.0003 (2) | 0.000 | 0.000 |
Ce2 | 0.0113 (3) | 0.0113 (3) | 0.0133 (3) | 0.00148 (19) | 0.000 | 0.000 |
Ce3 | 0.0122 (4) | 0.0116 (4) | 0.0163 (4) | 0.0001 (3) | 0.000 | 0.000 |
Pt | 0.0122 (2) | 0.0094 (2) | 0.0154 (2) | 0.00008 (13) | 0.000 | 0.000 |
In1 | 0.0102 (3) | 0.0096 (3) | 0.0241 (5) | −0.0013 (3) | 0.000 | 0.000 |
In2 | 0.0123 (4) | 0.0093 (3) | 0.0234 (5) | 0.0008 (3) | 0.000 | 0.000 |
Geometric parameters (Å, º) top
Ce1—Pti | 2.9606 (7) | Ce3—In2xii | 3.4233 (9) |
Ce1—Pt | 2.9606 (7) | Ce3—In2ii | 3.4233 (9) |
Ce1—In1ii | 3.3288 (10) | Ce3—In2xiii | 3.4233 (9) |
Ce1—In1iii | 3.3288 (10) | Ce3—Ce1xiii | 3.4609 (8) |
Ce1—In2 | 3.4313 (10) | Ce3—Ce1ii | 3.4609 (8) |
Ce1—In2i | 3.4313 (10) | Ce3—Ce3viii | 3.8188 (8) |
Ce1—Ce3iv | 3.4609 (8) | Ce3—Ce3i | 3.8188 (8) |
Ce1—In1v | 3.5131 (10) | Pt—In2iii | 2.9599 (11) |
Ce1—In1vi | 3.5131 (10) | Pt—Ce1viii | 2.9606 (7) |
Ce1—Ce1vii | 3.6474 (14) | Pt—In1iii | 2.9703 (10) |
Ce1—Ce2 | 3.7623 (12) | Pt—Ce2ii | 3.0130 (8) |
Ce1—Ce1viii | 3.8188 (8) | Pt—Ce2iii | 3.0130 (8) |
Ce1—Ce1i | 3.8188 (8) | Pt—Ce2viii | 3.0530 (7) |
Ce1—Ce2ii | 4.0597 (11) | Pt—In2 | 3.4952 (12) |
Ce2—Ptix | 3.0130 (8) | Pt—Ptviii | 3.8188 (8) |
Ce2—Ptiv | 3.0130 (8) | Pt—Pti | 3.8188 (8) |
Ce2—Pti | 3.0530 (7) | In1—Ptix | 2.9703 (10) |
Ce2—Pt | 3.0530 (7) | In1—In2iii | 3.2734 (13) |
Ce2—In1i | 3.4132 (11) | In1—Ce1ix | 3.3288 (10) |
Ce2—In1 | 3.4132 (11) | In1—Ce1iv | 3.3288 (10) |
Ce2—In2 | 3.4196 (10) | In1—Ce3viii | 3.3315 (8) |
Ce2—In2i | 3.4196 (10) | In1—Ce2viii | 3.4132 (11) |
Ce2—In2ii | 3.4521 (10) | In1—Ce1xiii | 3.5131 (10) |
Ce2—In2iii | 3.4521 (10) | In1—Ce1xiv | 3.5131 (10) |
Ce2—Ce2viii | 3.8188 (8) | In2—Ptix | 2.9599 (11) |
Ce2—Ce2i | 3.8188 (8) | In2—In1ix | 3.2734 (13) |
Ce2—Ce1iv | 4.0597 (11) | In2—Ce2viii | 3.4196 (10) |
Ce3—In1x | 3.3315 (8) | In2—Ce3ix | 3.4233 (9) |
Ce3—In1 | 3.3315 (8) | In2—Ce3iv | 3.4233 (9) |
Ce3—In1xi | 3.3315 (8) | In2—Ce1viii | 3.4313 (10) |
Ce3—In1i | 3.3315 (8) | In2—Ce2ix | 3.4521 (10) |
Ce3—In2iii | 3.4233 (9) | In2—Ce2iv | 3.4521 (10) |
| | | |
Pti—Ce1—Pt | 80.32 (3) | In2xii—Ce3—In2ii | 112.20 (2) |
Pti—Ce1—In1ii | 55.995 (19) | In1x—Ce3—In2xiii | 96.24 (2) |
Pt—Ce1—In1ii | 100.40 (3) | In1—Ce3—In2xiii | 83.76 (2) |
Pti—Ce1—In1iii | 100.40 (3) | In1xi—Ce3—In2xiii | 57.95 (2) |
Pt—Ce1—In1iii | 55.995 (19) | In1i—Ce3—In2xiii | 122.05 (2) |
In1ii—Ce1—In1iii | 70.00 (3) | In2iii—Ce3—In2xiii | 112.20 (2) |
Pti—Ce1—In2 | 107.95 (3) | In2xii—Ce3—In2xiii | 67.80 (2) |
Pt—Ce1—In2 | 65.82 (2) | In2ii—Ce3—In2xiii | 180.000 (16) |
In1ii—Ce1—In2 | 161.69 (3) | In1x—Ce3—Ce1xiii | 117.743 (19) |
In1iii—Ce1—In2 | 108.12 (2) | In1—Ce3—Ce1xiii | 62.257 (19) |
Pti—Ce1—In2i | 65.82 (2) | In1xi—Ce3—Ce1xiii | 117.743 (19) |
Pt—Ce1—In2i | 107.95 (3) | In1i—Ce3—Ce1xiii | 62.257 (19) |
In1ii—Ce1—In2i | 108.12 (2) | In2iii—Ce3—Ce1xiii | 120.210 (17) |
In1iii—Ce1—In2i | 161.69 (3) | In2xii—Ce3—Ce1xiii | 59.790 (17) |
In2—Ce1—In2i | 67.62 (2) | In2ii—Ce3—Ce1xiii | 120.210 (17) |
Pti—Ce1—Ce3iv | 124.510 (18) | In2xiii—Ce3—Ce1xiii | 59.790 (17) |
Pt—Ce1—Ce3iv | 124.510 (18) | In1x—Ce3—Ce1ii | 62.257 (19) |
In1ii—Ce1—Ce3iv | 135.05 (2) | In1—Ce3—Ce1ii | 117.743 (19) |
In1iii—Ce1—Ce3iv | 135.05 (2) | In1xi—Ce3—Ce1ii | 62.257 (19) |
In2—Ce1—Ce3iv | 59.56 (2) | In1i—Ce3—Ce1ii | 117.743 (19) |
In2i—Ce1—Ce3iv | 59.56 (2) | In2iii—Ce3—Ce1ii | 59.790 (17) |
Pti—Ce1—In1v | 170.60 (2) | In2xii—Ce3—Ce1ii | 120.210 (17) |
Pt—Ce1—In1v | 106.591 (19) | In2ii—Ce3—Ce1ii | 59.790 (17) |
In1ii—Ce1—In1v | 115.64 (2) | In2xiii—Ce3—Ce1ii | 120.210 (17) |
In1iii—Ce1—In1v | 79.00 (3) | Ce1xiii—Ce3—Ce1ii | 180.00 (2) |
In2—Ce1—In1v | 80.98 (2) | In1x—Ce3—Ce3viii | 124.969 (11) |
In2i—Ce1—In1v | 116.63 (3) | In1—Ce3—Ce3viii | 55.031 (11) |
Ce3iv—Ce1—In1v | 57.065 (17) | In1xi—Ce3—Ce3viii | 55.031 (11) |
Pti—Ce1—In1vi | 106.591 (18) | In1i—Ce3—Ce3viii | 124.969 (11) |
Pt—Ce1—In1vi | 170.60 (2) | In2iii—Ce3—Ce3viii | 56.098 (11) |
In1ii—Ce1—In1vi | 79.00 (3) | In2xii—Ce3—Ce3viii | 123.902 (11) |
In1iii—Ce1—In1vi | 115.64 (2) | In2ii—Ce3—Ce3viii | 123.902 (11) |
In2—Ce1—In1vi | 116.63 (3) | In2xiii—Ce3—Ce3viii | 56.098 (11) |
In2i—Ce1—In1vi | 80.98 (2) | Ce1xiii—Ce3—Ce3viii | 90.0 |
Ce3iv—Ce1—In1vi | 57.065 (17) | Ce1ii—Ce3—Ce3viii | 90.0 |
In1v—Ce1—In1vi | 65.85 (2) | In1x—Ce3—Ce3i | 55.031 (11) |
Pti—Ce1—Ce1vii | 116.09 (3) | In1—Ce3—Ce3i | 124.969 (11) |
Pt—Ce1—Ce1vii | 116.09 (3) | In1xi—Ce3—Ce3i | 124.969 (11) |
In1ii—Ce1—Ce1vii | 60.27 (2) | In1i—Ce3—Ce3i | 55.031 (11) |
In1iii—Ce1—Ce1vii | 60.27 (2) | In2iii—Ce3—Ce3i | 123.902 (11) |
In2—Ce1—Ce1vii | 135.68 (2) | In2xii—Ce3—Ce3i | 56.098 (11) |
In2i—Ce1—Ce1vii | 135.68 (2) | In2ii—Ce3—Ce3i | 56.098 (11) |
Ce3iv—Ce1—Ce1vii | 97.02 (3) | In2xiii—Ce3—Ce3i | 123.902 (11) |
In1v—Ce1—Ce1vii | 55.37 (2) | Ce1xiii—Ce3—Ce3i | 90.0 |
In1vi—Ce1—Ce1vii | 55.37 (2) | Ce1ii—Ce3—Ce3i | 90.0 |
Pti—Ce1—Ce2 | 52.378 (17) | Ce3viii—Ce3—Ce3i | 180.0 |
Pt—Ce1—Ce2 | 52.378 (17) | In2iii—Pt—Ce1viii | 139.222 (13) |
In1ii—Ce1—Ce2 | 105.77 (2) | In2iii—Pt—Ce1 | 139.222 (13) |
In1iii—Ce1—Ce2 | 105.77 (2) | Ce1viii—Pt—Ce1 | 80.32 (3) |
In2—Ce1—Ce2 | 56.542 (18) | In2iii—Pt—In1iii | 126.71 (3) |
In2i—Ce1—Ce2 | 56.542 (18) | Ce1viii—Pt—In1iii | 68.29 (2) |
Ce3iv—Ce1—Ce2 | 100.86 (2) | Ce1—Pt—In1iii | 68.29 (2) |
In1v—Ce1—Ce2 | 136.93 (2) | In2iii—Pt—Ce2ii | 69.85 (2) |
In1vi—Ce1—Ce2 | 136.93 (2) | Ce1viii—Pt—Ce2ii | 137.82 (3) |
Ce1vii—Ce1—Ce2 | 162.12 (3) | Ce1—Pt—Ce2ii | 85.622 (19) |
Pti—Ce1—Ce1viii | 130.161 (13) | In1iii—Pt—Ce2ii | 69.56 (2) |
Pt—Ce1—Ce1viii | 49.839 (13) | In2iii—Pt—Ce2iii | 69.85 (2) |
In1ii—Ce1—Ce1viii | 125.001 (13) | Ce1viii—Pt—Ce2iii | 85.622 (19) |
In1iii—Ce1—Ce1viii | 54.999 (13) | Ce1—Pt—Ce2iii | 137.82 (3) |
In2—Ce1—Ce1viii | 56.188 (12) | In1iii—Pt—Ce2iii | 69.56 (2) |
In2i—Ce1—Ce1viii | 123.812 (12) | Ce2ii—Pt—Ce2iii | 78.65 (3) |
Ce3iv—Ce1—Ce1viii | 90.0 | In2iii—Pt—Ce2viii | 70.06 (2) |
In1v—Ce1—Ce1viii | 57.077 (12) | Ce1viii—Pt—Ce2viii | 77.44 (2) |
In1vi—Ce1—Ce1viii | 122.923 (12) | Ce1—Pt—Ce2viii | 126.10 (3) |
Ce1vii—Ce1—Ce1viii | 90.0 | In1iii—Pt—Ce2viii | 140.040 (13) |
Ce2—Ce1—Ce1viii | 90.0 | Ce2ii—Pt—Ce2viii | 139.896 (19) |
Pti—Ce1—Ce1i | 49.839 (13) | Ce2iii—Pt—Ce2viii | 88.407 (15) |
Pt—Ce1—Ce1i | 130.161 (13) | In2iii—Pt—Ce2 | 70.06 (2) |
In1ii—Ce1—Ce1i | 54.999 (13) | Ce1viii—Pt—Ce2 | 126.10 (3) |
In1iii—Ce1—Ce1i | 125.001 (13) | Ce1—Pt—Ce2 | 77.44 (2) |
In2—Ce1—Ce1i | 123.812 (12) | In1iii—Pt—Ce2 | 140.040 (13) |
In2i—Ce1—Ce1i | 56.188 (12) | Ce2ii—Pt—Ce2 | 88.407 (15) |
Ce3iv—Ce1—Ce1i | 90.0 | Ce2iii—Pt—Ce2 | 139.896 (19) |
In1v—Ce1—Ce1i | 122.923 (12) | Ce2viii—Pt—Ce2 | 77.43 (2) |
In1vi—Ce1—Ce1i | 57.078 (12) | In2iii—Pt—In2 | 117.84 (3) |
Ce1vii—Ce1—Ce1i | 90.0 | Ce1viii—Pt—In2 | 63.582 (18) |
Ce2—Ce1—Ce1i | 90.0 | Ce1—Pt—In2 | 63.582 (18) |
Ce1viii—Ce1—Ce1i | 180.00 (4) | In1iii—Pt—In2 | 115.44 (3) |
Pti—Ce1—Ce2ii | 47.732 (14) | Ce2ii—Pt—In2 | 140.654 (13) |
Pt—Ce1—Ce2ii | 47.732 (14) | Ce2iii—Pt—In2 | 140.654 (13) |
In1ii—Ce1—Ce2ii | 53.93 (2) | Ce2viii—Pt—In2 | 62.53 (2) |
In1iii—Ce1—Ce2ii | 53.93 (2) | Ce2—Pt—In2 | 62.53 (2) |
In2—Ce1—Ce2ii | 109.56 (2) | In2iii—Pt—Ptviii | 90.0 |
In2i—Ce1—Ce2ii | 109.56 (2) | Ce1viii—Pt—Ptviii | 49.839 (13) |
Ce3iv—Ce1—Ce2ii | 166.19 (2) | Ce1—Pt—Ptviii | 130.161 (13) |
In1v—Ce1—Ce2ii | 132.89 (2) | In1iii—Pt—Ptviii | 90.0 |
In1vi—Ce1—Ce2ii | 132.89 (2) | Ce2ii—Pt—Ptviii | 129.325 (12) |
Ce1vii—Ce1—Ce2ii | 96.79 (3) | Ce2iii—Pt—Ptviii | 50.675 (13) |
Ce2—Ce1—Ce2ii | 65.333 (17) | Ce2viii—Pt—Ptviii | 51.287 (12) |
Ce1viii—Ce1—Ce2ii | 90.0 | Ce2—Pt—Ptviii | 128.713 (12) |
Ce1i—Ce1—Ce2ii | 90.0 | In2—Pt—Ptviii | 90.0 |
Ptix—Ce2—Ptiv | 78.65 (3) | In2iii—Pt—Pti | 90.0 |
Ptix—Ce2—Pti | 158.86 (3) | Ce1viii—Pt—Pti | 130.161 (13) |
Ptiv—Ce2—Pti | 98.047 (16) | Ce1—Pt—Pti | 49.839 (13) |
Ptix—Ce2—Pt | 98.047 (16) | In1iii—Pt—Pti | 90.0 |
Ptiv—Ce2—Pt | 158.86 (3) | Ce2ii—Pt—Pti | 50.675 (12) |
Pti—Ce2—Pt | 77.43 (2) | Ce2iii—Pt—Pti | 129.325 (13) |
Ptix—Ce2—In1i | 97.48 (2) | Ce2viii—Pt—Pti | 128.713 (12) |
Ptiv—Ce2—In1i | 54.632 (18) | Ce2—Pt—Pti | 51.287 (12) |
Pti—Ce2—In1i | 97.42 (2) | In2—Pt—Pti | 90.0 |
Pt—Ce2—In1i | 145.99 (3) | Ptviii—Pt—Pti | 180.00 (4) |
Ptix—Ce2—In1 | 54.632 (18) | Ptix—In1—In2iii | 102.98 (3) |
Ptiv—Ce2—In1 | 97.48 (2) | Ptix—In1—Ce1ix | 55.719 (19) |
Pti—Ce2—In1 | 145.99 (3) | In2iii—In1—Ce1ix | 134.91 (2) |
Pt—Ce2—In1 | 97.42 (2) | Ptix—In1—Ce1iv | 55.719 (19) |
In1i—Ce2—In1 | 68.03 (3) | In2iii—In1—Ce1iv | 134.91 (2) |
Ptix—Ce2—In2 | 54.35 (2) | Ce1ix—In1—Ce1iv | 70.00 (3) |
Ptiv—Ce2—In2 | 97.17 (3) | Ptix—In1—Ce3 | 139.720 (18) |
Pti—Ce2—In2 | 106.08 (3) | In2iii—In1—Ce3 | 62.43 (2) |
Pt—Ce2—In2 | 65.08 (2) | Ce1ix—In1—Ce3 | 159.45 (3) |
In1i—Ce2—In2 | 145.92 (3) | Ce1iv—In1—Ce3 | 106.194 (17) |
In1—Ce2—In2 | 101.74 (2) | Ptix—In1—Ce3viii | 139.720 (18) |
Ptix—Ce2—In2i | 97.17 (3) | In2iii—In1—Ce3viii | 62.43 (2) |
Ptiv—Ce2—In2i | 54.35 (2) | Ce1ix—In1—Ce3viii | 106.194 (17) |
Pti—Ce2—In2i | 65.08 (2) | Ce1iv—In1—Ce3viii | 159.45 (3) |
Pt—Ce2—In2i | 106.08 (3) | Ce3—In1—Ce3viii | 69.94 (2) |
In1i—Ce2—In2i | 101.74 (2) | Ptix—In1—Ce2viii | 55.81 (2) |
In1—Ce2—In2i | 145.92 (3) | In2iii—In1—Ce2viii | 62.12 (2) |
In2—Ce2—In2i | 67.89 (3) | Ce1ix—In1—Ce2viii | 74.04 (2) |
Ptix—Ce2—In2ii | 147.23 (3) | Ce1iv—In1—Ce2viii | 111.52 (3) |
Ptiv—Ce2—In2ii | 98.04 (2) | Ce3—In1—Ce2viii | 124.54 (3) |
Pti—Ce2—In2ii | 53.71 (2) | Ce3viii—In1—Ce2viii | 85.74 (2) |
Pt—Ce2—In2ii | 95.74 (3) | Ptix—In1—Ce2 | 55.81 (2) |
In1i—Ce2—In2ii | 56.95 (2) | In2iii—In1—Ce2 | 62.12 (2) |
In1—Ce2—In2ii | 94.21 (3) | Ce1ix—In1—Ce2 | 111.52 (3) |
In2—Ce2—In2ii | 156.27 (3) | Ce1iv—In1—Ce2 | 74.04 (2) |
In2i—Ce2—In2ii | 107.324 (18) | Ce3—In1—Ce2 | 85.74 (2) |
Ptix—Ce2—In2iii | 98.04 (2) | Ce3viii—In1—Ce2 | 124.54 (3) |
Ptiv—Ce2—In2iii | 147.23 (3) | Ce2viii—In1—Ce2 | 68.03 (3) |
Pti—Ce2—In2iii | 95.74 (3) | Ptix—In1—Ce1xiii | 119.90 (3) |
Pt—Ce2—In2iii | 53.71 (2) | In2iii—In1—Ce1xiii | 123.11 (3) |
In1i—Ce2—In2iii | 94.21 (3) | Ce1ix—In1—Ce1xiii | 101.00 (3) |
In1—Ce2—In2iii | 56.95 (2) | Ce1iv—In1—Ce1xiii | 64.36 (2) |
In2—Ce2—In2iii | 107.324 (18) | Ce3—In1—Ce1xiii | 60.678 (17) |
In2i—Ce2—In2iii | 156.27 (3) | Ce3viii—In1—Ce1xiii | 97.66 (3) |
In2ii—Ce2—In2iii | 67.16 (2) | Ce2viii—In1—Ce1xiii | 174.67 (3) |
Ptix—Ce2—Ce1 | 111.18 (2) | Ce2—In1—Ce1xiii | 112.804 (18) |
Ptiv—Ce2—Ce1 | 111.18 (2) | Ptix—In1—Ce1xiv | 119.90 (3) |
Pti—Ce2—Ce1 | 50.183 (14) | In2iii—In1—Ce1xiv | 123.11 (3) |
Pt—Ce2—Ce1 | 50.183 (14) | Ce1ix—In1—Ce1xiv | 64.36 (2) |
In1i—Ce2—Ce1 | 145.290 (14) | Ce1iv—In1—Ce1xiv | 101.00 (3) |
In1—Ce2—Ce1 | 145.290 (14) | Ce3—In1—Ce1xiv | 97.66 (3) |
In2—Ce2—Ce1 | 56.84 (2) | Ce3viii—In1—Ce1xiv | 60.678 (17) |
In2i—Ce2—Ce1 | 56.84 (2) | Ce2viii—In1—Ce1xiv | 112.804 (18) |
In2ii—Ce2—Ce1 | 100.48 (2) | Ce2—In1—Ce1xiv | 174.67 (3) |
In2iii—Ce2—Ce1 | 100.48 (2) | Ce1xiii—In1—Ce1xiv | 65.85 (2) |
Ptix—Ce2—Ce2viii | 50.675 (13) | Ptix—In2—In1ix | 102.47 (3) |
Ptiv—Ce2—Ce2viii | 129.325 (12) | Ptix—In2—Ce2 | 55.81 (2) |
Pti—Ce2—Ce2viii | 128.713 (12) | In1ix—In2—Ce2 | 135.83 (2) |
Pt—Ce2—Ce2viii | 51.287 (12) | Ptix—In2—Ce2viii | 55.81 (2) |
In1i—Ce2—Ce2viii | 124.016 (13) | In1ix—In2—Ce2viii | 135.83 (2) |
In1—Ce2—Ce2viii | 55.984 (13) | Ce2—In2—Ce2viii | 67.89 (3) |
In2—Ce2—Ce2viii | 56.057 (13) | Ptix—In2—Ce3ix | 138.75 (2) |
In2i—Ce2—Ce2viii | 123.943 (13) | In1ix—In2—Ce3ix | 59.618 (19) |
In2ii—Ce2—Ce2viii | 123.581 (12) | Ce2—In2—Ce3ix | 161.54 (3) |
In2iii—Ce2—Ce2viii | 56.419 (12) | Ce2viii—In2—Ce3ix | 109.006 (18) |
Ce1—Ce2—Ce2viii | 90.0 | Ptix—In2—Ce3iv | 138.75 (2) |
Ptix—Ce2—Ce2i | 129.325 (13) | In1ix—In2—Ce3iv | 59.618 (19) |
Ptiv—Ce2—Ce2i | 50.675 (13) | Ce2—In2—Ce3iv | 109.006 (18) |
Pti—Ce2—Ce2i | 51.287 (12) | Ce2viii—In2—Ce3iv | 161.54 (3) |
Pt—Ce2—Ce2i | 128.713 (12) | Ce3ix—In2—Ce3iv | 67.80 (2) |
In1i—Ce2—Ce2i | 55.984 (13) | Ptix—In2—Ce1 | 122.41 (3) |
In1—Ce2—Ce2i | 124.016 (13) | In1ix—In2—Ce1 | 120.27 (3) |
In2—Ce2—Ce2i | 123.943 (13) | Ce2—In2—Ce1 | 66.62 (2) |
In2i—Ce2—Ce2i | 56.057 (13) | Ce2viii—In2—Ce1 | 102.98 (3) |
In2ii—Ce2—Ce2i | 56.419 (12) | Ce3ix—In2—Ce1 | 97.51 (3) |
In2iii—Ce2—Ce2i | 123.581 (12) | Ce3iv—In2—Ce1 | 60.650 (17) |
Ce1—Ce2—Ce2i | 90.0 | Ptix—In2—Ce1viii | 122.41 (3) |
Ce2viii—Ce2—Ce2i | 180.00 (5) | In1ix—In2—Ce1viii | 120.27 (3) |
Ptix—Ce2—Ce1iv | 46.647 (15) | Ce2—In2—Ce1viii | 102.98 (3) |
Ptiv—Ce2—Ce1iv | 46.647 (15) | Ce2viii—In2—Ce1viii | 66.62 (2) |
Pti—Ce2—Ce1iv | 141.287 (12) | Ce3ix—In2—Ce1viii | 60.650 (17) |
Pt—Ce2—Ce1iv | 141.287 (12) | Ce3iv—In2—Ce1viii | 97.51 (3) |
In1i—Ce2—Ce1iv | 52.031 (18) | Ce1—In2—Ce1viii | 67.62 (2) |
In1—Ce2—Ce1iv | 52.031 (18) | Ptix—In2—Ce2ix | 56.237 (19) |
In2—Ce2—Ce1iv | 95.42 (3) | In1ix—In2—Ce2ix | 60.93 (2) |
In2i—Ce2—Ce1iv | 95.42 (3) | Ce2—In2—Ce2ix | 112.04 (3) |
In2ii—Ce2—Ce1iv | 108.26 (2) | Ce2viii—In2—Ce2ix | 75.970 (17) |
In2iii—Ce2—Ce1iv | 108.26 (2) | Ce3ix—In2—Ce2ix | 83.75 (2) |
Ce1—Ce2—Ce1iv | 145.29 (3) | Ce3iv—In2—Ce2ix | 120.54 (3) |
Ce2viii—Ce2—Ce1iv | 90.0 | Ce1—In2—Ce2ix | 178.60 (3) |
Ce2i—Ce2—Ce1iv | 90.0 | Ce1viii—In2—Ce2ix | 112.589 (16) |
In1x—Ce3—In1 | 180.00 (3) | Ptix—In2—Ce2iv | 56.237 (19) |
In1x—Ce3—In1xi | 69.94 (2) | In1ix—In2—Ce2iv | 60.93 (2) |
In1—Ce3—In1xi | 110.06 (2) | Ce2—In2—Ce2iv | 75.970 (17) |
In1x—Ce3—In1i | 110.06 (2) | Ce2viii—In2—Ce2iv | 112.04 (3) |
In1—Ce3—In1i | 69.94 (2) | Ce3ix—In2—Ce2iv | 120.54 (3) |
In1xi—Ce3—In1i | 180.00 (3) | Ce3iv—In2—Ce2iv | 83.75 (2) |
In1x—Ce3—In2iii | 122.05 (2) | Ce1—In2—Ce2iv | 112.589 (16) |
In1—Ce3—In2iii | 57.95 (2) | Ce1viii—In2—Ce2iv | 178.60 (3) |
In1xi—Ce3—In2iii | 83.76 (2) | Ce2ix—In2—Ce2iv | 67.16 (2) |
In1i—Ce3—In2iii | 96.24 (2) | Ptix—In2—Pt | 89.99 (3) |
In1x—Ce3—In2xii | 57.95 (2) | In1ix—In2—Pt | 167.53 (3) |
In1—Ce3—In2xii | 122.05 (2) | Ce2—In2—Pt | 52.387 (17) |
In1xi—Ce3—In2xii | 96.24 (2) | Ce2viii—In2—Pt | 52.387 (17) |
In1i—Ce3—In2xii | 83.76 (2) | Ce3ix—In2—Pt | 110.60 (2) |
In2iii—Ce3—In2xii | 180.00 (4) | Ce3iv—In2—Pt | 110.60 (2) |
In1x—Ce3—In2ii | 83.76 (2) | Ce1—In2—Pt | 50.599 (18) |
In1—Ce3—In2ii | 96.24 (2) | Ce1viii—In2—Pt | 50.599 (18) |
In1xi—Ce3—In2ii | 122.05 (2) | Ce2ix—In2—Pt | 128.36 (2) |
In1i—Ce3—In2ii | 57.95 (2) | Ce2iv—In2—Pt | 128.36 (2) |
In2iii—Ce3—In2ii | 67.80 (2) | | |
Symmetry codes: (i) x, y, z−1; (ii) x−1/2, −y+1/2, −z; (iii) x−1/2, −y+1/2, −z+1; (iv) x+1/2, −y+1/2, −z; (v) −x+1/2, y+1/2, z; (vi) −x+1/2, y+1/2, z−1; (vii) −x, −y+1, −z; (viii) x, y, z+1; (ix) x+1/2, −y+1/2, −z+1; (x) −x, −y, −z; (xi) −x, −y, −z+1; (xii) −x+1/2, y−1/2, z−1; (xiii) −x+1/2, y−1/2, z; (xiv) −x+1/2, y−1/2, z+1. |