CsZrUTe5 is isostructural with CsTiUTe5. In the asymmetric unit, the site symmetries of the Cs, U, Zr, Te1, Te2 and Te3 atoms are mm2, mm2, .2/m., m.., .2. and mm2, respectively. CsZrUTe5 has a layered structure that contains UTe8 bicapped trigonal prisms sharing a common edge with ZrTe6 octahedra. Cs cations separate the layers. The structure contains an infinite linear Te-Te chain, with Te atoms separated by 3.1551 (4) Å.
Supporting information
Key indicators
- Single-crystal X-ray study
- T = 153 K
- Mean (e-Te)= 0.000 Å
- R factor = 0.025
- wR factor = 0.067
- Data-to-parameter ratio = 28.6
checkCIF/PLATON results
No syntax errors found
No errors found in this datablock
Data collection: SMART (Bruker, 2003); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: CrystalMaker (CrystalMaker Software, 2005); software used to prepare material for publication: SHELXTL.
caesium zirconium uranium pentatelluride
top
Crystal data top
CsZrUTe5 | F(000) = 894 |
Mr = 1100.16 | Dx = 6.675 Mg m−3 |
Orthorhombic, Pmma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2a 2a | Cell parameters from 4900 reflections |
a = 6.3101 (8) Å | θ = 2.5–28.9° |
b = 8.2299 (10) Å | µ = 31.99 mm−1 |
c = 10.5401 (13) Å | T = 153 K |
V = 547.36 (12) Å3 | Needle, black |
Z = 2 | 0.34 × 0.06 × 0.06 mm |
Data collection top
Bruker SMART 1000 CCD area-detector diffractometer | 801 independent reflections |
Radiation source: fine-focus sealed tube | 769 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.038 |
ω scans | θmax = 28.9°, θmin = 1.9° |
Absorption correction: numerical face-indexed (SHELXTL; Sheldrick, 2003) | h = −8→8 |
Tmin = 0.039, Tmax = 0.217 | k = −11→11 |
6537 measured reflections | l = −14→14 |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.025 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.04P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.27 | (Δ/σ)max < 0.001 |
801 reflections | Δρmax = 3.85 e Å−3 |
28 parameters | Δρmin = −2.55 e Å−3 |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
U1 | 0.2500 | 0.0000 | 0.33923 (3) | 0.01280 (14) | |
Zr1 | 0.0000 | 0.0000 | 0.0000 | 0.0100 (2) | |
Cs1 | 0.2500 | 0.5000 | 0.78824 (6) | 0.01443 (17) | |
Te1 | 0.2500 | 0.25276 (5) | 0.12167 (4) | 0.01029 (15) | |
Te2 | 0.0000 | 0.25266 (5) | 0.5000 | 0.01341 (16) | |
Te3 | 0.2500 | 0.0000 | 0.77038 (6) | 0.01101 (17) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
U1 | 0.0154 (2) | 0.0130 (2) | 0.0101 (2) | 0.000 | 0.000 | 0.000 |
Zr1 | 0.0102 (4) | 0.0126 (4) | 0.0072 (4) | 0.000 | −0.0004 (3) | 0.000 |
Cs1 | 0.0155 (3) | 0.0157 (3) | 0.0121 (3) | 0.000 | 0.000 | 0.000 |
Te1 | 0.0113 (3) | 0.0097 (3) | 0.0098 (3) | 0.000 | 0.000 | −0.00089 (15) |
Te2 | 0.0200 (3) | 0.0116 (3) | 0.0086 (3) | 0.000 | −0.00243 (16) | 0.000 |
Te3 | 0.0106 (3) | 0.0175 (3) | 0.0049 (3) | 0.000 | 0.000 | 0.000 |
Geometric parameters (Å, º) top
U1—Te1 | 3.0961 (6) | Cs1—Te2ii | 3.9828 (6) |
U1—Te1i | 3.0961 (6) | Cs1—Te2xi | 3.9828 (6) |
U1—Te2ii | 3.1118 (4) | Cs1—Te2xii | 3.9828 (6) |
U1—Te2 | 3.1118 (4) | Cs1—Te1xiii | 4.0609 (8) |
U1—Te2iii | 3.1118 (4) | Cs1—Te1xiv | 4.0608 (8) |
U1—Te2i | 3.1118 (4) | Cs1—Te3 | 4.1193 (5) |
U1—Te3iii | 3.3599 (4) | Cs1—Te3xv | 4.1193 (5) |
U1—Te3iv | 3.3599 (4) | Te1—Zr1i | 2.9087 (4) |
Zr1—Te3iii | 2.8890 (6) | Te1—Cs1ix | 3.8725 (4) |
Zr1—Te3v | 2.8890 (6) | Te1—Cs1xi | 3.8725 (4) |
Zr1—Te1vi | 2.9087 (4) | Te1—Cs1v | 4.0609 (8) |
Zr1—Te1vii | 2.9087 (4) | Te2—U1iii | 3.1118 (4) |
Zr1—Te1i | 2.9087 (4) | Te2—Te2ii | 3.1551 (4) |
Zr1—Te1 | 2.9087 (4) | Te2—Te2x | 3.1551 (4) |
Te2—Te2ii | 3.1551 (4) | Te2—Cs1xi | 3.9828 (6) |
Zr1—Zr1viii | 3.1551 (4) | Te3—Zr1xvi | 2.8890 (6) |
Cs1—Te1ix | 3.8725 (5) | Te3—Zr1xiv | 2.8890 (6) |
Cs1—Te1x | 3.8725 (5) | Te3—U1iii | 3.3599 (4) |
Cs1—Te1ii | 3.8725 (5) | Te3—U1iv | 3.3599 (4) |
Cs1—Te1xi | 3.8725 (5) | Te3—Cs1xvii | 4.1193 (5) |
Cs1—Te2 | 3.9828 (6) | | |
| | | |
Te1—U1—Te1i | 84.42 (2) | Te1ix—Cs1—Te1xiii | 61.610 (11) |
Te1—U1—Te2ii | 87.384 (13) | Te1x—Cs1—Te1xiii | 92.928 (13) |
Te1i—U1—Te2ii | 148.459 (6) | Te1ii—Cs1—Te1xiii | 92.928 (14) |
Te1—U1—Te2 | 87.384 (13) | Te1xi—Cs1—Te1xiii | 61.610 (11) |
Te1i—U1—Te2 | 148.459 (6) | Te2—Cs1—Te1xiii | 156.383 (6) |
Te2ii—U1—Te2 | 60.921 (10) | Te2ii—Cs1—Te1xiii | 156.383 (6) |
Te1—U1—Te2iii | 148.459 (6) | Te2xi—Cs1—Te1xiii | 113.832 (11) |
Te1i—U1—Te2iii | 87.385 (12) | Te2xii—Cs1—Te1xiii | 113.832 (11) |
Te2ii—U1—Te2iii | 114.014 (15) | Te1ix—Cs1—Te1xiv | 92.928 (14) |
Te2—U1—Te2iii | 83.856 (16) | Te1x—Cs1—Te1xiv | 61.610 (11) |
Te1—U1—Te2i | 148.459 (6) | Te1ii—Cs1—Te1xiv | 61.610 (11) |
Te1i—U1—Te2i | 87.385 (12) | Te1xi—Cs1—Te1xiv | 92.928 (14) |
Te2ii—U1—Te2i | 83.856 (16) | Te2—Cs1—Te1xiv | 113.832 (11) |
Te2—U1—Te2i | 114.014 (15) | Te2ii—Cs1—Te1xiv | 113.832 (11) |
Te2iii—U1—Te2i | 60.921 (11) | Te2xi—Cs1—Te1xiv | 156.383 (6) |
Te1—U1—Te3iii | 75.246 (9) | Te2xii—Cs1—Te1xiv | 156.383 (6) |
Te1i—U1—Te3iii | 75.246 (8) | Te1xiii—Cs1—Te1xiv | 60.141 (17) |
Te2ii—U1—Te3iii | 131.550 (7) | Te1ix—Cs1—Te3 | 122.418 (8) |
Te2—U1—Te3iii | 73.214 (9) | Te1x—Cs1—Te3 | 59.091 (8) |
Te2iii—U1—Te3iii | 73.214 (9) | Te1ii—Cs1—Te3 | 59.091 (7) |
Te2i—U1—Te3iii | 131.550 (7) | Te1xi—Cs1—Te3 | 122.418 (7) |
Te1—U1—Te3iv | 75.246 (9) | Te2—Cs1—Te3 | 56.945 (10) |
Te1i—U1—Te3iv | 75.246 (9) | Te2ii—Cs1—Te3 | 56.945 (10) |
Te2ii—U1—Te3iv | 73.214 (9) | Te2xi—Cs1—Te3 | 118.405 (15) |
Te2—U1—Te3iv | 131.550 (7) | Te2xii—Cs1—Te3 | 118.405 (15) |
Te2iii—U1—Te3iv | 131.550 (7) | Te1xiii—Cs1—Te3 | 122.691 (16) |
Te2i—U1—Te3iv | 73.214 (9) | Te1xiv—Cs1—Te3 | 62.550 (11) |
Te3iii—U1—Te3iv | 139.78 (2) | Te1ix—Cs1—Te3xv | 59.091 (7) |
Te3iii—Zr1—Te3v | 180.0 | Te1x—Cs1—Te3xv | 122.418 (7) |
Te3iii—Zr1—Te1vi | 94.198 (10) | Te1ii—Cs1—Te3xv | 122.418 (8) |
Te3v—Zr1—Te1vi | 85.802 (10) | Te1xi—Cs1—Te3xv | 59.091 (8) |
Te3iii—Zr1—Te1vii | 94.198 (11) | Te2—Cs1—Te3xv | 118.405 (15) |
Te3v—Zr1—Te1vii | 85.802 (11) | Te2ii—Cs1—Te3xv | 118.405 (15) |
Te1vi—Zr1—Te1vii | 91.315 (16) | Te2xi—Cs1—Te3xv | 56.945 (10) |
Te3iii—Zr1—Te1i | 85.802 (11) | Te2xii—Cs1—Te3xv | 56.945 (10) |
Te3v—Zr1—Te1i | 94.198 (11) | Te1xiii—Cs1—Te3xv | 62.550 (11) |
Te1vi—Zr1—Te1i | 88.685 (16) | Te1xiv—Cs1—Te3xv | 122.691 (16) |
Te1vii—Zr1—Te1i | 180.00 (2) | Te3—Cs1—Te3xv | 174.76 (2) |
Te3iii—Zr1—Te1 | 85.802 (10) | Zr1—Te1—Zr1i | 65.688 (12) |
Te3v—Zr1—Te1 | 94.198 (10) | Zr1—Te1—U1 | 81.143 (13) |
Te1vi—Zr1—Te1 | 180.0 | Zr1i—Te1—U1 | 81.143 (13) |
Te1vii—Zr1—Te1 | 88.685 (16) | Zr1—Te1—Cs1ix | 157.783 (12) |
Te1i—Zr1—Te1 | 91.315 (16) | Zr1i—Te1—Cs1ix | 92.408 (10) |
Te3iii—Zr1—Zr1i | 123.097 (8) | U1—Te1—Cs1ix | 99.871 (13) |
Te3v—Zr1—Zr1i | 56.903 (8) | Zr1—Te1—Cs1xi | 92.408 (9) |
Te1vi—Zr1—Zr1i | 122.844 (6) | Zr1i—Te1—Cs1xi | 157.783 (12) |
Te1vii—Zr1—Zr1i | 122.844 (6) | U1—Te1—Cs1xi | 99.871 (13) |
Te1i—Zr1—Zr1i | 57.156 (6) | Cs1ix—Te1—Cs1xi | 109.123 (15) |
Te1—Zr1—Zr1i | 57.156 (6) | Zr1—Te1—Cs1v | 88.670 (13) |
Te3iii—Zr1—Zr1viii | 56.903 (8) | Zr1i—Te1—Cs1v | 88.670 (13) |
Te3v—Zr1—Zr1viii | 123.097 (8) | U1—Te1—Cs1v | 167.858 (14) |
Te1vi—Zr1—Zr1viii | 57.156 (6) | Cs1ix—Te1—Cs1v | 87.072 (14) |
Te1vii—Zr1—Zr1viii | 57.156 (6) | Cs1xi—Te1—Cs1v | 87.072 (14) |
Te1i—Zr1—Zr1viii | 122.844 (6) | U1iii—Te2—U1 | 96.143 (16) |
Te1—Zr1—Zr1viii | 122.844 (6) | U1iii—Te2—Te2ii | 120.461 (5) |
Zr1i—Zr1—Zr1viii | 180.0 | U1—Te2—Te2ii | 59.540 (6) |
Te1ix—Cs1—Te1x | 151.61 (2) | U1iii—Te2—Te2x | 59.539 (5) |
Te1ix—Cs1—Te1ii | 63.395 (13) | U1—Te2—Te2x | 120.460 (6) |
Te1x—Cs1—Te1ii | 109.122 (15) | Te2ii—Te2—Te2x | 180.00 (3) |
Te1ix—Cs1—Te1xi | 109.122 (15) | U1iii—Te2—Cs1 | 97.293 (11) |
Te1x—Cs1—Te1xi | 63.395 (13) | U1—Te2—Cs1 | 123.787 (8) |
Te1ii—Cs1—Te1xi | 151.61 (2) | Te2ii—Te2—Cs1 | 66.666 (5) |
Te1ix—Cs1—Te2 | 141.105 (15) | Te2x—Te2—Cs1 | 113.334 (5) |
Te1x—Cs1—Te2 | 66.158 (10) | U1iii—Te2—Cs1xi | 123.787 (8) |
Te1ii—Cs1—Te2 | 103.957 (12) | U1—Te2—Cs1xi | 97.292 (11) |
Te1xi—Cs1—Te2 | 97.637 (11) | Te2ii—Te2—Cs1xi | 113.334 (5) |
Te1ix—Cs1—Te2ii | 97.637 (11) | Te2x—Te2—Cs1xi | 66.666 (5) |
Te1x—Cs1—Te2ii | 103.957 (12) | Cs1—Te2—Cs1xi | 118.525 (15) |
Te1ii—Cs1—Te2ii | 66.158 (10) | Zr1xvi—Te3—Zr1xiv | 66.193 (16) |
Te1xi—Cs1—Te2ii | 141.105 (15) | Zr1xvi—Te3—U1iii | 143.209 (16) |
Te2—Cs1—Te2ii | 46.667 (9) | Zr1xiv—Te3—U1iii | 77.015 (10) |
Te1ix—Cs1—Te2xi | 103.957 (12) | Zr1xvi—Te3—U1iv | 77.015 (10) |
Te1x—Cs1—Te2xi | 97.637 (11) | Zr1xiv—Te3—U1iv | 143.209 (16) |
Te1ii—Cs1—Te2xi | 141.105 (15) | U1iii—Te3—U1iv | 139.78 (2) |
Te1xi—Cs1—Te2xi | 66.158 (10) | Zr1xvi—Te3—Cs1 | 87.805 (9) |
Te2—Cs1—Te2xi | 61.475 (15) | Zr1xiv—Te3—Cs1 | 87.805 (9) |
Te2ii—Cs1—Te2xi | 80.574 (16) | U1iii—Te3—Cs1 | 90.901 (4) |
Te1ix—Cs1—Te2xii | 66.158 (10) | U1iv—Te3—Cs1 | 90.901 (4) |
Te1x—Cs1—Te2xii | 141.105 (15) | Zr1xvi—Te3—Cs1xvii | 87.805 (9) |
Te1ii—Cs1—Te2xii | 97.637 (11) | Zr1xiv—Te3—Cs1xvii | 87.805 (9) |
Te1xi—Cs1—Te2xii | 103.957 (12) | U1iii—Te3—Cs1xvii | 90.901 (4) |
Te2—Cs1—Te2xii | 80.574 (16) | U1iv—Te3—Cs1xvii | 90.901 (4) |
Te2ii—Cs1—Te2xii | 61.475 (15) | Cs1—Te3—Cs1xvii | 174.76 (2) |
Te2xi—Cs1—Te2xii | 46.667 (9) | | |
Symmetry codes: (i) −x+1/2, −y, z; (ii) x+1/2, y, −z+1; (iii) −x, −y, −z+1; (iv) −x+1, −y, −z+1; (v) x, y, z−1; (vi) −x, −y, −z; (vii) x−1/2, y, −z; (viii) −x−1/2, −y, z; (ix) −x+1, −y+1, −z+1; (x) x−1/2, y, −z+1; (xi) −x, −y+1, −z+1; (xii) −x+1/2, −y+1, z; (xiii) −x+1/2, −y+1, z+1; (xiv) x, y, z+1; (xv) x, y+1, z; (xvi) −x+1/2, −y, z+1; (xvii) x, y−1, z. |